Skip to main content

Optical and Optoacoustic Imaging

  • Chapter
  • First Online:
Molecular Imaging in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 216))

Abstract

The spatiotemporal determination of molecular events and cells is important for understanding disease processes, especially in oncology, and thus for the development of novel treatments. Equally important is the knowledge of the biodistribution, localization, and targeted accumulation of novel therapies as well as monitoring of tumor growth and therapeutic response. Optical imaging provides an ideal versatile platform for imaging of all these problems and questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

ACT:

Adoptive T cell therapy

BLI:

Bioluminescence imaging

BRET:

Bioluminescence resonance energy transfer

CCD:

Charged-coupled device

cRGD:

Cyclic arginine–glycine–aspartic acid

CXCR4:

CXC-Motiv-Chemokine receptor 4

DOX:

Doxorubicin

DR5:

Proapoptotic receptor death receptor 5

ECM:

Extracellular matrix

EGFR:

Epidermal growth factor receptor

EPR:

Enhanced permeability and retention

ER:

Endoplasmic reticulum

FGS:

Fluorescence-guided surgery

FITC:

Fluorescein isothiocyanate

FLIM:

Fluorescence lifetime imaging

FLuc:

Firefly luciferase

FRI:

Fluorescence reflectance imaging

FTI:

Fluorescence transillumination imaging

GFP:

Green fluorescent protein

GLuc:

Gaussia luciferase

GPCR:

G protein-coupled receptor

hASCs:

Human subcutaneous adipose tissue stem cells

HIF:

Hypoxia-inducible factor

hMSCs:

Human mesenchymal stem cells

ICG:

Indo-cyanine green

LLC:

Lewis lung cancer

MICAD:

Molecular Imaging and Contrast Agent Database

MMPs:

Matrix metallopeptidases

MRI:

Magnetic resonance imaging

MSOT:

Multispectral optoacoustic tomography

NFAT:

Nuclear factor of activated T cells

NIR(F):

Near-infrared (fluorescence)

OAI:

Optoacoustic imaging

OVA:

Ovalbumin

PBLs:

Peripheral blood lymphocytes

PCA:

Protein fragment complementation assay

PDGFR:

Platelet-derived growth factor receptor

PEG:

Polyethylene glycol

PKA:

Protein kinase A

PSA:

Prostate-specific antigen

QY:

Quantum yield

RFP:

Red fluorescent protein

RLuc:

Renilla luciferase

SLNs:

Sentinel lymph node(s)

SNR:

Signal-to-noise ratio

SPCD:

Single-photon counting detector

SPR:

Surface plasmon resonance

TILs:

Tumor-infiltrating lymphocytes

TME:

Tumor microenvironment

TNF:

Tumor necrosis factor

TRAIL:

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand

UV:

Ultraviolet

VEGF:

Vascular endothelial growth factor

Vluc:

Vargula luciferase

References

  1. Agarwal A, Huang SW, O’Donnell M, Day KC, Day M, Kotov N, Ashkenazi S (2007) Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Phys 102:064701. https://doi.org/10.1063/1.2777127

    Article  CAS  Google Scholar 

  2. Alander JT, Kaartinen I, Laakso A, Pätilä T, Spillmann T, Tuchin VV, Venermo M, Välisuo P (2012) A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging 2012:1–26. https://doi.org/10.1155/2012/940585

    Article  CAS  Google Scholar 

  3. Allen AB, Gazit Z, Su S, Stevens HY, Guldberg RE (2014) In vivo bioluminescent tracking of mesenchymal stem cells within large hydrogel constructs. Tissue Eng Part C Methods 20:806–816. https://doi.org/10.1089/ten.tec.2013.0587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alves F, Dullin C, Napp J, Missbach-Guentner J, Jannasch K, Mathejczyk J, Pardo LA, Stühmer W, Tietze L-F (2009) Concept of a selective tumour therapy and its evaluation by near-infrared fluorescence imaging and flat-panel volume computed tomography in mice. Eur J Radiol 70:286–293. https://doi.org/10.1016/j.ejrad.2009.01.048

    Article  PubMed  Google Scholar 

  5. Ankersmit M, van Dam DA, van Rijswijk A-S, van den Heuvel B, Tuynman JB, Meijerink WJHJ (2017) Fluorescent imaging with indocyanine green during laparoscopic cholecystectomy in patients at increased risk of bile duct injury. Surg Innov 24:245–252. https://doi.org/10.1177/1553350617690309

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ardeshirpour Y, Chernomordik V, Capala J, Hassan M, Zielinsky R, Griffiths G, Achilefu S, Smith P, Gandjbakhckhe A (2011) Using in-vivo fluorescence imaging in personalized cancer diagnostics and therapy, an image and treat paradigm. Technol Cancer Res Treat 10:549–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Backer MV, Levashova Z, Patel V, Jehning BT, Claffey K, Blankenberg FG, Backer JM (2007) Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes. Nat Med 13:504–509. https://doi.org/10.1038/nm1522

    Article  CAS  PubMed  Google Scholar 

  8. Badr CE, Tannous BA (2011) Bioluminescence imaging: progress and applications. Trends Biotechnol 29:624–633. https://doi.org/10.1016/j.tibtech.2011.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bai X, Yan Y, Coleman M, Wu G, Rabinovich B, Seidensticker M, Alt E (2011) Tracking long-term survival of intramyocardially delivered human adipose tissue-derived stem cells using bioluminescence imaging. Mol Imaging Biol 13:633–645. https://doi.org/10.1007/s11307-010-0392-z

    Article  PubMed  Google Scholar 

  10. Barnett EM, Zhang X, Maxwell D, Chang Q, Piwnica-Worms D (2009) Single-cell imaging of retinal ganglion cell apoptosis with a cell-penetrating, activatable peptide probe in an in vivo glaucoma model. Proc Natl Acad Sci U S A 106:9391–9396. https://doi.org/10.1073/pnas.0812884106

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bell AG (1880) On the production and reproduction of sound by light. Am J Sci Series 3 20:305–324. https://doi.org/10.2475/ajs.s3-20.118.305

  12. Bhaumik S, Gambhir SS (2002) Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci U S A 99:377–382. https://doi.org/10.1073/pnas.012611099

