Skip to main content

Microcirculatory Blood Flow as a New Tool for Perioperative Fluid Management

  • Chapter
  • First Online:
Perioperative Fluid Management

Abstract

Microcirculatory alterations often occur in the perioperative setting under the influence of multiple factors including hypovolemia, impaired cardiac function, vasoplegia, anesthetic agents, surgical trauma, ischemia/reperfusion injury and sepsis. The severity and duration of these alterations has been related to the outcome of these patients. This systematic review will report to which extend these microvascular abnormalities can be affected by fluid administration.

Administration of fluids usually improves microvascular dysfunction by increasing the perfused capillary density. Importantly, there is an important variability among the patients. Timing of the intervention has a huge impact as early interventions often led to an improved microvascular perfusion while delayed intervention often fails to improve the microcirculation. Of note the impact of fluids on the microcirculation is relatively dissociated form its systemic effects and can thus not be predicted by changes in cardiac output or blood pressure. Changes in lactate or in veno-arterial PCO2 gradients can be useful to indirectly evaluate the microvascular effects of fluids. Even though colloids are often associated with greater effects than crystalloids in experimental settings, this has not been confirmed in patients. Finally the impact of red blood cell transfusions is highly variable and may depend on the severity of microvascular alterations at baseline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jhanji S, Lee C, Watson D, Hinds C, Pearse RM. Microvascular flow and tissue oxygenation after major abdominal surgery: association with post-operative complications. Intensive Care Med. 2009;35(4):671–7.

    Article  PubMed  Google Scholar 

  2. De Backer D, Creteur J, Dubois MJ, Sakr Y, Koch M, Verdant C, et al. The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med. 2006;34(2):403–8.

    Article  PubMed  Google Scholar 

  3. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166:98–104.

    Article  PubMed  Google Scholar 

  4. Edul VS, Ince C, Vazquez AR, Rubatto PN, Espinoza ED, Welsh S, et al. Similar microcirculatory alterations in patients with Normodynamic and Hyperdynamic septic shock. Ann Am Thorac Soc. 2016;13(2):240–7.

    PubMed  Google Scholar 

  5. Verdant CL, De Backer D, Bruhn A, Clausi C, Su F, Wang Z, et al. Evaluation of sublingual and gut mucosal microcirculation in sepsis: a quantitative analysis. Crit Care Med. 2009;37:2875–81.

    Article  PubMed  Google Scholar 

  6. Farquhar I, Martin CM, Lam C, Potter R, Ellis CG, Sibbald WJ. Decreased capillary density in vivo in bowel mucosa of rats with normotensive sepsis. J Surg Res. 1996;61:190–6.

    Article  CAS  PubMed  Google Scholar 

  7. Secor D, Li F, Ellis CG, Sharpe MD, Gross PL, Wilson JX, et al. Impaired microvascular perfusion in sepsis requires activated coagulation and P-selectin-mediated platelet adhesion in capillaries. Intensive Care Med. 2010;36(11):1928–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Humer MF, Phang PT, Friesen BP, Allards MF, Goddard CM, Walley KR. Heterogeneity of gut capillary transit times and impaired gut oxygen extraction in endotoxemic pigs. J Appl Physiol. 1996;81:895–904.

    Article  CAS  PubMed  Google Scholar 

  9. Koch M, De Backer D, Vincent JL, Barvais L, Hennart D, Schmartz D. Effects of propofol on human microcirculation. Br J Anaesth. 2008;101(4):473–8.

    Article  CAS  PubMed  Google Scholar 

  10. De Backer D, Dubois MJ, Schmartz D, Koch M, Ducart A, Barvais L, et al. Microcirculatory alterations in cardiac surgery: effects of cardiopulmonary bypass and anesthesia. Ann Thorac Surg. 2009;88(5):1396–403.

    Article  PubMed  Google Scholar 

  11. Tachon G, Harrois A, Tanaka S, Kato H, Huet O, Pottecher J, et al. Microcirculatory alterations in traumatic hemorrhagic shock. Crit Care Med. 2014;42(6):1433–41.

