Skip to main content
Log in

Sublingual capnometry tracks microcirculatory changes in septic patients

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

To test the hypothesis that microcirculatory blood flow is the main determinant of sublingual carbon dioxide pressure in patients with septic shock.

Design

Prospective, open-label study

Setting

A 31-bed medico-surgical department of intensive care.

Patients

Eighteen consecutive mechanically ventilated patients with septic shock.

Interventions

A 5 μg/kg · min dobutamine infusion was used to increase blood flow.

Methods

Sublingual carbon dioxide pressure was monitored using a microelectrode sensor, and sublingual microcirculation was assessed using orthogonal polarization spectral imaging. The sublingual carbon dioxide pressure gap was calculated as the difference between sublingual and arterial carbon dioxide pressures. In each patient, a nasogastric tonometry catheter was inserted for gastric mucosal carbon dioxide pressure measurement. The gastric carbon dioxide pressure gap was calculated as the difference between gastric mucosal and arterial carbon dioxide pressures.

Measurements and results

Dobutamine infusion was associated with increases cardiac index and mixed venous blood oxygen saturation. Dobutamine infusion resulted in decreases in sublingual carbon dioxide pressure gap from 40 ± 15 to 17 ± 8 mmHg (p < 0.01). There was a significant correlation between sublingual and gastric mucosal carbon dioxide pressures (r 2 = 0.61, p < 0.05). At baseline, sublingual carbon dioxide pressure gap correlated with the proportion of well-perfused capillaries (r 2 = 0.80). The decrease in sublingual carbon dioxide pressure gap paralleled the increase in the proportion of well-perfused capillaries in each patient.

Conclusions

Regional microcirculatory blood flow is the main determinant of sublingual carbon dioxide pressure. Sublingual capnometry could represent a simple, non-invasive method to monitor these microcirculatory alterations in septic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mythen MG, Webb AR (1994) The role of gut mucosal hypoperfusion in the pathogenesis of post-operative organ dysfunction. Intensive Care Med 20:203–209

    Article  PubMed  CAS  Google Scholar 

  2. Nakagawa Y, Weil MH, Tang W, Sun S, Yamaguchi H, Jin X, Bisera J (1998) Sublingual capnometry for diagnosis and quantitation of circulatory shock. Am J Respir Crit Care Med 157:1838–1843

    PubMed  CAS  Google Scholar 

  3. Povoas HP, Weil MH, Tang W, Moran B, Kamohara T, Bisera J (2000) Comparisons between sublingual and gastric tonometry during hemorrhagic shock. Chest 118:1127–1132

    Article  PubMed  CAS  Google Scholar 

  4. Jin X, Weil MH, Sun S, Tang W, Bisera J, Mason EJ (1998) Decreases in organ blood flows associated with increases in sublingual PCO2 during hemorrhagic shock. J Appl Physiol 85:2360–2364

    PubMed  CAS  Google Scholar 

  5. Weil MH, Nakagawa Y, Tang W, Sato Y, Ercoli F, Finegan R, Grayman G, Bisera J (1999) Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock. Crit Care Med 27:1225–1229

    Article  PubMed  CAS  Google Scholar 

  6. Marik PE (2001) Sublingual capnography: a clinical validation study. Chest 120:923–927

    Article  PubMed  CAS  Google Scholar 

  7. Marik PE, Bankov A (2003) Sublingual capnometry versus traditional markers of tissue oxygenation in critically ill patients. Crit Care Med 31:818–822

    Article  PubMed  Google Scholar 

  8. Maciel AT, Creteur J, Vincent JL (2004) Tissue capnometry: does the answer lie under the tongue? Intensive Care Med 30:2157–2165

    Article  PubMed  Google Scholar 

  9. Knuesel R, Jakob SM, Brander L, Bracht H, Siegenthaler A, Takala J (2003) Changes in regional blood flow and pCO(2) gradients during isolated abdominal aortic blood flow reduction. Intensive Care Med 29:2255–2265

    Article  PubMed  Google Scholar 

  10. VanderMeer TJ, Wang H, Fink MP (1995) Endotoxemia causes ileal mucosal acidosis in the absence of mucosal hypoxia in a normodynamic porcine model of septic shock. Crit Care Med 23:1217–1226

    Article  PubMed  CAS  Google Scholar 

  11. Groner W, Winkelman JW, Harris AG, Ince C, Bouma GJ, Messmer K, Nadeau RG (1999) Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med 5:1209–1212

    Article  PubMed  CAS  Google Scholar 

  12. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104

    Article  PubMed  Google Scholar 

  13. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32:1825–1831

    Article  PubMed  Google Scholar 

  14. Creteur J, De Backer D, Sakr Y, Koch M, Vincent JL (2005) Alterations in sublingual microcirculation are representative of other areas in septic shock. Intensive Care Med 31:S151 (abst)

    Article  Google Scholar 

  15. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med 29:530–538

    PubMed  Google Scholar 

  16. Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: A severity of disease classification system. Crit Care Med 13:818–829

    Article  PubMed  CAS  Google Scholar 

  17. Vincent JL, Moreno R, Takala J, Willatts S, de Mendonça A, Bruining H, Reinhart CK, Suter PM, Thijs LG (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med 22:707–710

    Article  PubMed  CAS  Google Scholar 

  18. Secchi A, Wellmann R, Martin E, Schmidt H (1997) Dobutamine maintains intestinal villus blood flow during normotensive endotoxemia: an intravital microscopic study in the rat. J Crit Care 12:137–141

    Article  PubMed  CAS  Google Scholar 

  19. Madorin WS, Martin CM, Sibbald WJ (1999) Dopexamine attenuates flow motion in ileal mucosal arterioles in normotensive sepsis. Crit Care Med 27:394–400

    Article  PubMed  CAS  Google Scholar 

  20. Schmidt H, Secchi A, Wellmann R, Bach A, Bohrer H, Martin E (1996) Dopexamine maintains intestinal villus blood flow during endotoxemia in rats. Crit Care Med 24:1233–1237

    Article  PubMed  CAS  Google Scholar 

  21. Secchi A, Ortanderl JM, Schmidt W, Walther A, Gebhard MM, Martin E, Schmidt H (2001) Effects of dobutamine and dopexamine on hepatic micro- and macrocirculation during experimental endotoxemia: an intravital microscopic study in the rat. Crit Care Med 29:597–600

    Article  PubMed  CAS  Google Scholar 

  22. Nevière R, Mathieu D, Chagnon JL, Lebleu N, Wattel F (1996) The contrasting effects of dobutamine and dopamine on gastric mucosal perfusion in septic patients. Am J Respir Crit Care Med 154:1684–1688

    PubMed  Google Scholar 

  23. Duranteau J, Sitbon P, Teboul JL, Vicaut E, Anguel N, Richard C, Samii K (1999) Effects of epinephrine, norepinephrine, or the combination of norepinephrine and dobutamine on gastric mucosa in septic shock. Crit Care Med 27:893–900

    Article  PubMed  CAS  Google Scholar 

  24. Christ F, Gartside IB, Kox WJ, Gamble J (1991) The assessment of the microcirculatory effects of dobutamine using mercury in silastic strain gauge plethysmography in man. Postgrad Med J 67:S42-S50

    PubMed  Google Scholar 

  25. Fink MP (1998) Cytopathic hypoxia: mitochondrial dysfunction as a potential mechnism contributing to organ failure in sepsis. In: Sibbald WJ, Messmer K, Fink MP, (eds) Tissue oxygenation in acute medicine. Springer, Berlin Heidelberg New York, pp 128–137

  26. Rosser DM, Manji M, Cooksley H, Bellingan G (1998) Endotoxin reduces maximal oxygen consumption in hepatocytes independent of any hypoxic insult. Intensive Care Med 24:725–729

    Article  PubMed  CAS  Google Scholar 

  27. King CJ, Tytgat S, Delude RL, Fink MP (1999) Ileal mucosal oxygen consumption is decreased in endotoxemic rats but is restored toward normal by treatment with aminoguanidine. Crit Care Med 27:2518–2524

    Article  PubMed  CAS  Google Scholar 

  28. Revelly JP, Ayuse T, Brienza N, Fessler HE, Robotham JL (1996) Endotoxic shock alters distribution of blood flow within the intestinal wall. Crit Care Med 24:1345–1351

    Article  PubMed  CAS  Google Scholar 

  29. Hasibeder W, Germann R, Wolf HJ, Haisjackl M, Hausdorfer H, Riedmann B, Bonatti J, Pfaller K, Gruber E, Schwarz B, Waldenberger P, Furtner B (1996) The effects of short-term endotoxemia and dopamine on mucosal oxygenation in the porcine jejunum. Am J Physiol 270:G667-G675

    PubMed  CAS  Google Scholar 

  30. Neviere R, Chagnon JL, Vallet B, Lebleu N, Marechal X, Mathieu D, Wattel F, Dupuis B (1997) Dobutamine improves gastrointestinal mucosal blood flow in a porcine model of endotoxic shock. Crit Care Med 25:1371–1377

    Article  PubMed  CAS  Google Scholar 

  31. Vallet B, Lund N, Curtis SE, Kelly D, Cain SM (1994) Gut and muscle tissue PO2 in endotoxemic dogs during shock and resuscitation. J Appl Physiol 76:793–800

    PubMed  CAS  Google Scholar 

  32. Farquhar I, Martin CM, Lam C, Potter R, Ellis CG, Sibbald WJ (1996) Decreased capillary density in vivo in bowel mucosa of rats with normotensive sepsis. J Surg Res 61:190–196

    Article  PubMed  CAS  Google Scholar 

  33. Lam C, Tyml K, Martin C, Sibbald W (1994) Microvascular perfusion is impaired in a rat model of normotensive sepsis. J Clin Invest 94:2077–2083

    Article  PubMed  CAS  Google Scholar 

  34. Schmidt H, Secchi A, Wellmann R, Bach A, Bohrer H, Gebhard MM, Martin E (1996) Effect of endotoxemia on intestinal villus microcirculation in rats. J Surg Res 61:521–526

    Article  PubMed  CAS  Google Scholar 

  35. Tugtekin IF, Radermacher P, Theisen M, Matejovic M, Stehr A, Ploner F, Matura K, Ince C, Georgieff M, Trager K (2001) Increased ileal-mucosal-arterial PCO2 gap is associated with impaired villus microcirculation in endotoxic pigs. Intensive Care Med 27:757–766

    Article  PubMed  CAS  Google Scholar 

  36. Elizalde JI, Hernandez C, Llach J, Monton C, Bordas JM, Pique JM, Torres A (1998) Gastric intramucosal acidosis in mechanically ventilated patients: role of mucosal blood flow. Crit Care Med 26:827–832

    Article  PubMed  CAS  Google Scholar 

  37. Creteur J, De Backer D, Vincent JL (1999) A dobutamine test can disclose hepato-splanchnic hypoperfusion in septic patients. Am J Respir Crit Care Med 160:839–845

    PubMed  CAS  Google Scholar 

  38. Vallet B, Teboul JL, Cain S, Curtis S (2000) Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. J Appl Physiol 89:1317–1321

    PubMed  CAS  Google Scholar 

  39. De Backer D (2003) Lactic acidosis. Intensive Care Med 29:699–702

    PubMed  Google Scholar 

  40. Reinelt H, Radermacher P, Fischer G, Geisser W, Wachter U, Wiedeck H, Georgieff M, Vogt J (1997) Effects of a dobutamine-induced increase in splanchnic blood flow on hepatic metabolic activity in patients with septic shock. Anesthesiology 86:818–824

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Vincent.

Additional information

This article is discussed in the editorial http://dx.doi.org/10.1007/s00134-006-0071-3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Creteur, J., De Backer, D., Sakr, Y. et al. Sublingual capnometry tracks microcirculatory changes in septic patients. Intensive Care Med 32, 516–523 (2006). https://doi.org/10.1007/s00134-006-0070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-006-0070-4

Keywords

Navigation