Skip to main content

Homogenization-Based Mechanical Behavior Modeling of Composites Using Mean Green Operators for Infinite Inclusion Patterns or Networks Possibly Co-continuous with a Matrix

  • Chapter
  • First Online:
Dynamics, Strength of Materials and Durability in Multiscale Mechanics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 137))

Abstract

The Fourier–Green homogenization method for estimating the behavior of composites was first developed for aggregates and inhomogeneity-reinforced (-weakened) matrices, based on Eshelby (Proc R Soc Lond, A 421:379–396, 1957, Proc R Soc Lond, A 252:561–569, 1959) solution of the isolated inclusion problem. The need to address increasingly complex structures opened fruitful development routes, firstly solving the inhomogeneity pair interaction problem and the one of heterogeneous (double or multilayered) inhomogeneities, in order to account for inclusion dense concentrations and patterns. This work reports recent developments from the authors and co-workers which examined in that framework possibly infinite inclusion patterns, possibly arranged into an infinite network possibly co-continuous with the embedding matrix and possibly evolving under strain. The proposed modeling amounts to determining the representative mean Green operator (mGO) for the infinite pattern or network in its current (strain evolving) state. Once the method foundations being summarized, previously solved “elementary” cases are recalled, concerning infinite coaxial alignments of spheres, spheroids or finite cylinders and planar alignments of infinite parallel cylinders or rectangular beams. It is next shown how other complex patterns or networks could be represented in combining such elementary ones. The mGO solution for a new family of inhomogeneous axial inclusion alignments is reported to support the discussion. Potential other application fields are evoked.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In contrast the also widely used MT (Mori and Tanaka 1973) estimate which, although identifying with the HS one in the simple case when the latter coincides with the PCW solution, does not and fails to satisfy the operator requested supersymmetries (and the estimate bounds) in most of the other cases (see Benveniste 1987).

  2. 2.

    These regular cases of quite simple extension to infinite alignments are taken from general less regular ones.

  3. 3.

    The plots for the sphere pair mGO terms also appear in gray on Fig. 15.2 left, not for the cylinder pair at right.

  4. 4.

    It consists in substituting the phase ϕ mean strains \(\left\langle {{\varvec{\upvarepsilon}}^{\phi } } \right\rangle\) with the square root of their mean second moments \(\left\langle {{\varvec{\upvarepsilon}}^{\phi } \otimes {\varvec{\upvarepsilon}}^{\phi } } \right\rangle^{1/2}\) of relatively easy calculations from the derivatives of the effective elastic energy by the moduli of the phase (Brenner et al. 2001) compared with other difficulties.

  5. 5.

    Nonuniform Transformation Field Analysis.

  6. 6.

    The Mori-Tanaka (MT) model is also validated as having a dynamical foundation, yet it is in fact only in its restricted validation domain of all congruent ellipsoids in homothetic ellipsoidal distribution, which coincides with both the HS estimate and the PCW one in this case.

References

  • Alibert, J. J., Seppecher, P., & dell’Isola, F. (2003). Truss modular beams with deformation energy depending on higher displacement gradients. Mathematics and Mechanics of Solids, 8(1), 51–73.

    Article  MathSciNet  MATH  Google Scholar 

  • Andreaus, U., Spagnuolo, M., Lekszycki, T., & Eugster, S. R. (2018). A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler-Bernoulli beams. Continuum Mechanics and Thermodynamics, 30, 1103–1123.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Barboura, S., & Franciosi, P. (2016). Analytical inclusion Green operators in transversally isotropic media. In Proceeding of the 24th ICTAM conference, Montreal, Canada (vol. 3, pp. 2350–2351).

    Google Scholar 

  • Barchiesi, E., & Placidi, L. (2017). A review on models for the 3D statics and 2D dynamics of pantographic fabrics. In Wave dynamics and composite mechanics for microstructured materials and meta-materials (pp. 239–258). Singapore: Springer.

    Google Scholar 

  • Barchiesi, E., Ganzosch, G., Liebold, C., Placidi, L., Grygoruk, R., & Müller, W. H. (2019). Out-of-plane buckling of pantographic fabrics in displacement-controlled shear tests: Experimental results and model validation. Continuum Mechanics and Thermodynamics, 31(1), 33–45.

    Article  ADS  MathSciNet  Google Scholar 

  • Bender, J., Jarvoll, P., Nydén, M., & Engström, S. (2008). Structure and dynamics of a sponge phase in the methyl δ; aminolevulinate/monoolein/water/propylene glycol system. Journal of Colloid and Interface Science, 317, 577–584.

    Article  ADS  Google Scholar 

  • Benveniste, Y. (1987). A new approach to the application of Mori–Tanaka’s theory in composite materials. Mechanics of Materials, 6, 147–157.

    Article  Google Scholar 

  • Berveiller, M., Fassi-Fehri, O., & Hihi, A. (1987). The problem of two plastic and heterogeneous inclusions in an anisotropic medium. International Journal of Engineering Sciences, 25(6), 691–709.