    Article  CAS  PubMed  Google Scholar 

  13. Brancaleon L, Durkin AJ, Tu JH, Menaker G, Fallon JD, Kollias N (2001) In vivo fluorescence spectroscopy of nonmelanoma skin cancer. Photochem Photobiol 73:178–183

    Article  CAS  PubMed  Google Scholar 

  14. Brodl E, Winkler A, Macheroux P (2018) Molecular mechanisms of bacterial bioluminescence. Comput Struct Biotechnol J 16:551–564. https://doi.org/10.1016/j.csbj.2018.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bullok KE, Maxwell D, Kesarwala AH, Gammon S, Prior JL, Snow M, Stanley S, Piwnica-Worms D (2007) Biochemical and in vivo characterization of a small, membrane-permeant, caspase-activatable far-red fluorescent peptide for imaging apoptosis. Biochemistry 46:4055–4065. https://doi.org/10.1021/bi061959n

    Article  CAS  PubMed  Google Scholar 

  16. Cai W, Sam Gambhir S, Chen X (2005) Multimodality tumor imaging targeting integrin alphavbeta3. Biotechniques 39:S14–S25. https://doi.org/10.2144/000112091

    Article  PubMed  Google Scholar 

  17. Carlsen H, Moskaug JØ, Fromm SH, Blomhoff R (2002) In vivo imaging of nf-κb activity. J Immunol 168:1441–1446. https://doi.org/10.4049/jimmunol.168.3.1441

    Article  CAS  PubMed  Google Scholar 

  18. Close DM, Patterson SS, Ripp S, Baek SJ, Sanseverino J, Sayler GS (2010) Autonomous bioluminescent expression of the bacterial luciferase gene cassette (lux) in a mammalian cell line. PLoS ONE 5:e12441. https://doi.org/10.1371/journal.pone.0012441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Conway JRW, Warren SC, Herrmann D, Murphy KJ, Cazet AS, Vennin C, Shearer RF, Killen MJ, Magenau A, Mélénec P, Pinese M, Nobis M, Zaratzian A, Boulghourjian A, Da Silva AM, Del Monte-Nieto G, Adam ASA, Harvey RP, Haigh JJ, Wang Y, Croucher DR, Sansom OJ, Pajic M, Caldon CE, Morton JP, Timpson P (2018) Intravital imaging to monitor therapeutic response in moving hypoxic regions resistant to PI3K pathway targeting in pancreatic cancer. Cell Rep 23:3312–3326. https://doi.org/10.1016/j.celrep.2018.05.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cronin M, Akin AR, Collins SA, Meganck J, Kim J-B, Baban CK, Joyce SA, van Dam GM, Zhang N, van Sinderen D, O’Sullivan GC, Kasahara N, Gahan CG, Francis KP, Tangney M (2012) High resolution in vivo bioluminescent imaging for the study of bacterial tumour targeting. PLoS ONE 7:e30940. https://doi.org/10.1371/journal.pone.0030940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. David S, Carmoy N, Resnier P, Denis C, Misery L, Pitard B, Benoit J-P, Passirani C, Montier T (2012) In vivo imaging of DNA lipid nanocapsules after systemic administration in a melanoma mouse model. Int J Pharm, Spec Issue: Drug Deliv Imaging Cancer 423:108–115. https://doi.org/10.1016/j.ijpharm.2011.06.031

    Article  CAS  Google Scholar 

  22. Delank W, Khanavkar B, Nakhosteen JA, Stoll W (2000) A pilot study of autofluorescent endoscopy for the in vivo detection of laryngeal cancer. Laryngoscope 110:368–373. https://doi.org/10.1097/00005537-200003000-00007

    Article  CAS  PubMed  Google Scholar 

  23. Ding D, Guo W, Guo C, Sun J, Zheng N, Wang F, Yan M, Liu S (2017) MoO 3 − x quantum dots for photoacoustic imaging guided photothermal/photodynamic cancer treatment. Nanoscale 9:2020–2029. https://doi.org/10.1039/C6NR09046J

    Article  CAS  PubMed  Google Scholar 

  24. Ding S, Blue RE, Moorefield E, Yuan H, Lund PK (2017) Ex vivo and in vivo noninvasive imaging of epidermal growth factor receptor inhibition on colon tumorigenesis using activatable near-infrared fluorescent probes. Mol Imaging 16:1536012117729044. https://doi.org/10.1177/1536012117729044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dothager RS, Flentie K, Moss B, Pan M-H, Kesarwala A, Piwnica-Worms D (2009) Advances in bioluminescence imaging of live animal models. Curr Opin Biotechnol, Anal Biotechnol 20:45–53. https://doi.org/10.1016/j.copbio.2009.01.007

    Article  CAS  Google Scholar 

  26. Edgington LE, Verdoes M, Bogyo M (2011) Functional imaging of proteases: recent advances in the design and application of substrate-based and activity-based probes. Curr Opin Chem Biol 15:798–805. https://doi.org/10.1016/j.cbpa.2011.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Edinger M, Cao Y-A, Verneris MR, Bachmann MH, Contag CH, Negrin RS (2003) Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood 101:640–648. https://doi.org/10.1182/blood-2002-06-1751

    Article  CAS  PubMed  Google Scholar 

  28. Edwards WB, Akers WJ, Ye Y, Cheney PP, Bloch S, Xu B, Laforest R, Achilefu S (2009) Multimodal imaging of integrin receptor-positive tumors by bioluminescence, fluorescence, gamma scintigraphy, and single-photon emission computed tomography using a cyclic RGD peptide labeled with a near-infrared fluorescent dye and a radionuclide. Mol Imaging 8:101–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eisenblätter M, Ehrchen J, Varga G, Sunderkötter C, Heindel W, Roth J, Bremer C, Wall A (2009) In vivo optical imaging of cellular inflammatory response in granuloma formation using fluorescence-labeled macrophages. J Nucl Med 50:1676–1682. https://doi.org/10.2967/jnumed.108.060707

    Article  CAS  PubMed  Google Scholar 

  30. Foster AE, Kwon S, Ke S, Lu A, Eldin K, Sevick-Muraca E, Rooney CM (2008) In vivo fluorescent optical imaging of cytotoxic T lymphocyte migration using IRDye800CW near-infrared dye. Appl Opt 47:5944–5952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7:626–634. https://doi.org/10.1016/j.cbpa.2003.08.007