    Article  PubMed  Google Scholar 

  12. Harrois A, Baudry N, Huet O, Kato H, Lohez M, Ziol M, et al. Synergistic deleterious effect of hypoxemia and hypovolemia on microcirculation in intestinal villi*. Crit Care Med. 2013;41(11):e376–e84.

    Article  PubMed  Google Scholar 

  13. Lipowsky HH, Firrel JC. Microvascular hemodynamics during systemic hemodilution and hemoconcentration. Am J Phys. 1986;250:H908–H22.

    CAS  Google Scholar 

  14. Cabrales P, Martini J, Intaglietta M, Tsai AG. Blood viscosity maintains microvascular conditions during normovolemic anemia independent of blood oxygen-carrying capacity. Am J Physiol Heart Circ Physiol. 2006;291(2):H581–H90.

    Article  CAS  PubMed  Google Scholar 

  15. Vellinga NA, Ince C, Boerma EC. Elevated central venous pressure is associated with impairment of microcirculatory blood flow in sepsis: a hypothesis generating post hoc analysis. BMC Anesthesiol. 2013;13(1):17.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bemelmans RH, Boerma EC, Barendregt J, Ince C, Rommes JH, Spronk PE. Changes in the volume status of haemodialysis patients are reflected in sublingual microvascular perfusion. Nephrol Dial Transplant. 2009;24:3487–92.

    Article  PubMed  Google Scholar 

  17. Hoffmann JN, Vollmar B, Laschke MW, Inthorn D, Schildberg FW, Menger MD. Hydroxyethyl starch (130 kD), but not crystalloid volume support, improves microcirculation during normotensive endotoxemia. Anesthesiology. 2002;97(2):460–70.

    Article  CAS  PubMed  Google Scholar 

  18. de Carvalho H, Dorigo D, Bouskela E. Effects of Ringer-acetate and Ringer-dextran solutions on the microcirculation after LPS challenge: observations in the hamster cheek pouch. Shock. 2001;15:157–62.

    Article  PubMed  Google Scholar 

  19. Futier E, Christophe S, Robin E, Petit A, Pereira B, Desbordes J, et al. Use of near-infrared spectroscopy during a vascular occlusion test to assess the microcirculatory response during fluid challenge. Crit Care. 2011;15(5):R214.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bouattour K, Teboul JL, Varin L, Vicaut E, Duranteau J. Preload dependence is associated with reduced sublingual microcirculation during major abdominal surgery. Anesthesiology. 2019;130(4):541–9.

    Article  PubMed  Google Scholar 

  21. Ospina-Tascon G, Neves AP, Occhipinti G, Donadello K, Buchele G, Simion D, et al. Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensive Care Med. 2010;36(6):949–55.

    Article  PubMed  Google Scholar 

  22. Pottecher J, Deruddre S, Teboul JL, Georger J, Laplace C, Benhamou D, et al. Both passive leg raising and intravascular volume expansion improve sublingual microcirculatory perfusion in severe sepsis and septic shock patients. Intensive Care Med. 2010;36:1867–74.

    Article  PubMed  Google Scholar 

  23. Pranskunas A, Koopmans M, Koetsier PM, Pilvinis V, Boerma EC. Microcirculatory blood flow as a tool to select ICU patients eligible for fluid therapy. Intensive Care Med. 2013;39(4):612–9.

    Article  CAS  PubMed  Google Scholar 

  24. Klijn E, van Velzen MH, Lima AP, Bakker J, Van BJ GAB. Tissue perfusion and oxygenation to monitor fluid responsiveness in critically ill, septic patients after initial resuscitation: a prospective observational study. J Clin Monit Comput. 2015;29(6):707–12.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vallee F, Mateo J, Dubreuil G, Poussant T, Tachon G, Ouanounou I, et al. Cutaneous ear lobe PCO2 at 37{degrees}C to evaluate micro perfusion in septic patients. Chest. 2010;138(5):1062–70.

    Article  PubMed  Google Scholar 

  26. Creteur J, De Backer D, Sakr Y, Koch M, Vincent JL. Sublingual capnometry tracks microcirculatory changes in septic patients. Intensive Care Med. 2006;32(4):516–23.

    Article  PubMed  Google Scholar 

  27. Ospina-Tascon GA, Umana M, Bermudez WF, Bautista-Rincon DF, Valencia JD, Madrinan HJ, et al. Can venous-to-arterial carbon dioxide differences reflect microcirculatory alterations in patients with septic shock? Intensive Care Med. 2016;42(2):211–21.

    Article  CAS  PubMed  Google Scholar 

  28. Edul VS, Ince C, Navarro N, Previgliano L, Risso-Vazquez A, Rubatto PN, et al. Dissociation between sublingual and gut microcirculation in the response to a fluid challenge in postoperative patients with abdominal sepsis. Ann Intensive Care. 2014;4:39.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Legrand M, Bezemer R, Kandil A, Demirci C, Payen D, Ince C. The role of renal hypoperfusion in development of renal microcirculatory dysfunction in endotoxemic rats. Intensive Care Med. 2011;37(9):1534–42.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Horstick G, Lauterbach M, Kempf T, Ossendorf M, Kopacz L, Heimann A, et al. Plasma protein loss during surgery: beneficial effects of albumin substitution. Shock. 2001;16(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  31. Horstick G, Lauterbach M, Kempf T, Bhakdi S, Heimann A, Horstick M, et al. Early albumin infusion improves global and local hemodynamics and reduces inflammatory response in hemorrhagic shock. Crit Care Med. 2002;30(4):851–5.

    Article  CAS  PubMed  Google Scholar 

  32. Ngo AT, Jensen LJ, Riemann M, Holstein-Rathlou NH, Torp-Pedersen C. Oxygen sensing and conducted vasomotor responses in mouse cremaster arterioles in situ. Pflugers Arch. 2010;460(1):41–53.

    Article  CAS  PubMed  Google Scholar 

  33. Steinbauer M, Guba M, Buchner M, Farkas S, Anthuber M, Jauch KW. Impact of polynitroxylated albumin (PNA) and tempol on ischemia/reperfusion injury: intravital microscopic study in the dorsal skinfold chamber of the Syrian golden hamster. Shock. 2000;14:163–8.

    Article  CAS  PubMed  Google Scholar 

  34. Dubin A, Pozo MO, Casabella CA, Murias G, Palizas F Jr, Moseinco MC, et al. Comparison of 6% hydroxyethyl starch 130/0.4 and saline solution for resuscitation of the microcirculation during the early goal-directed therapy of septic patients. J Crit Care. 2010;25:659.e1–8.

    Article  CAS  Google Scholar 

  35. Orbegozo D, Su F, Santacruz C, He X, Hosokawa K, Creteur J, et al. Effects of different crystalloid solutions on hemodynamics, peripheral perfusion, and the microcirculation in experimental abdominal sepsis. Anesthesiology. 2016;125(4):744–54.

    Article  CAS  PubMed  Google Scholar 

  36. Duburcq T, Durand A, Dessein AF, Vamecq J, Vienne JC, Dobbelaere D, et al. Comparison of fluid balance and hemodynamic and metabolic effects of sodium lactate versus sodium bicarbonate versus 0.9% NaCl in porcine endotoxic shock: a randomized, open-label, controlled study. Crit Care. 2017;21(1):113.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fenton BM, Carr RT, Cokelet GR. Nonuniform red cell distribution in 20 to 100 micrometers bifurcations. Microvasc Res. 1985;29(1):103–26.

    Article  CAS  PubMed  Google Scholar 

  38. Gonzalez AM, Yazici I, Kusza K, Siemionow M. Effects of fresh versus banked blood transfusions on microcirculatory hemodynamics and tissue oxygenation in the rat cremaster model. Surgery. 2007;141(5):630–9.

    Article  PubMed  Google Scholar 

  39. Kerger H, Waschke KF, Ackern KV, Tsai AG, Intaglietta M. Systemic and microcirculatory effects of autologous whole blood resuscitation in severe hemorrhagic shock. Am J Phys. 1999;276:H2035–H43.