    Article  MATH  Google Scholar 

  • Bornert, M., Stolz, C., & Zaoui, A. (1996). Morphologically representative pattern-based bounding in elasticity. Journal of the Mechanics and Physics of Solids, 44(3), 307–331.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Boucher, S. (1974). On the effective moduli of isotropic two-phase elastic composites. Journal of Composite Materials, 8(1), 82–89.

    Article  ADS  Google Scholar 

  • Brenner, R., Castelnau, O., & Gilormini, P. (2001). A modified affine theory for the overall properties of nonlinear composites. Comptes Rendus de l’Académie des Sciences, Paris, Mechanics series, 329(9), 649–654.

    Google Scholar 

  • Burridge, R. (1967). The singularities on the plane lids of the wave surface of elastic media with cubic symmetry. The Quarterly Journal of Mechanics and Applied Mathematics, 20(1), 41–56.

    Article  MathSciNet  MATH  Google Scholar 

  • Buroni, C., & Saez, A. (2010). Three-dimensional Green functions and its derivatives for materials with general anisotropic magneto-electro-elastic coupling. Proceedings of the Royal Society A, 466, 515–537.

    Article  ADS  MATH  Google Scholar 

  • Buryachenko, V. A. (2001). Multiparticle effective field and related methods in micromechanics of composite materials. Applied Mechanics Review, 54, 1–47.

    Article  ADS  Google Scholar 

  • Buryachenko, V. A., & Brun, M. (2012). Thermo elastic effective properties and stress concentrator factors of composites reinforced by heterogeneities of non canonical shape. Mechanics of Materials, 53, 91–110.

    Article  Google Scholar 

  • Boutin, C., Giorgio, I., & Placidi, L. (2017). Linear pantographic sheets: Asymptotic micro-macro models identification. Mathematics and Mechanics of Complex Systems, 5(2), 127–162.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, J., Pan, E., & Chen, H. (2007). Wave propagation in magneto-electro-elastic multilayered plates. International Journal of Solids and Structures, 44, 1073–1085.

    Article  MATH  Google Scholar 

  • Chen, W. Q., Lee, K. Y., & Ding, H. J. (2004). General solution for transversely isotropic magneto-electro-thermo-elasticity and the potential theory method. International Journal of Engineering Science, 42, 1361–1379.

    Article  MATH  Google Scholar 

  • Chen, Z., Jeffrey, R. G., & Pandurangan, V. (2018). The far-field deformation caused by a hydraulic fracture in an inhomogeneous elastic half-space. International Journal of Solids and Structures, 130, 220–231.

    Article  Google Scholar 

  • Chiu, Y. P. (1977). On the stress field due to initial strains in a cuboid surrounded by an infinite elastic space. Journal of Applied Mechanics, 12, 587–590.

    Article  ADS  MATH  Google Scholar 

  • Christensen, R. M. (1979a). Isotropic properties of platelet reinforced media. Journal of Engineering Materials and Technology, 101(3), 299–303.

    Article  Google Scholar 

  • Christensen, R. M. (1979b). Mechanics of composite materials. New York: Wiley.

    Google Scholar 

  • Christensen, R. M., & Lo, K. H. (1979). Solutions for effective shear properties in 3 phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids, 27(4), 315–330.

    Article  ADS  MATH  Google Scholar 

  • Clyne, T. W., Markaki, A. E., & Tan, J. C. (2005). Mechanical and magnetic properties of metal fibre networks with and without a polymeric matrix. Composites Science and Technology, 65, 2492–2499.

    Article  Google Scholar 

  • Cuomo, M., dell’Isola, F., Greco, L., & Rizzi, N. L. (2017). First versus second gradient energies for planar sheets with two families of inextensible fibres: Investigation on deformation boundary layers, discontinuities and geometrical instabilities. Composites Part B Engineering, 115, 423–448.

    Article  Google Scholar 

  • Delannay, L., Lani, F., Pardoen, T., & Delannay, F. (2006). Mean field modeling of the plastic behaviour of co-continuous dual-phase alloys with strong morphological anisotropy. International Journal of Plasticity, 22, 2327–2345.

    Article  MATH  Google Scholar 

  • dell’Isola, F., Lekszycki, T., Pawlikowski, M., Grygoruk, R., & Greco, L. (2015). Designing a light fabric metamaterial being highly macroscopically tough under directional extension: First experimental evidence. Zeitschrift für Angewandte Mathematik und Physik, 66(6), 3473–3498.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • dell’Isola, F., Giorgio, I., Pawlikowski, M., & Rizzi, N. L. (2016). Large deformations of planar extensible beams and pantographic lattices: Heuristic homogenization, experimental and numerical examples of equilibrium. Proceedings of the Royal Society London A, 472(2185), 20150790.

    ADS  Google Scholar 

  • dell’Isola, F., Cuomo, M., Greco, L., & Della, Corte A. (2017). Bias extension test for pantographic sheets: Numerical simulations based on second gradient shear energies. Journal of Engineering Mathematics, 103(1), 127–157.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • dell’Isola, F., Seppecher, P., Spagnuolo, M., et al. (2019). Advances in pantographic structures: Design, manufacturing, models, experiments and image analyses. Continuum Mechanics and Thermodynamics, 31, 1231–1282.

    Article  ADS  Google Scholar 

  • Drugan, W. J., & Willis, J. R. (1996). A micro-mechanics-based non local constitutive equation and estimate of representative volume element size for elastic composites. Journal of the Mechanics and Physics of Solids, 44(4), 497–524.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Eremeyev, V. A., dell’Isola, F., Boutin, C., & Steigmann, D. (2018). Linear pantographic sheets: Existence and uniqueness of weak solutions. Journal of Elasticity, 132(2), 175–196.

    Article  MathSciNet  MATH  Google Scholar 

  • Eremeyev, V. A., Alzahrani, F. S., Cazzani, A., dell’Isola, F., Hayat, T., Turco, E., et al. (2019). On existence and uniqueness of weak solutions for linear pantographic beam lattices models. Continuum Mechanics and Thermodynamics, 31(6), 1843–1861.

    Article  ADS  MathSciNet  Google Scholar 

  • Eremeyev, V. A., & Turco, E. (2020). Enriched buckling for beam-lattice metamaterials. Mechanics Research Communications, 103, 103458.

    Article  Google Scholar 

  • Eremeyev, V. A., Skrzat, A., & Stachowicz, F. (2016). On finite element computations of contact problems in micropolar elasticity. Advances in Materials Science and Engineering. https://doi.org/10.1155/2016/9675604.

  • Eremeyev, V. A. (2018). On the material symmetry group for micromorphic media with applications to granular materials. Mechanics Research Communications, 94, 8–12.

    Article  Google Scholar 

  • Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion and related problems. Proceedings of the Royal Society London, A, 421, 379–396.

    MathSciNet  MATH  Google Scholar 

  • Eshelby, J. D. (1959). The elastic field outside an ellipsoidal inclusion. Proceedings of the Royal Society London, A, 252, 561–569.

    ADS  MathSciNet  MATH  Google Scholar 

  • Fassi-Fehri, O., Hihi, A., & Berveiller, M. (1989). Multiple site self consistent scheme. International Journal of Engineering Sciences, 27(5), 495–502.

    Article  MATH  Google Scholar 

  • Franciosi, P. (2005). On the modified Green operator integral for polygonal, polyhedral and other non-ellipsoidal inclusions. International Journal of Solids and Structures, 42(11/12), 3509–3531.

    Article  MATH  Google Scholar 

  • Franciosi, P. (2010). The boundary-due terms in the Green operator of inclusion patterns from distant to contact and to connected situations using Radon transforms: Illustration for spheroid alignments in isotropic media. International Journal of Solids and Structures, 47(2), 304–319.

    Article  MATH  Google Scholar 

  • Franciosi, P. (2013). Transversally isotropic magneto-electro-elastic composites with co-(dis)continuous phases. International Journal of Solids Structure, 50, 1013–1031.

    Article  Google Scholar 

  • Franciosi, P. (2014). Mean and axial Green and Eshelby tensors for an inclusion with finite cylindrical shape. Mechanics Research Communications, 59, 26–36.

    Article  Google Scholar 

  • Franciosi, P. (2018). A decomposition method for obtaining mean Green interaction operators between inclusions in patterns. Application to beam arrays in media with 2D or 3D isotropic properties. International Journal of Solids and Structures, 147, 1–19.

    Article  Google Scholar 

  • Franciosi, P. (2020a). Multiple continuity of phases in composite materials: Overall property estimates from a laminate system scheme. International Journal of Solids and Structures, 184, 40–62.

    Article  Google Scholar 

  • Franciosi, P. (2020b). Uniformity of the Green operator and Eshelby tensor for hyperboloidal domains in infinite media. Mathematics and Mechanics of Solids, 25(8), 1610–1642.

    Google Scholar 

  • Franciosi, P., Barboura, S., & Charles, Y. (2015). Analytical mean Green operators/Eshelby tensors for patterns of coaxial finite long or flat cylinders in isotropic matrices. International Journal of Solids and Structures, 66(1), 1–19.

    Article  Google Scholar 

  • Franciosi, P., & Berbenni, S. (2007). Heterogeneous crystal and poly-crystal plasticity modeling from a transformation field analysis within a regularized Schmid law. Journal of the Mechanics and Physics of Solids, 55, 2265–2299.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Franciosi, P., & Berbenni, S. (2008). Multi-Laminate plastic strain organization for non-uniform TFA modelling of poly-crystal regularized plastic flow. International Journal of Plasticity, 24(9), 1549–1580.

    Article  MATH  Google Scholar 

  • Franciosi, P., & Charles, Y. (2016a). Effective properties of n-phase composites with from all to none continuous phases. International Journal of Solids and Structures, 96, 110–125.

    Article  Google Scholar 

  • Franciosi, P., & Charles, Y. (2016b). Mean Green operators and Eshelby tensors for hemisphericalinclusions and hemisphere interactions in spheres. Application to bi-material spherical inclusions in isotropic spaces. Mechanics Research Communications, 75, 57–66.

