Skip to main content
Log in

Advances in pantographic structures: design, manufacturing, models, experiments and image analyses

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In the last decade, the exotic properties of pantographic metamaterials have been investigated and different mathematical models (both discrete or continuous) have been introduced. In a previous publication, a large part of the already existing literature about pantographic metamaterials has been presented. In this paper, we give some details about the next generation of research in this field. We present an organic scheme of the whole process of design, fabrication, experiments, models and image analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69
Fig. 70
Fig. 71
Fig. 72
Fig. 73
Fig. 74
Fig. 75
Fig. 76
Fig. 77
Fig. 78
Fig. 79

Similar content being viewed by others

References

  1. dell’Isola, F., Maier, G., Perego, U., Andreaus, U., Esposito, R., Forest, S.: The Complete Works of Gabrio Piola, vol. 1. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  2. dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(8), 887–928 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Germain, P.: La méthode des puissances virtuelles en mécanique des milieux continus. première partie: théorie du second gradient. J. Mécanique 12, 236–274 (1973)

    MATH  Google Scholar 

  4. Germain, P.: The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J. Appl. Math. 25(3), 556–575 (1973)

    Article  MATH  Google Scholar 

  5. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)

    Article  Google Scholar 

  7. Mindlin, R.D., Eshel, N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)

    Article  MATH  Google Scholar 

  8. Toupin, R.A.: Theories of elasticity with couple-stress. Arch. Rational Mech. Anal. 17(2), 85–112 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Sedov, L.: Variational methods of constructing models of continuous media. In: Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids, pp. 346–358. Springer (1968)

  10. Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73–92 (2010)

    Article  ADS  MATH  Google Scholar 

  11. Eremeyev, V.A.: On the material symmetry group for micromorphic media with applications to granular materials. Mech. Res. Commun. 94, 8–12 (2018)

    Article  Google Scholar 

  12. Eremeyev, V.A., Rosi, G., Naili, S.: Comparison of anti-plane surface waves in strain-gradient materials and materials with surface stresses. In: Mathematics and mechanics of solids, p. 1081286518769960 (2018)

  13. Eremeyev, V.A., Dell’Isola, F.: A note on reduced strain gradient elasticity. In: Generalized Models and Non-classical Approaches in Complex Materials 1, pp. 301–310. Springer (2018)

  14. Altenbach, H., Eremeyev, V.A.: On the linear theory of micropolar plates. ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech. 89(4), 242–256 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Altenbach, H., Eremeyev, V.A.: On the shell theory on the nanoscale with surface stresses. Int. J. Eng. Sci. 49(12), 1294–1301 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eremeyev, V.A., Pietraszkiewicz, W.: The nonlinear theory of elastic shells with phase transitions. J. Elast. 74(1), 67–86 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eremeyev, V.A.: On effective properties of materials at the nano-and microscales considering surface effects. Acta Mech. 227(1), 29–42 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group of the non-linear polar-elastic continuum. Int. J. Solids Struct. 49(14), 1993–2005 (2012)

    Article  Google Scholar 

  19. dell’Isola, F., Seppecher, P., Alibert, J.J., Lekszycki, T., Grygoruk, R., Pawlikowski, M., Steigmann, D., Giorgio, I., Andreaus, U., Turco, E., et al.: Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. In: Continuum Mechanics and Thermodynamics, pp. 1–34 (2018)

  20. dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. A 472(2185), 20150790 (2016)

    Article  ADS  Google Scholar 

  21. Golaszewski, M., Grygoruk, R., Giorgio, I., Laudato, M., Di Cosmo, F.: Metamaterials with relative displacements in their microstructure: technological challenges in 3d printing, experiments and numerical predictions. In: Continuum Mechanics and Thermodynamics, pp. 1–20 (2018)

  22. Casal, P.: La capillarité interne. Cahier du groupe Français de rhéologie, CNRS VI 3, 31–37 (1961)

    Google Scholar 

  23. Casal, P.: Theory of second gradient and capillarity. C. R. Hebdomad. Seances de l’Acad. Sci. Ser. A 274(22), 1571 (1972)

    MathSciNet  MATH  Google Scholar 

  24. Seppecher, P., Alibert, J.-J., dell’Isola, F.: Linear elastic trusses leading to continua with exotic mechanical interactions. In: Journal of Physics: Conference Series, vol. 319, p. 012018. IOP Publishing (2011)

  25. Alibert, J.-J., Seppecher, P., Dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Misra, A., Lekszycki, T., Giorgio, I., Ganzosch, G., Müller, W.H., dell’Isola, F.: Pantographic metamaterials show atypical Poynting effect reversal. Mech. Res. Commun. 89, 6–10 (2018)

    Article  Google Scholar 

  27. Barchiesi, E., Ganzosch, G., Liebold, C., Placidi, L. Grygoruk, R., Müller, W.H.: Out-of-plane buckling of pantographic fabrics in displacement-controlled shear tests: experimental results and model validation. In: Continuum Mechanics and Thermodynamics, pp. 1–13 (2019)

  28. Morville, S., Carin, M., Peyre, P., Gharbi, M., Carron, D., Le Masson, P., Fabbro, R.: 2d longitudinal modeling of heat transfer and fluid flow during multilayered direct laser metal deposition process. J. Laser Appl. 24(3), 032008 (2012)

    Article  ADS  Google Scholar 

  29. Vilaro, T., Kottman-Rexerodt, V., Thomas, M., Colin, C., Bertrand, P., Thivillon, L., Abed, S., Ji, V., Aubry, P., Peyre, P., et al.: Direct fabrication of a Ti–47Al–2Cr–2Nb alloy by selective laser melting and direct metal deposition processes. In: Advanced Materials Research, vol. 89, pp. 586–591. Trans Tech Publ (2010)

  30. Gunenthiram, V., Peyre, P., Schneider, M., Dal, M., Coste, F., Fabbro, R.: Analysis of laser-melt pool-powder bed interaction during the selective laser melting of a stainless steel. J. Laser Appl. 29(2), 022303 (2017)

    Article  ADS  Google Scholar 

  31. Andreau, O., Koutiri, I., Peyre, P., Penot, J.-D., Saintier, N., Pessard, E., De Terris, T., Dupuy, C., Baudin, T.: Texture control of 316l parts by modulation of the melt pool morphology in selective laser melting. J. Mater. Process. Technol. 264, 21–31 (2019)

    Article  Google Scholar 

  32. Zhang, D.: Entwicklung des selective laser melting (SLM) für Aluminiumwerkstoffe. Shaker (2004)

  33. Keller, N., Ploshikhin, V.: New method for fast predictions of residual stress and distortion of AM parts. In: Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug, pp. 4–6 (2014)

  34. Chia, H.N., Wu, B.M.: Recent advances in 3d printing of biomaterials. J. Biol. Bng. 9(1), 4 (2015)

    Article  Google Scholar 

  35. Bhashyam, S., Hoon Shin, K., Dutta, D.: An integrated CAD system for design of heterogeneous objects. Rapid Prototyp. J. 6(2), 119–135 (2000)

    Article  Google Scholar 

  36. Fischer, A.C., Mäntysalo, M., Niklaus, F.: Inkjet printing, laser-based micromachining and micro 3d printing technologies for MEMS. In: Handbook of Silicon Based MEMS Materials and Technologies, 2nd edn, pp. 550–564. Elsevier (2015)

  37. Malinauskas, M., Žukauskas, A., Hasegawa, S., Hayasaki, Y., Mizeikis, V., Buividas, R., Juodkazis, S.: Ultrafast laser processing of materials: from science to industry. Light Sci. Appl. 5(8), e16133 (2016)

    Article  ADS  Google Scholar 

  38. Sakellari, I., Kabouraki, E., Gray, D., Purlys, V., Fotakis, C., Pikulin, A., Bityurin, N., Vamvakaki, M., Farsari, M.: Diffusion-assisted high-resolution direct femtosecond laser writing. Acs Nano 6(3), 2302–2311 (2012)

    Article  Google Scholar 

  39. Combe, J.: Laser assisted writing of three-dimensional conductive nano-structure. MS thesis, University of California, Berkeley, and Swiss Federal Institute of Technology (ETH), Zurich (2016)

  40. Terzaki, K., Vasilantonakis, N., Gaidukeviciute, A., Reinhardt, C., Fotakis, C., Vamvakaki, M., Farsari, M.: 3d conducting nanostructures fabricated using direct laser writing. Opt. Mater. Express 1(4), 586–597 (2011)

    Article  ADS  Google Scholar 

  41. Cote, A.P., Benin, A.I., Ockwig, N.W., O’keeffe, M., Matzger, A.J., Yaghi, O.M.: Porous, crystalline, covalent organic frameworks. Science 310(5751), 1166–1170 (2005)

    Article  ADS  Google Scholar 

  42. dell’Isola, F., Cuomo, M., Greco, L., Della Corte, A.: Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies. J. Eng. Math. 103(1), 127–157 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Scerrato, D., Zhurba Eremeeva, I.A., Lekszycki, T., Rizzi, N.L.: On the effect of shear stiffness on the plane deformation of linear second gradient pantographic sheets. ZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech. 96(11), 1268–1279 (2016)

    Article  MathSciNet  Google Scholar 

  44. Turco, E., dell’Isola, F., Rizzi, N.L., Grygoruk, R., Müller, W.H., Liebold, C.: Fiber rupture in sheared planar pantographic sheets: numerical and experimental evidence. Mech. Res. Commun. 76, 86–90 (2016)

    Article  Google Scholar 

  45. Ganzosch, G., Hoschke, K., Lekszycki, T., Giorgio, I., Turco, E., Müller, W.: 3d-measurements of 3d-deformations of pantographic structures. Tech. Mech. 38(3), 233–245 (2018)

    Google Scholar 

  46. Andreaus, U., Spagnuolo, M., Lekszycki, T., Eugster, S.R.: A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler–Bernoulli beams. Continum Mech. Thermodyn. 30, 1103–1123 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Z. Angew. Math. Phys. 67(4), 85 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Spagnuolo, M., Barcz, K., Pfaff, A., dell’Isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mech. Res. Commun. 83, 47–52 (2017)

    Article  Google Scholar 

  49. Placidi, L., Greco, L., Bucci, S., Turco, E., Rizzi, N.L.: A second gradient formulation for a 2d fabric sheet with inextensible fibres. Z. Angew. Math. Phys. 67(5), 114 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Turco, E., Misra, A., Pawlikowski, M., dell’Isola, F., Hild, F.: Enhanced Piola-Hencky discrete models for pantographic sheets with pivots without deformation energy: numerics and experiments. Int. J. Solids Struct. 14, 94–109 (2018)

    Article  Google Scholar 

  51. Bauer, J., Schroer, A., Schwaiger, R., Tesari, I., Lange, C., Valdevit, L., Kraft, O.: Push-to-pull tensile testing of ultra-strong nanoscale ceramic-polymer composites made by additive manufacturing. Extreme Mech. Lett. 3, 105–112 (2015)

    Article  Google Scholar 

  52. Lee, H.-T., Kim, M.-S., Lee, G.-Y., Kim, C.-S., Ahn, S.-H.: Shape memory alloy (SMA)-based microscale actuators with 60% deformation rate and 1.6 kHz actuation speed. Small 14(23), 1801023 (2018)

    Article  Google Scholar 

  53. Maggi, A., Li, H., Greer, J.R.: Three-dimensional nano-architected scaffolds with tunable stiffness for efficient bone tissue growth. Acta Biom. 63, 294–305 (2017)

    Article  Google Scholar 

  54. Maurin, F., Greco, F., Desmet, W.: Isogeometric analysis for nonlinear planar pantographic lattice: discrete and continuum models. In: Continuum Mechanics and Thermodynamics, pp. 1–14 (2018)

  55. Capobianco, G., Eugster, S.R., Winandy, T.: Modeling planar pantographic sheets using a nonlinear Euler–Bernoulli beam element based on B-spline functions. PAMM 18(1), 1–2 (2018)