    CAS  Google Scholar 

  40. Sakr Y, Chierego M, Piagnerelli M, Verdant C, Dubois MJ, Koch M, et al. Microvascular response to red blood cell transfusion in patients with severe sepsis. Crit Care Med. 2007;35(7):1639–44.

    Article  PubMed  Google Scholar 

  41. Donati A, Damiani E, Luchetti MM, Domizi R, Scorcella C, Carsetti A, et al. Microcirculatory effects of the transfusion of leukodepleted or non-leukodepleted red blood cells in septic patients: a pilot study. Crit Care. 2014;18(1):R33.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sadaka F, Aggu-Sher R, Krause K, O'Brien J, Armbrecht ES, Taylor RW. The effect of red blood cell transfusion on tissue oxygenation and microcirculation in severe septic patients. Ann Intensive Care. 2011;1(1):46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Ayhan B, Yuruk K, Koene S, Sahin A, Ince C, Aypar U. The effects of non-leukoreduced red blood cell transfusions on microcirculation in mixed surgical patients. Transfus Apher Sci. 2013;49(2):212–22.

    Article  PubMed  Google Scholar 

  44. Yuruk K, Almac E, Bezemer R, Goedhart P, de Mol B, Ince C. Blood transfusions recruit the microcirculation during cardiac surgery. Transfusion. 2011;51(5):961–7.

    Article  PubMed  Google Scholar 

  45. Walsh TS, McArdle F, McLellan SA, Maciver C, Maginnis M, Prescott RJ, et al. Does the storage time of transfused red blood cells influence regional or global indexes of tissue oxygenation in anemic critically ill patients? Crit Care Med. 2004;32(2):364–71.

    Article  PubMed  Google Scholar 

  46. Tanaka S, Escudier E, Hamada S, Harrois A, Leblanc PE, Vicaut E, et al. Effect of RBC transfusion on sublingual microcirculation in hemorrhagic shock patients: a pilot study. Crit Care Med. 2017;45(2):e154–e60.

    Article  PubMed  Google Scholar 

  47. Stowell CP, Whitman G, Granger S, Gomez H, Assmann SF, Massey MJ, et al. The impact of red blood cell storage duration on tissue oxygenation in cardiac surgery. J Thorac Cardiovasc Surg. 2017;153(3):610–9.

    Article  PubMed  Google Scholar 

  48. Lacroix J, Hebert PC, Fergusson DA, Tinmouth A, Cook DJ, Marshall JC, et al. Age of transfused blood in critically ill adults. N Engl J Med. 2015;372(15):1410–8.

    Article  CAS  PubMed  Google Scholar 

  49. De Backer D, Donadello K, Sakr Y, Ospina-Tascon GA, Salgado DR, Scolletta S, et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med. 2013;41(3):791–9.

    Article  PubMed  CAS  Google Scholar 

  50. Ince C, Boerma EC, Cecconi M, De Backer D, Shapiro NI, Duranteau J, et al. Second consensus on the assessment of sublingual microcirculation in critically ill patients: results from a task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2018;44:281–99.

    Article  PubMed  Google Scholar 

  51. Sardinha J, MacKinnon S, Lehmann C. Rapid clinical assessment of the sublingual microcirculation – visual scoring using microVAS in comparison to standard semi-automated analysis. Clin Hemorheol Microcirc. 2018;72(3):229–38.

    Article  Google Scholar 

  52. Tanaka S, Harrois A, Nicolai C, Flores M, Hamada S, Vicaut E, et al. Qualitative real-time analysis by nurses of sublingual microcirculation in intensive care unit: the MICRONURSE study. Crit Care. 2015;19:388.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel De Backer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Backer, D.D. (2020). Microcirculatory Blood Flow as a New Tool for Perioperative Fluid Management. In: Farag, E., Kurz, A., Troianos, C. (eds) Perioperative Fluid Management. Springer, Cham. https://doi.org/10.1007/978-3-030-48374-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48374-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48373-9

  • Online ISBN: 978-3-030-48374-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics