Skip to main content

Flocking Rules Governing Swarm Robot as Tool to Describe Continuum Deformation

  • Chapter
  • First Online:
Dynamics, Strength of Materials and Durability in Multiscale Mechanics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 137))

Abstract

In robotic swarm, the position of an element is often determined by the behaviour of its neighbours. Following this concept, we have realized a tool able to give a visually plausible simulation of continuum deformation. Without solving Newton’s equation, we reproduced some behaviour of bidimensional deformable bodies both according to the standard Cauchy model and second gradient theory. Fracture can be easily managed. The tool has computational cost advantage, and it is very flexible to adapt for complex geometry samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abali, B. E., Müller, W. H., & Eremeyev, V. A. (2015). Strain gradient elasticity with geometric nonlinearities and its computational evaluation. Mechanics of Advanced Materials and Modern Processes, 1(1), 4.

    Article  ADS  Google Scholar 

  • Abali, B. E., Müller, W. H., & Dell’Isola, F. (2017). Theory and computation of higher gradient elasticity theories based on action principles. Archive of Applied Mechanics, 87(9), 1495–1510.

    Article  ADS  Google Scholar 

  • Abdoul-Anziz, H., & Seppecher, P. (2018). Strain gradient and generalized continua obtained by homogenizing frame lattices. Mathematics and Mechanics of Complex Systems, 6(3), 213–250.

    Article  MathSciNet  MATH  Google Scholar 

  • Alibert, J. J., Seppecher, P., & Dell’Isola, F. (2003). Truss modular beams with deformation energy depending on higher displacement gradients. Mathematics and Mechanics of Solids, 8(1), 51–73.

    Article  MathSciNet  MATH  Google Scholar 

  • Altenbach, H., & Eremeyev, V. A. (2009). On the linear theory of micropolar plates. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik, 89(4), 242–256.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Altenbach, H., Bîrsan, M., & Eremeyev, V. A. (2013). Cosserat-type rods. In Generalized Continua from the Theory to Engineering Applications (pp. 179–248). Springer, Vienna.

    Google Scholar 

  • Andreaus, U., Spagnuolo, M., Lekszycki, T., & Eugster, S. R. (2018). A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler-Bernoulli beams. Continuum Mechanics and Thermodynamics, 30(5), 1103–1123.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Auffray, N., Dirrenberger, J., & Rosi, G. (2015). A complete description of bi-dimensional anisotropic strain-gradient elasticity. International Journal of Solids and Structures, 69, 195–206.

    Article  Google Scholar 

  • Avella, M., dell’Erba, R., Martuscelli, E., & Ragosta, G. (1993). Influence of molecular mass, thermal treatment and nucleating agent on structure and fracture toughness of isotactic polypropylene. Polymer, 34(14), 2951–2960.

    Google Scholar 

  • Avella, M., dell’Erba, R., D’Orazio, L., & Martuscelli, E. (1995). Influence of molecular weight and molecular weight distribution on crystallization and thermal behavior of isotactic polypropylene. Polym. Netw. Blends, 5(1), 47–54.

    Google Scholar 

  • Avella, M. delL’Erba, R., Martuscelli E. «Fiber reinforced polypropylene: Influence of iPP molecular weight on morphology, crystallization, and thermal and mechanical properties», Polym. Compos., vol. 17, n. 2, pagg. 288–299, 1996.

    Google Scholar 

  • Balobanov, V., Kiendl, J., Khakalo, S., & Niiranen, J. (2019). Kirchhoff-Love shells within strain gradient elasticity: Weak and strong formulations and an H3-conforming isogeometric implementation. Computer Methods in Applied Mechanics and Engineering, 344, 837–857.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Barchiesi, E., Ganzosch, G., Liebold, C., Placidi, L., Grygoruk, R., & Müller, W. H. (2019a). Out-of-plane buckling of pantographic fabrics in displacement-controlled shear tests: Experimental results and model validation. Continuum Mechanics and Thermodynamics, 31(1), 33–45.

    Article  ADS  MathSciNet  Google Scholar 

  • Barchiesi, E., Spagnuolo, M., & Placidi, L. (2019b). Mechanical metamaterials: A state of the art. Mathematics and Mechanics of Solids, 24(1), 212–234.

    Article  MathSciNet  MATH  Google Scholar 

  • Battista, A., Rosa, L., dell’Erba, R., & Greco, L. (2016). Numerical investigation of a particle system compared with first and second gradient continua: Deformation and fracture phenomena. Mathematics and Mechanics of Solids, 1081286516657889.

    Google Scholar 

  • Bender, J., Müller, M., & Macklin, M. (2015). Position-based simulation methods in computer graphics. Eurographics (Tutorials). Available at: https://www.researchgate.net/profile/Jan_Bender/publication/274940214_Position-Based_Simulation_Methods_in_Computer_Graphics/links/552cc4a40cf29b22c9c466df/Position-Based-Simulation-Methods-in-Computer-Graphics.pdf. [Consultato: 06-set-2017].

  • Carcaterra, A., dell’Isola, F., Esposito, R., & Pulvirenti, M. (2015). Macroscopic description of microscopically strongly inhomogenous systems: A mathematical basis for the synthesis of higher gradients metamaterials. Archive for Rational Mechanics and Analysis, 218(3), 1239–1262.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cazzani, A., Malagù, M., & Turco, E. (2016a). Isogeometric analysis: A powerful numerical tool for the elastic analysis of historical masonry arches. Continuum Mechanics and Thermodynamics, 28(1–2), 139–156.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cazzani, A., Malagù, M., Turco, E., & Stochino, F. (2016b). Constitutive models for strongly curved beams in the frame of isogeometric analysis. Mathematics and Mechanics of Solids, 21(2), 182–209.

    Article  MathSciNet  MATH  Google Scholar 

  • De Angelo, M., Spagnuolo, M., D’annibale, F., Pfaff, A., Hoschke, K., Misra, A., & Pawlikowski, M. (2019). The macroscopic behavior of pantographic sheets depends mainly on their microstructure: Experimental evidence and qualitative analysis of damage in metallic specimens. Continuum Mechanics and Thermodynamics, 1–23.

    Google Scholar 

  • dell’Erba, R. (2012). The localization problem for an underwater swarm. ENEA: Technical Report.

    Google Scholar 

  • dell’Erba, R., & Moriconi, C. (2014). Bio-inspired robotics—it. Available at: https://www.enea.it/it/produzione-scientifica/edizioni-enea/2014/bio-inspirede-robotics-proceedings. [Consultato: 15-dic-2014].

  • dell’Erba, R. (2015) Determination of spatial configuration of an underwater swarm with minimum data. International Journal of Advanced Robotic Systems, 12(7), 97.

    Google Scholar 

  • dell’Erba, R. (2018a). Swarm robotics and complex behaviour of continuum material. Continuum Mechanics and Thermodynamics. Available at:https://doi.org/10.1007/s00161-018-0675-1.

  • dell’Erba, R. (2018b). Swarm robotics and complex behaviour of continuum material. Continuum Mechanics and Thermodynamics, 1–26.

    Google Scholar 

  • dell’Erba, R. (2018c). Position-based dynamic of a particle system: a configurable algorithm to describe complex behaviour of continuum material starting from swarm robotics. Continuum Mechanics and Thermodynamics, 30(5), 1069–1090.

    Google Scholar 

  • dell’Erba, R. (2018d). Position-based dynamic of a particle system: A configurable algorithm to describe complex behaviour of continuum material starting from swarm robotics. Continuum Mechanics and Thermodynamics, 1–22.

    Google Scholar 

  • dell’Erba, R., & Moriconi, C. (2015). High power leds in localization of underwater robotics swarms. IFAC-Paper, 48(10), 117–122.

    Google Scholar 

  • dell’Isola, F., & Placidi, L. (2011). Variational principles are a powerful tool also for formulating field theories. In Variational models and methods in solid and fluid mechanics (pp. 1–15). Springer, Vienna.

    Google Scholar 

  • dell’Isola, F, Auffray, N., Eremeyev, V. A., Madeo, A., Placidi, L., Rosi, G. (2014) Least action principle for second gradient continua and capillary fluids: A lagrangian approach following piola’s point of view. In The complete works of Gabrio Piola: Volume I, Springer, pp. 606–694.

    Google Scholar 

  • Dell’Isola, F., Gavrilyuk, S. (2012). Variational models and methods in solid and fluid mechanics, vol. 535. Springer Science & Business Media.