    Article  Google Scholar 

  56. Cottrell, J.A., Hughes, T.J., Bazilevs, Y.: Isogeometric analysis: toward integration of CAD and FEA. Wiley, Hoboken (2009)

    Book  MATH  Google Scholar 

  57. Kiendl, J., Bletzinger, K.-U., Linhard, J., Wüchner, R.: Isogeometric shell analysis with Kirchhoff–Love elements. Comput. Methods Appl. Mech. Eng. 198(49–52), 3902–3914 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Maurin, F., Dedè, L., Spadoni, A.: Isogeometric rotation-free analysis of planar extensible-elastica for static and dynamic applications. Nonlinear Dyn. 81(1–2), 77–96 (2015)

    Article  MathSciNet  Google Scholar 

  59. Greco, L., Cuomo, M.: B-Spline interpolation of Kirchhoff–Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251–269 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Cuomo, M., Greco, L.: An implicit strong \(\text{G}^{1}\)-conforming formulation for the analysis of the Kirchhoff plate model. In: Continuum Mechanics and Thermodynamics, pp. 1–25 (2018)

  61. Greco, L., Cuomo, M., Contrafatto, L.: A reconstructed local B formulation for isogeometric Kirchhoff–Love shells. Comput. Methods Appl. Mech. Eng. 332, 462–487 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  62. Greco, L., Cuomo, M., Contrafatto, L., Gazzo, S.: An efficient blended mixed B-spline formulation for removing membrane locking in plane curved Kirchhoff rods. Comput. Methods Appl. Mech. Eng. 324, 476–511 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  63. Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids 21(5), 562–577 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  64. Cazzani, A., Malagù, M., Turco, E., Stochino, F.: Constitutive models for strongly curved beams in the frame of isogeometric analysis. Math. Mech. Solids 21(2), 182–209 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  65. Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches. Continuum Mech. Thermodyn. 28(1–2), 139–156 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Cazzani, A., Stochino, F., Turco, E.: An analytical assessment of finite element and isogeometric analyses of the whole spectrum of timoshenko beams. ZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech. 96(10), 1220–1244 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  67. Rahali, Y., Giorgio, I., Ganghoffer, J., Dell’Isola, F.: Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  68. Laudato, M., Manzari, L., Barchiesi, E., Di Cosmo, F., Göransson, P.: First experimental observation of the dynamical behavior of a pantographic metamaterial. Mech. Res. Commun. 94, 125–127 (2018)

    Article  Google Scholar 

  69. Research, V.: Phantom Ultrahigh-Speed Cameras UHS-12 Series Manual (July 2017)

  70. Nikon: AF micro-Nikkor 200mm f/4d IF-ED from Nikon (June 2017)

  71. LaVision GmbH, Product-Manual for DaVis 8.3: Imaging Tools. LaVision GmbH, (June 2015). Document name: 1003012_ImagingTools_D83.pdf

  72. Dalmaz, A., Ducret, D., El Guerjouma, R., Reynaud, P., Franciosi, P., Rouby, D., Fantozzi, G., Baboux, J.: Elastic moduli of a 2.5 d cf/sic composite: experimental and theoretical estimates. Compos. Sci. Technol. 60(6), 913–925 (2000)

    Article  Google Scholar 

  73. Franciosi, P., Gaertner, R.: On phase connectivity descriptions in modeling viscoelasticity of fiber or sphere reinforced composites. Polym. Compos. 19(1), 81–95 (1998)

    Article  Google Scholar 

  74. Altenbach, H., Eremeyev, V.A., Naumenko, K.: On the use of the first order shear deformation plate theory for the analysis of three-layer plates with thin soft core layer. ZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech. 95(10), 1004–1011 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  75. Altenbach, H., Eremeyev, V.A., Morozov, N.F.: Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale. Int. J. Eng. Sci. 59, 83–89 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  76. Franciosi, P., Spagnuolo, M., Salman, O.U.: Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates. Continuum Mech. Thermodyn. 31(1), 101–132 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  77. Franciosi, P., Lormand, G.: Using the Radon transform to solve inclusion problems in elasticity. Int. J. Solids Struct. 41(3–4), 585–606 (2004)

    MATH  Google Scholar 

  78. Franciosi, P.: On the modified Green operator integral for polygonal, polyhedral and other non-ellipsoidal inclusions. Int. J. Solids Struct. 42(11–12), 3509–3531 (2005)

    Article  MATH  Google Scholar 

  79. Franciosi, P.: A decomposition method for obtaining global mean Green operators of inclusions patterns. Application to parallel infinite beams in at least transversally isotropic media. Int. J. Solids Struct. 147, 1–19 (2018)

    Article  Google Scholar 

  80. Harrison, P., Alvarez, M.F., Anderson, D.: Towards comprehensive characterisation and modelling of the forming and wrinkling mechanics of engineering fabrics. Int. J. Solids Struct. 154, 2–18 (2018)

    Article  Google Scholar 

  81. Giorgio, I., Harrison, P., Dell’Isola, F., Alsayednoor, J., Turco, E.: Wrinkling in engineering fabrics: a comparison between two different comprehensive modelling approaches. Proc. R. Soc. A Math. Phys. Eng. Sci. 474(2216), 20180063 (2018)

    Article  ADS  Google Scholar 

  82. Harrison, P.: Modelling the forming mechanics of engineering fabrics using a mutually constrained pantographic beam and membrane mesh. Compos. Part A Appl. Sci. Manuf. 81, 145–157 (2016)

    Article  Google Scholar 

  83. Cima, M., Sachs, E., Cima, L., Yoo, J., Khanuja, S., Borland, S., Wu, B., Giordano, R.: Computer-derived microstructures by 3d printing: bio-and structural materials. In: Solid Freeform Fabrication Symposium Proceedings, DTIC Document, pp. 181–90 (1994)

  84. Giorgio, I., Andreaus, U., Lekszycki, T., Corte, A.D.: The influence of different geometries of matrix/scaffold on the remodeling process of a bone and bioresorbable material mixture with voids. Math. Mech. Solids 22(5), 969–987 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  85. Sutton, M., Orteu, J., Schreier, H.: Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer, Berlin (2009)

    Google Scholar 

  86. Hild, F., Roux, S.: Digital image correlation. In: Rastogi, P., Hack, E. (eds.) Optical Methods for Solid Mechanics. A Full-Field Approach, pp. 183–228. Wiley, Weinheim (2012)

    Google Scholar 

  87. Hild, F., Roux, S.: Comparison of local and global approaches to digital image correlation. Exp. Mech. 52(9), 1503–1519 (2012)

    Article  Google Scholar 

  88. Tomičević, Z., Hild, F., Roux, S.: Mechanics-aided digital image correlation. J. Strain Anal. Eng. Des. 48(5), 330–343 (2013)

    Article  Google Scholar 

  89. Geuzaine, C., Remacle, J.-F.: Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. In. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Francesco dell’Isola and Leonid Igumnov have received funding from the Government of the Russian Federation (Contract No. 14.Y26.31.0031). Mario Spagnuolo has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No 665850. Anil Misra is funded by United States National Science Foundation (NSF) Grant CMMI-1727433. Christian Hesch gratefully acknowledges the support of the Deutsche Forschungsgemeinschaft (DFG) under Grant HE5943/8-1 and DI2306/1-1. Sofia Hesch gratefully acknowledges the help of Heiko Bendler at the Institute of Mechanics at the Karlsruhe Institute of Technology (KIT) to perform the experimental investigations on organic sheets. Sofia Hesch also thanks Tamara Reinicke for supporting the investigations at the Chair of Product Development at the University of Siegen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Spagnuolo.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dell’Isola, F., Seppecher, P., Spagnuolo, M. et al. Advances in pantographic structures: design, manufacturing, models, experiments and image analyses. Continuum Mech. Thermodyn. 31, 1231–1282 (2019). https://doi.org/10.1007/s00161-019-00806-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-019-00806-x

Keywords

Navigation