    Article  CAS  Google Scholar 

  32. Galanzha EI, Shashkov EV, Spring PM, Suen JY, Zharov VP (2009) In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser. Cancer Res 69:7926–7934. https://doi.org/10.1158/0008-5472.CAN-08-4900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Georgakoudi I, Jacobson BC, Müller MG, Sheets EE, Badizadegan K, Carr-Locke DL, Crum CP, Boone CW, Dasari RR, Van Dam J, Feld MS (2002) NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. Cancer Res 62:682–687

    CAS  PubMed  Google Scholar 

  34. Giannuzzo A, Saccomano M, Napp J, Ellegaard M, Alves F, Novak I (2016) Targeting of the P2X7 receptor in pancreatic cancer and stellate cells: Targeting of the P2X7 receptor in pancreatic cancer and stellate cells. Int J Cancer 139:2540–2552. https://doi.org/10.1002/ijc.30380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grootendorst DJ, Fratila RM, Visscher M, Haken BT, van Wezel RJA, Rottenberg S, Steenbergen W, Manohar S, Ruers TJM (2013) Intra-operative ex vivo photoacoustic nodal staging in a rat model using a clinical superparamagnetic iron oxide nanoparticle dispersion. J Biophotonics 6:493–504. https://doi.org/10.1002/jbio.201200204

    Article  CAS  PubMed  Google Scholar 

  36. Haddock SHD, Moline MA, Case JF (2010) Bioluminescence in the Sea. Annu Rev Mar Sci 2:443–493. https://doi.org/10.1146/annurev-marine-120308-081028

    Article  Google Scholar 

  37. Hadjipanayis CG, Widhalm G, Stummer W (2015) What is the surgical benefit of utilizing 5-aminolevulinic acid for fluorescence-guided surgery of malignant gliomas?: Neurosurgery 77:663–673. https://doi.org/10.1227/NEU.0000000000000929

  38. Han X, Lui H, McLean DI, Zeng H (2009) Near-infrared autofluorescence imaging of cutaneous melanins and human skin in vivo. J Biomed Opt 14:024017. https://doi.org/10.1117/1.3103310

    Article  CAS  PubMed  Google Scholar 

  39. Han X, Xu K, Taratula O, Farsad K (2019) Applications of nanoparticles in biomedical imaging. Nanoscale 11:799–819. https://doi.org/10.1039/C8NR07769J

    Article  CAS  Google Scholar 

  40. Harrop GA (1919) The oxygen and carbon dioxide content of arterial and of venous blood in normal individuals and in patients with anemia and heart disease. J Exp Med 30:241–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hart LS, El-Deiry WS (2008) Invincible, but not invisible: imaging approaches toward in vivo detection of cancer stem cells. J Clin Oncol 26:2901–2910. https://doi.org/10.1200/JCO.2008.16.9573

    Article  PubMed  Google Scholar 

  42. Huang Z, Zheng W, Xie S, Chen R, Zeng H, McLean DI, Lui H (2004) Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue. Int J Oncol 24:59–63

    CAS  PubMed  Google Scholar 

  43. Iwano S, Sugiyama M, Hama H, Watakabe A, Hasegawa N, Kuchimaru T, Tanaka KZ, Takahashi M, Ishida Y, Hata J, Shimozono S, Namiki K, Fukano T, Kiyama M, Okano H, Kizaka-Kondoh S, McHugh TJ, Yamamori T, Hioki H, Maki S, Miyawaki A (2018) Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science 359:935–939. https://doi.org/10.1126/science.aaq1067

    Article  CAS  Google Scholar 

  44. Jansen K, van der Steen AFW, Wu M, van Beusekom HMM, Springeling G, Li X, Zhou Q, Shung KK, de Kleijn DP, van Soest G (2014) Spectroscopic intravascular photoacoustic imaging of lipids in atherosclerosis. JBO 19:026006. https://doi.org/10.1117/1.JBO.19.2.026006

    Article  CAS  Google Scholar 

  45. Jayanthi JL, Subhash N, Stephen M, Philip EK, Beena VT (2011) Comparative evaluation of the diagnostic performance of autofluorescence and diffuse reflectance in oral cancer detection: a clinical study. J Biophotonics 4:696–706. https://doi.org/10.1002/jbio.201100037

    Article  PubMed  Google Scholar 

  46. Jenkins DE, Hornig YS, Oei Y, Dusich J, Purchio T (2005) Bioluminescent human breast cancer cell lines that permit rapid and sensitive in vivodetection of mammary tumors and multiple metastases in immune deficient mice. Breast Cancer Res 7:R444. https://doi.org/10.1186/bcr1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jiang T, Sun W, Zhu Q, Burns NA, Khan SA, Mo R, Gu Z (2015) Furin-mediated sequential delivery of anticancer cytokine and small-molecule drug shuttled by Graphene. Adv Mater 27:1021–1028. https://doi.org/10.1002/adma.201404498

    Article  CAS  Google Scholar 

  48. Jost SC, Collins L, Travers S, Piwnica-Worms D, Garbow JR (2009) Measuring Brain Tumor Growth: A Combined BLI/MRI Strategy. Mol Imaging 8:245–253

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kalimuthu S, Oh JM, Gangadaran P, Zhu L, Lee HW, Rajendran RL, Baek S-H, Jeon YH, Jeong SY, Lee S-W, Lee J, Ahn B-C (2017) In vivo tracking of chemokine receptor CXCR4-engineered mesenchymal stem cell migration by optical molecular imaging [WWW Document]. Stem Cells Int. https://doi.org/10.1155/2017/8085637

  50. Kidd S, Spaeth E, Dembinski JL, Dietrich M, Watson K, Klopp A, Battula L, Weil M, Andreeff M, Marini FC (2009) Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescence imaging. Stem Cells 27:2614–2623. https://doi.org/10.1002/stem.187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim J-B, Urban K, Cochran E, Lee S, Ang A, Rice B, Bata A, Campbell K, Coffee R, Gorodinsky A, Lu Z, Zhou H, Kishimoto TK, Lassota P (2010) Non-invasive detection of a small number of bioluminescent cancer cells in vivo. PLoS ONE 5:e9364. https://doi.org/10.1371/journal.pone.0009364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim J-W, Galanzha EI, Shashkov EV, Moon H-M, Zharov VP (2009) Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat Nanotechnol 4:688–694. https://doi.org/10.1038/nnano.2009.231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kleinovink JW, Mezzanotte L, Zambito G, Fransen MF, Cruz LJ, Verbeek JS, Chan A, Ossendorp F, Löwik C (2019) A dual-color bioluminescence reporter mouse for simultaneous in vivo imaging of T cell localization and function. Front. Immunol. 9. https://doi.org/10.3389/fimmu.2018.03097

  54. Kobayashi H, Ogawa M, Kosaka N, Choyke PL, Urano Y (2009) Multicolor imaging of lymphatic function with two nanomaterials: quantum dot-labeled cancer cells and dendrimer-based optical agents. Nanomedicine (Lond) 4:411–419. https://doi.org/10.2217/nnm.09.15

    Article  CAS  Google Scholar 

  55. Kojima R, Takakura H, Ozawa T, Tada Y, Nagano T, Urano Y (2013) Rational design and development of near-infrared-emitting firefly luciferins available in vivo. Angew Chem Int Ed 52:1175–1179. https://doi.org/10.1002/anie.201205151

    Article  CAS  Google Scholar 

  56. Kruger RA, Kuzmiak CM, Lam RB, Reinecke DR, Del Rio SP, Steed D (2013) Dedicated 3D photoacoustic breast imaging. Med Phys 40:113301. https://doi.org/10.1118/1.4824317

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ku G, Wang LV (2005) Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent. Opt Lett 30:507. https://doi.org/10.1364/OL.30.000507

    Article  PubMed  Google Scholar 

  58. Kuchimaru T, Kadonosono T, Tanaka S, Ushiki T, Hiraoka M, Kizaka-Kondoh S (2010) In vivo imaging of HIF-active tumors by an oxygen-dependent degradation protein probe with an interchangeable labeling system. PLoS One 5. https://doi.org/10.1371/journal.pone.0015736

  59. Lake MC, Aboagye EO (2014) Luciferase fragment complementation imaging in preclinical cancer studies. Oncoscience 1:310–325. https://doi.org/10.18632/oncoscience.45

  60. Lavaud J, Henry M, Coll JL, Josserand V (2017) Exploration of melanoma metastases in mice brains using endogenous contrast photoacoustic imaging. Int J Pharm, SFNano 2016 meeting 532:704–709. https://doi.org/10.1016/j.ijpharm.2017.08.104

  61. Leblond F, Davis SC, Valdés PA, Pogue BW (2010) Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications. J Photochem Photobiol B 98:77–94. https://doi.org/10.1016/j.jphotobiol.2009.11.007

  62. Lee C-M, Jang D, Cheong S-J, Jeong M-H, Kim E-M, Kim DW, Lim ST, Sohn M-H, Jeong H-J (2012) Optical imaging of MMP expression and cancer progression in an inflammation-induced colon cancer model. Int J Cancer 131:1846–1853. https://doi.org/10.1002/ijc.27451

    Article  CAS  PubMed  Google Scholar 

  63. Lee S, Choi KY, Chung H, Ryu JH, Lee A, Koo H, Youn I-C, Park JH, Kim I-S, Kim SY, Chen X, Jeong SY, Kwon IC, Kim K, Choi K (2011) Real time, high resolution video imaging of apoptosis in single cells with a polymeric nanoprobe. Bioconjug Chem 22:125–131. https://doi.org/10.1021/bc1004119

    Article  CAS  PubMed  Google Scholar 

  64. Li L, Du Y, Chen X, Tian J (2018) Fluorescence molecular imaging and tomography of matrix metalloproteinase-activatable near-infrared fluorescence probe and image-guided orthotopic glioma resection. Mol Imaging Biol 20:930–939. https://doi.org/10.1007/s11307-017-1158-7

    Article  CAS  PubMed  Google Scholar 

  65. Li M, Oh J, Xie X, Ku G, Wang W, Li C, Lungu G, Stoica G, Wang LV (2008) Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography. Proc IEEE 96:481–489. https://doi.org/10.1109/JPROC.2007.913515

    Article  CAS  Google Scholar 

  66. Li M, Tang Y, Yao J (2018) Photoacoustic tomography of blood oxygenation: a mini review. Photoacoustics 10:65–73. https://doi.org/10.1016/j.pacs.2018.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  67. Li W, Chen X (2015) Gold nanoparticles for photoacoustic imaging. Nanomedicine 10:299–320. https://doi.org/10.2217/nnm.14.169

    Article  CAS  Google Scholar 

  68. Li X, Schumann C, Albarqi HA, Lee CJ, Alani AWG, Bracha S, Milovancev M, Taratula Olena, Taratula Oleh (2018) A tumor-activatable theranostic nanomedicine platform for nir fluorescence-guided surgery and combinatorial phototherapy. Theranostics 8:767–784. https://doi.org/10.7150/thno.21209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lim YT, Cho MY, Noh Y-W, Chung JW, Chung BH (2009) Near-infrared emitting fluorescent nanocrystals-labeled natural killer cells as a platform technology for the optical imaging of immunotherapeutic cells-based cancer therapy. Nanotechnology 20:475102. https://doi.org/10.1088/0957-4484/20/47/475102

    Article  CAS  PubMed  Google Scholar 

  70. Liu Z, Liu Shuanglong, Niu G, Wang F, Liu Shuang, Chen X (2010) Optical imaging of integrin alphavbeta3 expression with near-infrared fluorescent RGD dimer with tetra(ethylene glycol) linkers. Mol Imaging 9:21–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Loja MN, Luo Z, Farwell DG, Luu QC, Donald PJ, FRCSc, Amott D, Truong AQ, Gandour-Edwards RF, Nitin N (2013) Optical molecular imaging detects changes in extracellular pH with the development of head and neck cancer. Int J Cancer 132:1613–1623. https://doi.org/10.1002/ijc.27837

  72. Lopez A, Liao JC (2014) Emerging endoscopic imaging technologies for bladder cancer detection. Curr Urol Rep 15:406. https://doi.org/10.1007/s11934-014-0406-5