    Article  Google Scholar 

  • Franciosi, P., & El Omri, A. (2011). Effective properties of fiber and platelet systems and related phase arrangements in n-phase heterogeneous media. Mechanics Research Communications, 38, 38–44.

    Article  MATH  Google Scholar 

  • Franciosi, P., & Gaertner, R. (1998). On phase connectivity descriptions in modeling viscoelasticity of fiber or sphere reinforced composites. Polymer Composites, 19(1), 81–96.

    Article  Google Scholar 

  • Franciosi, P., & Lebail, H. (2004). Anisotropy features of phase and particle spatial pair distributions, in various matrix/inclusions structures. Acta Materialia, 52(10), 3161–3172.

    Article  Google Scholar 

  • Franciosi, P., & Lormand, G. (2004). Using the Radon transform to solve inclusion problems in elasticity. International Journal of Solids and Structures, 41(3/4), 585–606.

    Article  MATH  Google Scholar 

  • Franciosi, P., Spagnuolo, M., & Salman, O. U. (2019). Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates. Continuum Mechanics and Thermodynamics, 31(1), 101–132.

    Article  ADS  MathSciNet  Google Scholar 

  • Gao, X.-L., & Ma, H. M. (2009). Green’s function and Eshelby’s tensor based on a simplified strain gradient elasticity theory. Acta Mechanica, 207, 163–181.

    Article  MATH  Google Scholar 

  • Gel’fand, I. M., Graev, M. I., & Vilenkin, N. Y. (1966). Generalized functions, v5: Integral geometry and representation theory. New York: Academic Press.

    Google Scholar 

  • Gel’fand, I. M., & Shilov, G. E. (1964). Generalized functions, v1: Properties and operations. New York: Academic Press.

    Google Scholar 

  • Germain, P. (1973). La méthode des puissances virtuelles en mécanique des milieux continus, première partie: théorie du second gradient. Journal de mécanique, 12(2), 235–274.

    MathSciNet  MATH  Google Scholar 

  • Gong, L., Kyriakides, S., & Jang, W.-Y. (2005). Compressive response of open-cell foams. Part I: Morphology and elastic properties. International Journal of Solids and Structures, 42, 1355–1379.

    Article  MATH  Google Scholar 

  • Grossa, D., Dineva, P., & Rangelov, T. (2007). BIEM solution of piezoelectric cracked finite solids under time-harmonic loading. Engineering Analysis with Boundary Elements, 31, 152–162.

    Article  MATH  Google Scholar 

  • Han, Y., Zhang, D., Chung, L. L., Sun, J., Zhao, L., Zou, X., et al. (2009). A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface. Nature Chemistry, 1, 123–127.

    Article  ADS  Google Scholar 

  • Hashin, Z., & Shtrikman, S. (1963). A variational approach to the theory of elastic behavior of multi-phase materials. Journal of the Mechanics and Physics of Solids, 11, 127–140.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Helgason, S. (1980). The Radon transform. Progress in Mathematics, (vol. 5). Boston: Birkhausser.

    Google Scholar 

  • Hervé, E., & Zaoui, A. (1993). N-layered inclusion-based micromechanical modeling. International Journal of Engineering Science, 31(1), 1–10.

    Article  ADS  MATH  Google Scholar 

  • Hervé, E., & Zaoui, A. (1995). Elastic behaviour of multiply coated fibre reinforced composites. International Journal of Engineering Science, 33(10), 1419–1433.

    Article  MATH  Google Scholar 

  • Hill, R. (1952). The elastic behavior of a crystalline aggregate. Proceedings of the Physical Society, A, 65(5), 349–354.

    Article  ADS  Google Scholar 

  • Hill, R. (1965). Continuum micro-mechanics of elastoplastic polycrystals. Journal of the Mechanics and Physics of Solids, 13(2), 89–101.

    Article  ADS  MATH  Google Scholar 

  • Hori, M., & Nemat-Nasser, S. (1993). Double-inclusion model and overall moduli of multi-phase composites. Mechanics of Materials, 14(3), 189–206.

    Article  Google Scholar 

  • Hou, P. F., & Leung, A. Y. T. (2004). A spheroidal inclusion in an infinite magneto-electroelastic material. International Journal of Engineering Sciences, 42, 1255–1273.

    Article  Google Scholar 

  • Hu, G. K., & Weng, G. J. (2000). The connections between the double inclusion model and the Ponte Castaneda-Willis, Mori Tanaka, and Kuster-Toksoz models. Mechanics of Materials, 32, 495–503.

    Article  Google Scholar 

  • Huang, J. H., Chiu, Y. H., & Liu, H. K. (1998). Magneto-electro-elastic Eshelby tensors for a piezoelectric–piezomagnetic composite reinforced by ellipsoid inclusions. Journal of Applied Physics, 83(10), 5364–5370.

    Article  ADS  Google Scholar 

  • Kennett, B. L. N., Kerry, N. J., & Woodhouse, J. H. (1978). Symmetries in the reflection and transmission of elastic waves. Geophysical Journal, Royal Astronomical Society, 52(2), 215–229.

    Google Scholar 

  • Khutorianski, N., & Sosa, H. (1995). Dynamic representation formulas and fundamental solutions for piezoelectricity. International Journal of Solids and Structures, 32(22), 3307–3325.

    Article  MathSciNet  MATH  Google Scholar 

  • Kinney, J. H., Stölken, J. S., Smith, T. S., Ryaby, J. T., & Lane, N. E. (2005). An orientation distribution function for trabecular bone. Bone, 36(2), 193–201.

    Article  Google Scholar 

  • Kinoshita, N., & Mura, T. (1971). Elastic fields of inclusions in anisotropic media. Physica Status Solidi A, 5, 759–768.

    Article  ADS  Google Scholar 

  • Korringa, J. (1973). Theory of elastic constants of heterogeneous media. Journal of Mathematical Physics, 14, 509–513.

    Article  ADS  MATH  Google Scholar 

  • Kröner, E., (1958). Berechnung der elastischen constanten des vielkristalls aus den konstanten des einkristalls. Zeitschrift fur Physik, 151–504.

    Google Scholar 

  • Kröner, E. (1990). Modified Green functions in the theory of heterogeneous and/or anisotropic linearly elastic media. In Weng, G. J., Taya, M., & Abe, H. (Eds.), Micromechanics and inhomogeneity (pp. 197–211). New York: Springer.

    Google Scholar 

  • Lahellec, N. L., & Suquet, P. (2004). Nonlinear composites: A linearization procedure, exact to second-order in contrast and for which the strain-energy and affine formulations coincide. Comptes Rendus de l’Académie des Sciences, Paris, Mechanics series, 332(9), 693–700.

    Google Scholar 

  • Lee, J., Boyd, J. G., & Lagoudas, D. C. (2005). Effective properties of three-phase electromagneto-elastic composites. International Journal of Engineering Science, 43, 790–825.

    Article  MathSciNet  MATH  Google Scholar 

  • Levin V. M. (1967). Thermal expansion coefficients for heterogeneous materials. Mekhanika Tverdogo Tela, 2, 88–94 (English translation: Mechanics of Solids, 11, 58–61).

    Google Scholar 

  • Li, J. Y., & Dunn, M. L. (1998). Micromechanics of magnetoelectroelastic composite materials: Average fields and effective behaviour. Journal of Intelligent Material Systems and Structures, 9, 404–416.

    Article  Google Scholar 

  • Limodin, N., Salvo, L., Suery, M., & Di Michiel, M. (2007). In situ investigation by X-ray tomography of the overall and local microstructural changes occurring during partial remelting of an Al–15.8 wt.% Cu alloy. Acta Materialia, 55, 3177–3191.

    Article  Google Scholar 

  • Liu, M. F. (2011). An exact deformation analysis for the magneto-electro-elastic fiber-reinforced thin plate. Applied Mathematical Modeling, 35, 2443–2461.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Manolis, G. D., Makra, K., Dineva, P. S., & Rangelov, T. V. (2013). Seismic motions in a non-homogeneous soil deposit with tunnels by a hybrid computational technique. Earthquakes and Structures, 5(2), 161–205.

    Article  Google Scholar 

  • Masson, R., Bornert, M., Suquet, P., & Zaoui, A. (2000). An affine formulation for the prediction of the effective properties of non linear composites and poly-crystals. Journal of the Mechanics and Physics of Solids, 48(6/7), 1203–1227.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • McCue, I., Ryan, S., Hemker, K., Xu, X., Li, N., Chen, M., et al. (2016). Size effects in the mechanical properties of bulk bicontinuous ta/cu nanocomposites made by liquid metal dealloying. Advances in Engineering Materials, 18(1), 46–50.

    Article  Google Scholar 

  • Michel, J. C., & Suquet, P. (2004). Computational analysis of nonlinear composite structures using the non uniform transformation field analysis. Computer Methods in Applied Mechanics and Engineering, 193, 5477–5502.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mikata, Y. (2001). Explicit determination of piezo-electric Eshelby tensor for a spheroidal inclusion. International Journal of Solids and Structures, 38, 7045–7063.

    Article  MATH  Google Scholar 

  • Mindlin, R. D. (1965). Second gradient of strain and surface-tension in linear elasticity. International Journal of Solids and Structures, 1(4), 417–438.

    Article  Google Scholar 

  • Mori, T., & Tanaka, K. (1973). Average stressing the matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21, 571–574.

    Article  Google Scholar 

  • Natterer, F. (1986). The mathematics of computerized tomography. Stuttgart: Teubner.

    Book  MATH  Google Scholar 

  • Norris, A. N. (1994). Dynamic Green’s functions in anisotropic piezoelectric, thermoelastic and poroelastic solids. Proceedings of the Royal Society London A, 447, 175–188.

    ADS  MATH  Google Scholar 

  • Pavese, M., Valle, M., & Badini, C. (2007). Effect of porosity of cordierite preforms on microstructure and mechanical strength of co-continuous ceramic composites. Journal of European Ceramic Society, 27, 131–141.

    Article  Google Scholar 

  • Peng, H. X., Fan, Z., & Evans, J. R. G. (2001). Bi-continuous metal matrix composites. Materials Science and Engineering A, 303, 37–45.

    Article  Google Scholar 

  • Pideri, C., & Seppecher, P. (1997). A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Continuum Mechanics and Thermodynamics, 9(5), 241–257.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Placidi, L., Barchiesi, E., Turco, E., & Rizzi, N. L. (2016). A review on 2D models for the description of pantographic fabrics. Zeitschrift für Angewandte Mathematik und Physik, 67(5), 121.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Placidi, L., Andreaus, U., & Giorgio, I. (2017). Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model. Journal of Engineering Mathematics, 103(1), 1–21.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Placidi, L., Barchiesi, E., & Misra, A. (2018). A strain gradient variational approach to damage: A comparison with damage gradient models and numerical results. Mathematics and Mechanics of Complex Systems, 6(2), 77–100.

    Article  MathSciNet  MATH  Google Scholar 

  • Placidi, L., Rosi, G., & Barchiesi, E. (2019). Analytical solutions of 2-dimensional second gradient linear elasticity for Continua with cubic-D4 microstructure. In New Achievements in Continuum Mechanics and Thermodynamics (pp. 383–401). Cham: Springer.

    Google Scholar 

  • Poizat, C., & Sester, M. (1999). Effective properties of composites with embedded piezoelectric fibres. Computational Materials Science, 16(1–4), 89–97.

    Article  Google Scholar 

  • Ponte-Castaneda, P., & Suquet, P. (1998). Non linear composites. Advances in Applied Mechanics, 34, 172–302.

    MATH  Google Scholar 

  • Ponte-Castaneda, P., & Willis, J. R. (1995). The effect of spatial distribution on the effective behavior of composite materials and cracked media. Journal of the Mechanics and Physics of Solids, 43(12), 1919–1951.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ponte-Castaneda, P., & Willis, J. R. (1999). Variational second-order estimates for nonlinear composites. Proceedings of the Royal Society London A, 455(1985), 1799–1811.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Poquillon, D., Lemaitre, J., Baco-Carles, V., Tailhades, Ph, & Lacaze, J. (2002). Cold compaction of iron powders—Relations between powder morphology and mechanical properties. Powder Technology, 126, 65–74.

    Article  Google Scholar 

  • Postma, G. W. (1955). Wave propagation in a stratified medium. Geophysics, 20(4), 780–806.

    Article  ADS  Google Scholar 

  • Rahali, Y., Giorgio, I., Ganghoffer, J. F., & dell’Isola, F. (2015). Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. International Journal of Engineering Science, 97, 148–172.

    Article  MathSciNet  MATH  Google Scholar 

  • Ramm, A. G., & Katsevich, A. I. (1996). The radon transform and local tomography. Boca Raton, FL: CRC Press.

    MATH  Google Scholar 

  • Roberts, A. P., & Garboczi, E. J. (2002). Elastic properties of model random three-dimensional open-cell solids. Journal of the Mechanics and Physics of Solids, 50, 33–55.

    Article  ADS  MATH  Google Scholar 

  • Rodin, G. J. (1996). Eshelby’s inclusion problem for polygons and polyhedra. Journal of the Mechanics and Physics of Solids, 44, 1977–1995.

    Article  ADS  Google Scholar 

  • Ryoo, R. (2009). Porous materials: A tricontinuous mesoporous system. Nature Chemistry, 1, 105–106.

    Article  ADS  Google Scholar 

  • Santalo, A. (1976). Integral geometry and geometric probability. In Encyclopedia of mathematics and its applications. Reading, MA: Addison-Wesley Pub. Co.

    Google Scholar 

  • Shrestha, S., & Banerjee, S. (2018). Virtual nondestructive evaluation for anisotropic plates using symmetry informed sequential mapping of anisotropic Green’s function. Ultrasonics, 88, 51–63.

    Article  Google Scholar 

  • Sciarra, G., dell’Isola, F., & Coussy, O. (2007). Second gradient poromechanics. International Journal of Solids and Structures, 44(20), 6607–6629.

    Article  MathSciNet  MATH  Google Scholar 

  • Serra, J. (1982). Image analysis and mathematical morphology. London Academic Press.

    Google Scholar 

  • Spagnuolo, M., Franciosi, P., & dell’Isola, F. (2020). A Green operator-based elastic modeling for two-phase pantographic-inspired bi-continuous materials. International Journal of Solids and Structures, 188, 282–308.

    Article  Google Scholar 

  • Suquet, P., (1995). Overall properties of nonlinear composites: A modified secant moduli theory and its link with Ponte Castañeda’s nonlinear variational procedure. Comptes Rendus de l’Académie des Sciences, Paris, Mechanics Series, 320(11), 563–571.

    Google Scholar 

  • Suquet, P. (1997). Effective behavior of non linear composites. In P. Suquet (Ed.), Continuum micromechanics, CISM course and lecture (Vol. 377, pp. 220–259). Berlin: Springer.

    Google Scholar 

  • Tavaf, V., Saadatzi, M., Shrestha, S., & Banerjee, S. (2018). Quantification of material degradation and its behavior of elastodynamic Greens function for computational wave field modeling in composites. Materials Today Communications, 17, 402–412.

    Article  Google Scholar 

  • Torres, Y., Pavon, J. J., & Rodrıguez, J. A. (2012). Processing and characterization of porous titanium for implants by using NaCl as space holder. Journal of Materials Processing Technology, 212, 1061–1069.

    Article  Google Scholar 

  • Traxl, R., & Lackner, R. (2018). Consideration of arbitrary inclusion shapes in the framework of isotropic continuum micromechanics: The replacement Eshelby tensor approach. Mechanics of Materials, 126, 126–139.

    Article  Google Scholar 

  • Udhayaraman, R., & Mulay, S. S. (2017). Multi-scale approach based constitutive modeling of plain woven textile composites. Mechanics of Materials, 112, 172–192.

    Article  Google Scholar 

  • Veenstra, H., Verkooijen, P. C. J., Van Lent, B. J. J., Van Dam, J., De Boer, A. P., & Nijhof, A. P. H. J. (2000). On the mechanical properties of co-continuous polymer blends: Experimental and modeling. Polymer, 41, 1817–1826.

    Article  Google Scholar 

  • Walpole, L. J. (1967). The elastic field of an inclusion in an anisotropic medium. Proceedings of the Royal Society London A, 300, 270–289.

    ADS  MATH  Google Scholar 

  • Walpole, L. J. (1981). Elastic behavior of composite materials: Theoretical foundations. Advances in Applied Mechanics, 21, 169–242.

    Article  MATH  Google Scholar 

  • Wang, G. Y., & Achenbach, J. D. (1993). A new method to obtain 3-D Green’s functions for anisotropic solids. Wave Motion, 18, 273–289.

    Article  MathSciNet  MATH  Google Scholar 

  • Weng, G. J. (2010). A dynamical theory for the Mori-Tanaka and Ponte Castañeda-Willis estimates. Mechanics of Materials, 42(9), 886–893.

    Article  Google Scholar 

  • Willis, J. R. (1980a). A polarization approach to the scattering of elastic waves-I. Scattering by a single inclusion. Journal of the Mechanics and Physics of Solids, 28, 287–305.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Willis, J. R. (1980b). A polarization approach to the scattering of elastic waves-II. Multiple scattering by inclusions. Journal of the Mechanics and Physics of Solids, 28, 307–327.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Willis, J. R. (1981). Variational and related methods for the overall properties of composites. Advances in Applied Mechanics, 21, 1–78.

    Article  MathSciNet  MATH  Google Scholar 

  • Willis, J. R. (2019). From statics of composites to acoustic metamaterials. Philosophical Transactions of the Royal Society A, 377, 20190099.

    Article  ADS  MathSciNet  Google Scholar 

  • Wu, T.-H., Chen, T., & Weng, C.-N. (2015). Green’s functions and Eshelby tensors for an ellipsoidal inclusion in a non-centrosymmetric and anisotropic micropolar medium. International Journal of Solids and Structures, 64(65), 1–8.

    Article  Google Scholar 

  • Yang, H., Ganzosch, G., Giorgio, I., & Abali, B. E. (2018). Material characterization and computations of a polymeric metamaterial with a pantographic substructure. Zeitschrift für Angewandte Mathematik und Physik, 69(4), 105.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zeller, R., & Dederich, P. H. (1973). Elastic constants of polycrystals. Physic State Solids B, 55, 831–842.

    Article  ADS  Google Scholar 

  • Zielinski, T. G. (2010). Fundamentals of multiphysics modelling of piezo-poro-elastic structures. Archives of Mechanics, 62(5), 343–378.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Franciosi .

Editor information

Editors and Affiliations

Appendix

Appendix

The form of the elementary operators \(\varvec{t}^{e}\) for isotropic elasticity. (from Franciosi and Lormand 2004; Franciosi 2005), to be retrieved in (Spagnuolo et al. 2020). Each \(\varvec{t}^{\text{e}} (\varvec{\omega}) = \varvec{t}^{\text{e}} (\theta \text{,}\varphi )\) elementary operator in the GO \(\varvec{t}^{V} (\varvec{r})\) or mGO \(\overline{{\varvec{t}^{V} }}\) of V is an axisymmetric operator, defined in reference to the parallel planes of \(\varvec{\omega}\) normal direction in some reference medium frame. For general elasticity anisotropy, considering the \((0,0)\)-oriented \(\varvec{t}^{e} (0,0)\) elementary operator for \((\theta \text{,}\varphi ) = (0,0)\), the only nonzero terms correspond to \(\varvec{\omega}= (0,0,1)\) what only involves the \(C_{m3p3}\) elastic moduli of the infinite medium, for \(\varvec{C}\) expressed in the operator axes frame as \(\varvec{C}(0,0)\). In this frame, the nonzero terms of the \(\varvec{t}^{e} (0,0)\) operator are the \(t_{p3j3}^{e} (\text{0,0})\) terms which make a symmetric 3 × 3 matrix, \(\varvec{\Delta t}\) say, such that \(t_{p3j3}^{e} = \Delta t_{pj}\). For elastic isotropy, since in all frames \(C_{3333} = \lambda + \text{2 }\mu = \text{2 }\mu \text{ (1} - \nu \text{)}/\text{(1} - \text{2 }\nu \text{)}\) and \(C_{1313} = C_{2323} = \mu\), the \(\varvec{C}\) frame identification is made useless. It remains \(\Delta t_{11} = 1 /C_{1313}\), \(\Delta t_{22} = 1 /C_{2323}\), \(\Delta t_{33} = 1 /C_{3333}\) and \(t_{{\text{((2,3),(2,3))}}} = t_{{\text{((3,1),(3,1))}}} = 1/\text{4}\;\mu = B /\text{4}\), \(t_{{\text{3333}}} = (1/\mu \text{)(1} - 0.5/\text{(1} - \nu \text{)}) = B + A\), \(\forall (\theta \text{,}\varphi ) \equiv\varvec{\omega}\). One arrives at \(t_{pqjn}^{e} \text{(}\varvec{\omega}\text{)}\) = \(A\text{ }\tau_{pqjn}^{A} \text{(}\omega \text{) } + B\text{ }\tau_{pqjn}^{B} \text{(}\varvec{\omega}\text{)}\) with \(\uptau_{{\text{pqjn}}}^{\text{A}} \text{(}\varvec{\omega}\text{)} = \omega_{\text{j}} \omega_{\text{p}} \omega_{\text{n}} \omega_{\text{q}}\) and \(\tau_{pqjn}^{B} \text{(}\varvec{\omega}\text{)} = \left. {\left( {\delta_{jp} \text{ }\omega_{n} \omega_{q} } \right)} \right|_{(p,q),(j,n)}\) (Table 15.2).

Table 15.2 iijj (top) and ijij (bottom) terms of \(\varvec{t}^{\text{e}} (\theta \text{,}\varphi )\), with “”, “” for “\(\cos \theta\)”, “\(\sin \theta\)” (resp. \(\varphi\))

These terms are defined by even trigonometric functions \(\text{cos}^{{\text{2r}}} \varphi \;\text{sin}^{{\text{2s}}} \varphi\), not vanishing upon integration over the unit sphere when multiplied by a positive and even function in \((\theta \text{,}\varphi )\) as the mean shape function \(\overline{{\psi_{V} (\theta \text{,}\varphi )}}\) of V. Owing to the 5 \(\left( {(1,0),(0,1)} \right)\) and \(\left( {(2,0),(1,1),(0,2)} \right)\) possible values taken by both the (l, m) and (r, s) exponent pairs, and owing to the dependency relations between the trigonometric functions, all terms can be expressed in using only two of the five θ-functions, one in each exponent pair set within brackets, and similarly two of the five ϕ-ones, such as for example \((l,m) = (1,0),(2,0)\) and \((r,s) = (1,0),(2,0)\) which, respectively, correspond to the two functions \(\cos^{2} (\iota )\) and \(\cos^{4} (\iota )\) for each angle \(\iota = \theta \text{,}\varphi\). Thus, the mGO terms over some domain V read \(\overline{{t_{pqjn}^{V} }} = \int_{\Omega } {t_{pqjn}^{e} } \left(\varvec{\omega}\right)\overline{{\psi_{V} \left(\varvec{\omega}\right)}} {\text{d}}\varvec{\omega}\) and explicating the elementary (isotropic elastic) operator part in it, the integrals which then need to be calculated are two pairs selected among those of the form:

$$\overline{{t_{pqjn}^{V} }} = \int\limits_{\theta = 0}^{\pi } {\int\limits_{\varphi = 0}^{2\pi } {\overline{{\psi_{V} (\theta ,\varphi )}} \left( {\text{cos}^{{\text{2l}}} \theta \;\text{sin}^{{\text{2m}}} \theta \,\text{cos}^{{\text{2r}}} \varphi \;\text{sin}^{{\text{2s}}} \varphi } \right)} } {\kern 1pt} \sin \theta {\text{d}}\theta {\text{d}}\varphi .$$

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Franciosi, P., Spagnuolo, M. (2021). Homogenization-Based Mechanical Behavior Modeling of Composites Using Mean Green Operators for Infinite Inclusion Patterns or Networks Possibly Co-continuous with a Matrix . In: dell'Isola, F., Igumnov, L. (eds) Dynamics, Strength of Materials and Durability in Multiscale Mechanics. Advanced Structured Materials, vol 137. Springer, Cham. https://doi.org/10.1007/978-3-030-53755-5_15

Download citation

Publish with us

Policies and ethics