    Google Scholar 

  • dell’Isola, F., Seppecher, P., & Corte, A. D. (2015a). The postulations á la D’Alembert and á la Cauchy for higher gradient continuum theories are equivalent: A review of existing results. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2183), 20150415.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • dell’Isola, F., Lekszycki, T., Pawlikowski, M., Grygoruk, R., & Greco, L. (2015b). Designing a light fabric metamaterial being highly macroscopically tough under directional extension: First experimental evidence. Zeitschrift Für Angewandte Mathematik Und Physik, 66(6), 3473–3498.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • dell’Isola, F., Della Corte, A., Greco, L., & Luongo, A. (2016a). Plane bias extension test for a continuum with two inextensible families of fibers: A variational treatment with lagrange multipliers and a perturbation solution. International Journal of Solids and Structures, 81, 1–12

    Google Scholar 

  • dell’Isola, F., d’Agostino, M. V., Madeo, A., Boisse, P., & Steigmann, D. (2016b). Minimization of shear energy in two dimensional continua with two orthogonal families of inextensible fibers: The case of standard bias extension test. Journal of Elasticity, 122(2), 131–155.

    Article  MathSciNet  MATH  Google Scholar 

  • dell’Isola, F., Della Corte, A., Greco, L., & Luongo, A. (2016c). Plane bias extension test for a continuum with two inextensible families of fibers: A variational treatment with Lagrange multipliers and a perturbation solution. International Journal of Solids and Structures, 81, 1–12.

    Article  Google Scholar 

  • dell’Isola, F., Madeo, A., & Seppecher, P. (2016d). Cauchy tetrahedron argument applied to higher contact interactions. Archive for Rational Mechanics and Analysis, 219(3), 1305–1341.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • dell’Isola, F., Corte, A. D., & Giorgio, I. (2017). Higher-gradient continua: The legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Mathematics and Mechanics of Solids, 22(4), 852–872.

    Article  MathSciNet  MATH  Google Scholar 

  • dell’Isola, F., Seppecher, P., Spagnuolo, M., Barchiesi, E., Hild, F., Lekszycki, T., Eugster, S. R., et al. (2019a). Advances in pantographic structures: Design, manufacturing, models, experiments and image analyses. Continuum Mechanics and Thermodynamics, 1–52.

    Google Scholar 

  • Dell’Isola, F., Seppecher, P., Alibert, J. J., Lekszycki, T., Grygoruk, R., Pawlikowski, M., & Gołaszewski, M., et al. (2019b). Pantographic metamaterials: An example of mathematically driven design and of its technological challenges. Continuum Mechanics and Thermodynamics31(4), 851–884.

    Google Scholar 

  • dell’Isola, F., Turco, E., Misra, A., Vangelatos, Z., Grigoropoulos, C., Melissinaki, V., & Farsari, M. (2019c). Force–displacement relationship in micro-metric pantographs: experiments and numerical simulations. Comptes Rendus Mécanique, 347(5), 397–405.

    Article  ADS  Google Scholar 

  • Dell’Erba, R. (2001). Rheo-mechanical and rheo-optical characterisation of ultra high molecular mass poly (methylmethacrylate) in solution. Polymer, 42(6), 2655–2663.

    Article  Google Scholar 

  • Eremeyev, V. A. (2018). A nonlinear model of a mesh shell. Mechanics of Solids, 53(4), 464–469.

    Article  ADS  Google Scholar 

  • Eremeyev, V. A. (2019a). Strongly anisotropic surface elasticity and antiplane surface waves. Philosophical Transactions of the Royal Society A, 378(2162), 20190100.

    Article  ADS  Google Scholar 

  • Eremeyev, V. A. (2019b). Two-and three-dimensional elastic networks with rigid junctions: Modeling within the theory of micropolar shells and solids. Acta Mechanica, 230(11), 3875–3887.

    Article  MathSciNet  MATH  Google Scholar 

  • Eremeyev, V. A., & Sharma, B. L. (2019). Anti-plane surface waves in media with surface structure: discrete vs. continuum model. International Journal of Engineering Science, 143, 33–38.

    Article  MathSciNet  MATH  Google Scholar 

  • Eremeyev, V. A., Lebedev, L. P., & Altenbach, H. (2012). Foundations of micropolar mechanics. Springer Science & Business Media.

    Google Scholar 

  • Eremeyev, V. A., Dell’Isola, F., Boutin, C., & Steigmann, D. (2018). Linear pantographic sheets: Existence and uniqueness of weak solutions. Journal of Elasticity, 132(2), 175–196.

    Article  MathSciNet  MATH  Google Scholar 

  • Golaszewski, M., Grygoruk, R., Giorgio, I., Laudato, M., & Di Cosmo, F. (2019). Metamaterials with relative displacements in their microstructure: Technological challenges in 3D printing, experiments and numerical predictions. Continuum Mechanics and Thermodynamics, 31(4), 1015–1034.

    Article  ADS  Google Scholar 

  • Green, A. E. (1965). Micro-materials and multipolar continuum mechanics. International Journal of Engineering Science, 3(5), 533–537.

    Article  MathSciNet  Google Scholar 

  • Khakalo, S., & Niiranen, J. (2017). Isogeometric analysis of higher-order gradient elasticity by user elements of a commercial finite element software. Computer-Aided Design, 82, 154–169.

    Article  MathSciNet  Google Scholar 

  • Lanczos, C. (2012). The variational principles of mechanics. Courier Corporation.

    Google Scholar 

  • Maugin, G. A. (2010). Generalized continuum mechanics: what do we mean by that?. In Mechanics of Generalized Continua (pp. 3–13). Springer, New York.

    Google Scholar 

  • Mindlin, R. D. (1965). Second gradient of strain and surface-tension in linear elasticity. International Journal of Solids and Structures, 1(4), 417–438.

    Article  Google Scholar 

  • Misra, A., & Poorsolhjouy, P. (2015). Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics. Mathematics and Mechanics of Solids, 1081286515576821.

    Google Scholar 

  • Misra, A., & Singh, V. (2013). Micromechanical model for viscoelastic materials undergoing damage. Continuum Mechanics and Thermodynamics, 25(2–4), 343–358.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Misra, A., & Singh, V. (2015). Thermomechanics-based nonlinear rate-dependent coupled damage-plasticity granular micromechanics model. Continuum Mechanics and Thermodynamics, 27(4–5), 787–817.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Misra, A., Lekszycki, T., Giorgio, I., Ganzosch, G., Müller, W. H., & Dell’Isola, F. (2018). Pantographic metamaterials show atypical pointing effect reversal. Mechanics Research Communications, 89, 6–10.

    Article  Google Scholar 

  • Moriconi, C., & dell’Erba, R. (2012). The localization problem for harness: A multipurpose robotic swarm. In SENSORCOMM 2012, The Sixth International Conference on Sensor Technologies and Applications, pp. 327–333. Available at: https://www.thinkmind.org/index.php?view=article&articleid=sensorcomm_2012_14_20_10138. [Consultato: 04-apr-2014].

  • Nejadsadeghi, N., De Angelo, M., Drobnicki, R., Lekszycki, T., dell’Isola, F., & Misra, A. (2019). Parametric experimentation on pantographic unit cells reveals local extremum configuration. Experimental Mechanics, 1–13.

    Google Scholar 

  • Niiranen, J., Khakalo, S., Balobanov, V., & Niemi, A. H. (2016). Variational formulation and isogeometric analysis for fourth-order boundary value problems of gradient-elastic bar and plane strain/stress problems. Computer Methods in Applied Mechanics and Engineering, 308, 182–211.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Placidi, L., & El Dhaba, A. R. (2017). Semi-inverse method à la Saint-Venant for two-dimensional linear isotropic homogeneous second-gradient elasticity. Mathematics and Mechanics of Solids, 22(5), 919–937.

    Article  MathSciNet  MATH  Google Scholar 

  • Placidi, L., Dell’Isola, F., Ianiro, N., & Sciarra, G. (2008) Variational formulation of pre-stressed solid-fluid mixture theory, with an application to wave phenomena. European Journal of Mechanics A Solids, 27(4), 582–606.

    Google Scholar 

  • Placidi, L., Andreaus, U., Della Corte, A., & Lekszycki, T. (2015). Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Zeitschrift Für Angewandte Mathematik Und Physik, 66(6), 3699–3725.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Placidi, L., Greco, L., Bucci, S., Turco, E., & Rizzi, N. L. (2016). A second gradient formulation for a 2D fabric sheet with inextensible fibres. Zeitschrift Für Angewandte Mathematik Und Physik, 67(5), 114.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Placidi, L., Andreaus, U., & Giorgio, I. (2017). Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model. Journal of Engineering Mathematics, 103(1), 1–21.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Sharma, B. L., & Eremeyev, V. A. (2019). Wave transmission across surface interfaces in lattice structures. International Journal of Engineering Science, 145, 103173.

    Article  MathSciNet  MATH  Google Scholar 

  • Spagnuolo, M., & Andreaus, U. (2019). A targeted review on large deformations of planar elastic beams: Extensibility, distributed loads, buckling and post-buckling. Mathematics and Mechanics of Solids, 24(1), 258–280.

    Article  MathSciNet  MATH  Google Scholar 

  • Spagnuolo, M., Barcz, K., Pfaff, A., Dell’Isola, F., & Franciosi, P. (2017). Qualitative pivot damage analysis in aluminium printed pantographic sheets: Numerics and experiments. Mechanics Research Communications, 83, 47–52.

    Article  Google Scholar 

  • Spagnuolo, M., Peyre, P., & Dupuy, C. (2019). Phenomenological aspects of quasi-perfect pivots in metallic pantographic structures. Mechanics Research Communications, 101, 103415.

    Article  Google Scholar 

  • Steigmann, D. J., & Faulkner, M. G. (1993). Variational theory for spatial rods. Journal of Elasticity, 33(1), 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  • Toupin, R. A. (1964). Theories of elasticity with couple-stress.

    Google Scholar 

  • Turco, E., & Rizzi, N. L. (2016). Pantographic structures presenting statistically distributed defects: Numerical investigations of the effects on deformation fields. Mechanics Research Communications, 77, 65–69.

    Article  Google Scholar 

  • Turco, E., Barcz, K., Pawlikowski, M., & Rizzi, N. L. (2016a). Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part I: Numerical simulations. Zeitschrift für angewandte Mathematik und Physik67(5), 122.

    Google Scholar 

  • Turco, E., Golaszewski, M., Cazzani, A., & Rizzi, N. L. (2016b). Large deformations induced in planar pantographic sheets by loads applied on fibers: Experimental validation of a discrete Lagrangian model. Mechanics Research Communications, 76, 51–56.

    Article  Google Scholar 

  • Turco, E., Dell’Isola, F., Rizzi, N. L., Grygoruk, R., Müller, W. H., & Liebold, C. (2016c). Fiber rupture in sheared planar pantographic sheets: Numerical and experimental evidence. Mechanics Research Communications, 76, 86–90.

    Article  Google Scholar 

  • Turco, E., Giorgio, I., Misra, A., & Dell’Isola, F. (2017). King post truss as a motif for internal structure of (meta) material with controlled elastic properties. Royal Society Open Science, 4(10), 171153.

    Article  ADS  Google Scholar 

  • Turco, E., Misra, A., Pawlikowski, M., Dell’Isola, F., & Hild, F. (2018). Enhanced Piola-Hencky discrete models for pantographic sheets with pivots without deformation energy: Numerics and experiments. International Journal of Solids and Structures, 147, 94–109.

    Article  Google Scholar 

  • Yang, H., & Müller, W. H. (2019). Computation and experimental comparison of the deformation behavior of pantographic structures with different micro-geometry under shear and torsion. Journal of Theoretical and Applied Mechanics, 57.

    Google Scholar 

  • Yang, H., Ganzosch, G., Giorgio, I., & Abali, B. E. (2018). Material characterization and computations of a polymeric metamaterial with a pantographic substructure. Zeitschrift Für Angewandte Mathematik Und Physik, 69(4), 105.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Yildizdag, M. E., Tran, C. A., Barchiesi, E., Spagnuolo, M., dell’Isola, F., & Hild, F. (2019). A multi-disciplinary approach for mechanical metamaterial synthesis: A hierarchical modular multiscale cellular structure paradigm. In State of the Art and Future Trends in Material Modeling (pp. 485–505). Springer, Cham.

    Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramiro dell’Erba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

dell’Erba, R. (2021). Flocking Rules Governing Swarm Robot as Tool to Describe Continuum Deformation. In: dell'Isola, F., Igumnov, L. (eds) Dynamics, Strength of Materials and Durability in Multiscale Mechanics. Advanced Structured Materials, vol 137. Springer, Cham. https://doi.org/10.1007/978-3-030-53755-5_14

Download citation

Publish with us

Policies and ethics