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lyons SK, Lim E, Clermont AO, Dusich J, Zhu L, Campbell KD, Coffee RJ, Grass DS, Hunter J, Purchio T, Jenkins D (2006) noninvasive bioluminescence imaging of normal and spontaneously transformed prostate tissue in mice. Cancer Res 66:4701–4707. https://doi.org/10.1158/0008-5472.CAN-05-3598

    Article  CAS  PubMed  Google Scholar 

  74. Lyons SK, Meuwissen R, Krimpenfort P, Berns A (2003) The generation of a conditional reporter that enables bioluminescence imaging of Cre/loxP-dependent tumorigenesis in mice. Cancer Res 63:7042–7046

    CAS  PubMed  Google Scholar 

  75. Maguire CA, Bovenberg MS, Crommentuijn MH, Niers JM, Kerami M, Teng J, Sena-Esteves M, Badr CE, Tannous BA (2013) Triple bioluminescence imaging for in vivo monitoring of cellular processes. Mol Therapy—Nucleic Acids 2. https://doi.org/10.1038/mtna.2013.25

  76. Mahmood U, Weissleder R (2003) Near-infrared optical imaging of proteases in cancer. Mol Cancer Ther 2:489–496

    CAS  Google Scholar 

  77. Mallidi S, Larson T, Tam J, Joshi PP, Karpiouk A, Sokolov K, Emelianov S (2009) Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. Nano Lett 9:2825–2831. https://doi.org/10.1021/nl802929u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mallidi S, Watanabe K, Timerman D, Schoenfeld D, Hasan T (2015) Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging. Theranostics 5:289–301. https://doi.org/10.7150/thno.10155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Manohar S, Vaartjes SE, van Hespen JCG, Klaase JM, van den Engh FM, Steenbergen W, van Leeuwen TG (2007) Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics. Opt Express 15:12277–12285. https://doi.org/10.1364/oe.15.012277

    Article  PubMed  Google Scholar 

  80. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444. https://doi.org/10.1038/nature07205

    Article  CAS  PubMed  Google Scholar 

  81. Mathejczyk JE, Pauli J, Dullin C, Napp J, Tietze L-F, Kessler H, Resch-Genger U, Alves F (2011) Spectroscopically well-characterized RGD optical probe as a prerequisite for lifetime-gated tumor imaging. Mol Imaging 10:469–480

    Article  CAS  PubMed  Google Scholar 

  82. Mathejczyk JE, Pauli J, Dullin C, Resch-Genger U, Alves F, Napp J (2012) High-sensitivity detection of breast tumors in vivo by use of a pH-sensitive near-infrared fluorescence probe. J Biomed Opt 17:076028. https://doi.org/10.1117/1.JBO.17.7.076028

    Article  CAS  PubMed  Google Scholar 

  83. Maxwell D, Chang Q, Zhang X, Barnett EM, Piwnica-Worms D (2009) An improved cell-penetrating, caspase-activatable, near-infrared fluorescent peptide for apoptosis imaging. Bioconjug Chem 20:702–709. https://doi.org/10.1021/bc800516n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Meighen EA (1991) Molecular biology of bacterial bioluminescence. Microbiol Rev 55:123–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mezzanotte L, Que I, Kaijzel E, Branchini B, Roda A, Löwik C (2011) Sensitive dual color in vivo bioluminescence imaging using a new red codon optimized firefly luciferase and a green click beetle luciferase. PLoS ONE 6:e19277. https://doi.org/10.1371/journal.pone.0019277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mieog JSD, Vahrmeijer AL, Hutteman M, van der Vorst JR, Drijfhout van Hooff M, Dijkstra J, Kuppen PJK, Keijzer R, Kaijzel EL, Que I, van de Velde CJH, Löwik CWGM (2010) Novel intraoperative near-infrared fluorescence camera system for optical image-guided cancer surgery. Mol Imaging 9:223–231

    Article  PubMed  Google Scholar 

  87. Min J-J, Nguyen VH, Kim H-J, Hong Y, Choy HE (2008) Quantitative bioluminescence imaging of tumor-targeting bacteria in living animals. Nat Protoc 3:629–636. https://doi.org/10.1038/nprot.2008.32

    Article  CAS  PubMed  Google Scholar 

  88. Mohs AM, Mancini MC, Singhal S, Provenzale JM, Leyland-Jones B, Wang MD, Nie S (2010) Hand-held spectroscopic device for in vivo and intraoperative tumor detection: contrast enhancement, detection sensitivity, and tissue penetration. Anal Chem 82:9058–9065. https://doi.org/10.1021/ac102058k

    Article  CAS  PubMed  Google Scholar 

  89. Monici M (2005) Cell and tissue autofluorescence research and diagnostic applications. In: Biotechnology annual review. Elsevier, pp. 227–256. https://doi.org/10.1016/S1387-2656(05)11007-2

  90. Montet X, Figueiredo J-L, Alencar H, Ntziachristos V, Mahmood U, Weissleder R (2007) Tomographic fluorescence imaging of tumor vascular volume in mice. Radiology 242:751–758. https://doi.org/10.1148/radiol.2423052065

    Article  PubMed  Google Scholar 

  91. Moriichi K, Fujiya M, Okumura T (2016) The efficacy of autofluorescence imaging in the diagnosis of colorectal diseases. Clin J Gastroenterol 9:175–183. https://doi.org/10.1007/s12328-016-0658-3

    Article  PubMed  Google Scholar 

  92. Na I-K, Markley JC, Tsai JJ, Yim NL, Beattie BJ, Klose AD, Holland AM, Ghosh A, Rao UK, Stephan MT, Serganova I, Santos EB, Brentjens RJ, Blasberg RG, Sadelain M, van den Brink MRM (2010) Concurrent visualization of trafficking, expansion, and activation of T lymphocytes and T-cell precursors in vivo. Blood 116:e18–e25. https://doi.org/10.1182/blood-2009-12-259432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Napp J, Behnke T, Fischer L, Würth C, Wottawa M, Katschinski DM, Alves F, Resch-Genger U, Schäferling M (2011) Targeted luminescent near-infrared polymer-nanoprobes for in vivo imaging of tumor hypoxia. Anal Chem 83:9039–9046. https://doi.org/10.1021/ac201870b

    Article  CAS  PubMed  Google Scholar 

  94. Napp J, Dullin C, Müller F, Uhland K, Petri JB, van de Locht A, Steinmetzer T, Alves F (2010) Time-domain in vivo near infrared fluorescence imaging for evaluation of matriptase as a potential target for the development of novel, inhibitor-based tumor therapies. Int J Cancer 127:1958–1974. https://doi.org/10.1002/ijc.25405

    Article  CAS  PubMed  Google Scholar 

  95. Napp J, Stammes MA, Claussen J, Prevoo HAJM, Sier CFM, Hoeben FJM, Robillard MS, Vahrmeijer AL, Devling T, Chan AB, de Geus-Oei L-F, Alves F (2018) Fluorescence- and multispectral optoacoustic imaging for an optimized detection of deeply located tumors in an orthotopic mouse model of pancreatic carcinoma. Int J Cancer 142:2118–2129. https://doi.org/10.1002/ijc.31236

    Article  CAS  PubMed  Google Scholar 

  96. Niedre MJ, de Kleine RH, Aikawa E, Kirsch DG, Weissleder R, Ntziachristos V (2008) Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo. Proc Natl Acad Sci USA 105:19126–19131. https://doi.org/10.1073/pnas.0804798105

    Article  PubMed  Google Scholar 

  97. Niesner RA, Hauser AE (2011) Recent advances in dynamic intravital multi-photon microscopy. Cytometry Part A 79A:789–798. https://doi.org/10.1002/cyto.a.21140

    Article  CAS  Google Scholar 

  98. Nishihara R, Paulmurugan R, Nakajima T, Yamamoto E, Natarajan A, Afjei R, Hiruta Y, Iwasawa N, Nishiyama S, Citterio D, Sato M, Kim SB, Suzuki K (2019) Highly bright and stable NIR-BRET with blue-shifted coelenterazine derivatives for deep-tissue imaging of molecular events in vivo. Theranostics 9:2646–2661. https://doi.org/10.7150/thno.32219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Niwa K, Ichino Y, Kumata S, Nakajima Y, Hiraishi Y, Kato D, Viviani VR, Ohmiya Y (2010) Quantum yields and kinetics of the firefly bioluminescence reaction of beetle luciferases. Photochem Photobiol 86:1046–1049. https://doi.org/10.1111/j.1751-1097.2010.00777.x

    Article  CAS  PubMed  Google Scholar 

  100. Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005a) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23:313. https://doi.org/10.1038/nbt1074

  101. Ntziachristos V, Turner G, Dunham J, Windsor S, Soubret A, Ripoll J, Shih HA (2005b) Planar fluorescence imaging using normalized data. J Biomed Opt 10:064007. https://doi.org/10.1117/1.2136148

  102. Oh J-T, Li M-L, Zhang HF, Maslov K, Stoica G, Wang LV (2006) Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy. J Biomed Opt 11:034032. https://doi.org/10.1117/1.2210907

    Article  Google Scholar 

  103. Okumura K, Yoshida K, Yoshioka K, Aki S, Yoneda N, Inoue D, Kitao A, Ogi T, Kozaka K, Minami T, Koda W, Kobayashi S, Takuwa Y, Gabata T (2018) Photoacoustic imaging of tumour vascular permeability with indocyanine green in a mouse model. Eur Radiol Exp 2:5. https://doi.org/10.1186/s41747-018-0036-7

  104. Ozawa T, Yoshimura H, Kim SB (2013) Advances in fluorescence and bioluminescence imaging. Anal Chem 85:590–609. https://doi.org/10.1021/ac3031724

    Article  CAS  PubMed  Google Scholar 

  105. Pandey RK, James NS, Chen Y, Missert J, Sajjad M (2010) Bifunctional agents for imaging and therapy. Methods Mol Biol 635:223–259. https://doi.org/10.1007/978-1-60761-697-9_16

    Article  CAS  PubMed  Google Scholar 

  106. Perica K, Varela JC, Oelke M, Schneck J (2015) Adoptive T cell immunotherapy for cancer. Rambam Maimonides Med J 6. https://doi.org/10.5041/RMMJ.10179

  107. Petrovsky A, Schellenberger E, Josephson L, Weissleder R, Bogdanov A (2003) Near-infrared fluorescent imaging of tumor apoptosis. Cancer Res 63:1936–1942

    CAS  PubMed  Google Scholar 

  108. Pichorner A, Sack U, Kobelt D, Kelch I, Arlt F, Smith J, Walther W, Schlag PM, Stein U (2012) In vivo imaging of colorectal cancer growth and metastasis by targeting MACC1 with shRNA in xenografted mice. Clin Exp Metastasis 29:573–583. https://doi.org/10.1007/s10585-012-9472-6

    Article  CAS  PubMed  Google Scholar 

  109. Pittet MJ, Weissleder R (2011) Intravital imaging. Cell 147:983–991. https://doi.org/10.1016/j.cell.2011.11.004

    Article  CAS  Google Scholar 

  110. Porcu EP, Salis A, Gavini E, Rassu G, Maestri M, Giunchedi P (2016) Indocyanine green delivery systems for tumour detection and treatments. Biotechnol Adv 34:768–789. https://doi.org/10.1016/j.biotechadv.2016.04.001

    Article  CAS  PubMed  Google Scholar 

  111. Rauch D, Gross S, Harding J, Niewiesk S, Lairmore M, Piwnica-Worms D, Ratner L (2009) Imaging spontaneous tumorigenesis: inflammation precedes development of peripheral NK tumors. Blood 113:1493–1500. https://doi.org/10.1182/blood-2008-07-166462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood J [WWW Document], n.d. http://www.bloodjournal.org/content/101/2/640.long. Accessed 23 May 2019)

  113. Saravanakumar G, Min KH, Min DS, Kim AY, Lee C-M, Cho YW, Lee SC, Kim K, Jeong SY, Park K, Park JH, Kwon IC (2009) Hydrotropic oligomer-conjugated glycol chitosan as a carrier of paclitaxel: synthesis, characterization, and in vivo biodistribution. J Control Release 140:210–217. https://doi.org/10.1016/j.jconrel.2009.06.015

    Article  CAS  PubMed  Google Scholar 

  114. Sarraf-Yazdi S, Mi J, Dewhirst MW, Clary BM (2004) Use of in vivo bioluminescence imaging to predict hepatic tumor burden in mice. J Surg Res 120:249–255. https://doi.org/10.1016/j.jss.2004.03.013

    Article  PubMed  Google Scholar 

  115. Sevick-Muraca EM (2012) Translation of near-infrared fluorescence imaging technologies: emerging clinical applications. Annu Rev Med 63:217–231. https://doi.org/10.1146/annurev-med-070910-083323

    Article  CAS  Google Scholar 

  116. Shah K, Tung C-H, Yang K, Weissleder R, Breakefield XO (2004) Inducible release of TRAIL fusion proteins from a proapoptotic form for tumor therapy. Cancer Res 64:3236–3242

    Article  CAS  PubMed  Google Scholar 

  117. Shao X, Zheng W, Huang Z (2011) In vivo diagnosis of colonic precancer and cancer using near-infrared autofluorescence spectroscopy and biochemical modeling. J Biomed Opt 16:067005. https://doi.org/10.1117/1.3589099

    Article  CAS  PubMed  Google Scholar 

  118. Siphanto RI, Thumma KK, Kolkman RGM, van Leeuwen TG, de Mul FFM, van Neck JW, van Adrichem LNA, Steenbergen W (2005) Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis. Opt Express 13:89–95. https://doi.org/10.1364/opex.13.000089

    Article  CAS  PubMed  Google Scholar 

  119. Smith AM, Mancini MC, Nie S (2009) Second window for in vivo imaging. Nat Nanotechnol 4:710–711. https://doi.org/10.1038/nnano.2009.326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Smith BA, Xiao S, Wolter W, Wheeler J, Suckow MA, Smith BD (2011) In vivo targeting of cell death using a synthetic fluorescent molecular probe. Apoptosis 16:722–731. https://doi.org/10.1007/s10495-011-0601-5

    Article  PubMed  PubMed Central  Google Scholar 

  121. Staley J, Grogan P, Samadi AK, Cui H, Cohen MS, Yang X (2010) Growth of melanoma brain tumors monitored by photoacoustic microscopy. J Biomed Opt 15:040510. https://doi.org/10.1117/1.3478309

    Article  PubMed  Google Scholar 

  122. Stathopoulos GT, Zhu Z, Everhart MB, Kalomenidis I, Lawson WE, Bilaceroglu S, Peterson TE, Mitchell D, Yull FE, Light RW, Blackwell TS (2006) Nuclear factor-kappaB affects tumor progression in a mouse model of malignant pleural effusion. Am J Respir Cell Mol Biol 34:142–150. https://doi.org/10.1165/rcmb.2005-0130OC

    Article  CAS  PubMed  Google Scholar 

  123. Stefan E, Aquin S, Berger N, Landry CR, Nyfeler B, Bouvier M, Michnick SW (2007) Quantification of dynamic protein complexes using Renilla luciferase fragment complementation applied to protein kinase a activities in vivo. PNAS 104:16916–16921. https://doi.org/10.1073/pnas.0704257104

    Article  PubMed  Google Scholar 

  124. Stoffels I, Morscher S, Helfrich I, Hillen U, Leyh J, Burton NC, Sardella TCP, Claussen J, Poeppel TD, Bachmann HS, Roesch A, Griewank K, Schadendorf D, Gunzer M, Klode J (2015) Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Sci Trans Med 7:317ra199–317ra199. https://doi.org/10.1126/scitranslmed.aad1278

  125. Strijkers GJ, Kluza E, Van Tilborg GAF, van der Schaft DWJ, Griffioen AW, Mulder WJM, Nicolay K (2010) Paramagnetic and fluorescent liposomes for target-specific imaging and therapy of tumor angiogenesis. Angiogenesis 13:161–173. https://doi.org/10.1007/s10456-010-9165-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Stuker F, Ripoll J, Rudin M (2011) Fluorescence molecular tomography: principles and potential for pharmaceutical research. Pharmaceutics 3:229–274. https://doi.org/10.3390/pharmaceutics3020229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sun Z, Zhao Y, Li Z, Cui H, Zhou Y, Li W, Tao W, Zhang H, Wang H, Chu PK, Yu X-F (2017) TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer. Small 13:1602896. https://doi.org/10.1002/smll.201602896

    Article  CAS  Google Scholar 

  128. Suzuki K, Kimura T, Shinoda H, Bai G, Daniels MJ, Arai Y, Nakano M, Nagai T (2016) Five colour variants of bright luminescent protein for real-time multicolour bioimaging. Nat Commun 7:13718. https://doi.org/10.1038/ncomms13718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Swirski FK, Berger CR, Figueiredo J-L, Mempel TR, von Andrian UH, Pittet MJ, Weissleder R (2007) A near-infrared cell tracker reagent for multiscopic in vivo imaging and quantification of leukocyte immune responses. PLoS ONE 2:e1075. https://doi.org/10.1371/journal.pone.0001075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Szyska M, Herda S, Althoff S, Heimann A, Russ J, D’Abundo D, Dang TM, Durieux I, Dörken B, Blankenstein T, Na I-K (2018) A transgenic dual-luciferase reporter mouse for longitudinal and functional monitoring of T Cells in vivo. Cancer Immunol Res 6:110–120. https://doi.org/10.1158/2326-6066.CIR-17-0256

    Article  CAS  PubMed  Google Scholar 

  131. Takai A, Nakano M, Saito K, Haruno R, Watanabe TM, Ohyanagi T, Jin T, Okada Y, Nagai T (2015) Expanded palette of Nano-lanterns for real-time multicolor luminescence imaging. PNAS 112:4352–4356. https://doi.org/10.1073/pnas.1418468112

    Article  CAS  PubMed  Google Scholar 

  132. Themelis G, Yoo JS, Soh K-S, Schulz R, Ntziachristos V (2009) Real-time intraoperative fluorescence imaging system using light-absorption correction. J Biomed Opt 14:064012. https://doi.org/10.1117/1.3259362

    Article  PubMed  Google Scholar 

  133. Uhrbom L, Nerio E, Holland EC (2004) Dissecting tumor maintenance requirements using bioluminescence imaging of cell proliferation in a mouse glioma model. Nat Med 10:1257. https://doi.org/10.1038/nm1120

    Article  CAS  PubMed  Google Scholar 

  134. Valdés PA, Leblond F, Kim A, Harris BT, Wilson BC, Fan X, Tosteson TD, Hartov A, Ji S, Erkmen K, Simmons NE, Paulsen KD, Roberts DW (2011) Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker. J Neurosurg 115:11–17. https://doi.org/10.3171/2011.2.JNS101451

    Article  PubMed  PubMed Central  Google Scholar 

  135. Valluru KS, Willmann JK (2016) Clinical photoacoustic imaging of cancer. Ultrasonography 35:267–280. https://doi.org/10.14366/usg.16035

  136. van Dam GM, Themelis G, Crane LMA, Harlaar NJ, Pleijhuis RG, Kelder W, Sarantopoulos A, de Jong JS, Arts HJG, van der Zee AGJ, Bart J, Low PS, Ntziachristos V (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med 17:1315–1319. https://doi.org/10.1038/nm.2472

    Article  CAS  Google Scholar 

  137. van der Horst G, van Asten JJ, Figdor A, van den Hoogen C, Cheung H, Bevers RFM, Pelger RCM, van der Pluijm G (2011) Real-time cancer cell tracking by bioluminescence in a preclinical model of human bladder cancer growth and metastasis. Eur Urol 60:337–343. https://doi.org/10.1016/j.eururo.2011.05.005

    Article  PubMed  Google Scholar 

  138. Vangestel C, Peeters M, Mees G, Oltenfreiter R, Boersma HH, Elsinga PH, Reutelingsperger C, Van Damme N, De Spiegeleer B, Van de Wiele C (2011) In vivo imaging of apoptosis in oncology: an update. Mol Imaging 10:340–358. https://doi.org/10.2310/7290.2010.00058

    Article  CAS  PubMed  Google Scholar 

  139. Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26:225–239. https://doi.org/10.1007/s10555-007-9055-1

    Article  CAS  Google Scholar 

  140. von Burstin J, Eser S, Seidler B, Meining A, Bajbouj M, Mages J, Lang R, Kind AJ, Schnieke AE, Schmid RM, Schneider G, Saur D (2008) Highly sensitive detection of early-stage pancreatic cancer by multimodal near-infrared molecular imaging in living mice. Int J Cancer 123:2138–2147. https://doi.org/10.1002/ijc.23780

    Article  CAS  Google Scholar 

  141. Wang X, Xie X, Ku G, Wang LV, Stoica G (2006) Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. JBO 11:024015. https://doi.org/10.1117/1.2192804

    Article  CAS  Google Scholar 

  142. Wang Y, Lin T, Zhang W, Jiang Y, Jin H, He H, Yang VC, Chen Y, Huang Y (2015) A Prodrug-type, MMP-2-targeting nanoprobe for tumor detection and imaging. Theranostics 5:787–795. https://doi.org/10.7150/thno.11139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Weber J, Beard PC, Bohndiek SE (2016) Contrast agents for molecular photoacoustic imaging. Nat Methods 13:639–650. https://doi.org/10.1038/nmeth.3929

    Article  CAS  Google Scholar 

  144. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316. https://doi.org/10.1038/86684

    Article  CAS  PubMed  Google Scholar 

  145. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589. https://doi.org/10.1038/nature06917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Woolfenden S, Zhu H, Charest A (2009) A Cre/LoxP conditional luciferase reporter transgenic mouse for bioluminescence monitoring of tumorigenesis. Genesis 47:659–666. https://doi.org/10.1002/dvg.20545

  147. Wu T, Qu J, Cheung T-H, Lo K, Yu M-Y (2003) Preliminary study of detecting neoplastic growths in vivo with real time calibrated autofluorescence imaging. Opt Express 11:291–298. https://doi.org/10.1364/oe.11.000291

    Article  PubMed  Google Scholar 

  148. Xu M, Wang LV n.d. Photoacoustic imaging in biomedicine. Rev Sci Instrum 23

    Google Scholar 

  149. Yang Y, Zhang Y, Hong H, Liu G, Leigh BR, Cai W (2011) In vivo near-infrared fluorescence imaging of CD105 expression during tumor angiogenesis. Eur J Nucl Med Mol Imaging 38:2066–2076. https://doi.org/10.1007/s00259-011-1886-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yeh H-W, Karmach O, Ji A, Carter D, Martins-Green MM, Ai H (2017) Red-shifted luciferase-luciferin pairs for enhanced bioluminescence imaging. Nat Methods 14:971–974. https://doi.org/10.1038/nmeth.4400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhang HF, Maslov K, Stoica G, Wang LV (2006) Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol 24:848–851. https://doi.org/10.1038/nbt1220

    Article  CAS  PubMed  Google Scholar 

  152. Zhang L, Lee KC, Bhojani MS, Khan AP, Shilman A, Holland EC, Ross BD, Rehemtulla A (2007) Molecular imaging of Akt kinase activity. Nat Med 13:1114–1119. https://doi.org/10.1038/nm1608

    Article  CAS  PubMed  Google Scholar 

  153. Zheng X, Wang X, Mao H, Wu W, Liu B, Jiang X (2015) Hypoxia-specific ultrasensitive detection of tumours and cancer cells in vivo. Nat Commun 6:5834. https://doi.org/10.1038/ncomms6834

    Article  CAS  PubMed  Google Scholar 

  154. Zhou L, Wang W, Dicker DT, Humphreys RC, El-Deiry WS (2011) Prediction of proapoptotic anticancer therapeutic response in vivo based on cell death visualization and TRAIL death ligand-receptor interaction. Cancer Biol Ther 12:335–348. https://doi.org/10.4161/cbt.12.4.17174

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joanna Napp or Frauke Alves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Napp, J., Markus, A., Alves, F. (2020). Optical and Optoacoustic Imaging. In: Schober, O., Kiessling, F., Debus, J. (eds) Molecular Imaging in Oncology. Recent Results in Cancer Research, vol 216. Springer, Cham. https://doi.org/10.1007/978-3-030-42618-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42618-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42617-0

  • Online ISBN: 978-3-030-42618-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics