Skip to main content

Advertisement

Log in

In vivo imaging of colorectal cancer growth and metastasis by targeting MACC1 with shRNA in xenografted mice

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

We previously identified the gene metastasis-associated in colon cancer-1 (MACC1) and demonstrated its important role for metastasis prediction in colorectal cancer. MACC1 induces cell motility and proliferation in vitro as well as metastasis in several mouse models. Here we report non-invasive real time imaging of inhibition of colorectal tumor progression and metastasis in xenografted mice by MACC1 shRNA. First, we demonstrated reduction of tumors and liver metastases by endpoint imaging of mice transplanted with MACC1 endogenously high expressing colorectal cancer cells and treated with shRNAs acting on MACC1 or Met. Next, we generated a novel bicistronic IRES vector simultaneously expressing the reporter gene firefly luciferase and MACC1 to ensure a direct correlation of bioluminescence signal with MACC1 expression. We transfected MACC1 endogenously low expressing colorectal cancer cells with this luciferase-IRES-MACC1 construct, transplanted them intrasplenically, and monitored MACC1 induced tumor growth and metastasis by in vivo imaging over time. Transfection of an IRES construct harboring the firefly luciferase reporter gene together with MACC1 lacking the SH3-domain reduced tumor growth and metastasis. Finally, we counteracted the luciferase-IRES-MACC1 induced effects by shRNA targeting MACC1 and monitored reduced tumor growth and metastasis by in vivo imaging over weeks. In summary, the new bicistronic luciferase-IRES-MACC1 construct is suitable for in vivo imaging of tumor progression and metastasis, and moreover, for imaging of therapy response such as treatment with MACC1 shRNA. Thereby, we provide proof-of-concept for employment of this MACC1-based in vivo model for evaluating therapeutic intervention strategies aiming at inhibition of tumor growth and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CRC:

Colorectal cancer

DMSO:

Dimethylsulfoxide

FBS:

Fetal bovine serum

HGF:

Hepatocyte growth factor

IRES:

Internal ribosomal entry site

Luc:

Luciferase

MACC1:

Metastasis-associated in colon cancer-1

MACC1ΔSH3:

MACC1 with a deleted SH3-domain

MAPK:

Mitogen-activated protein kinase

PBS:

Phosphate buffered saline

PCR:

Polymerase chain reaction

PXXP:

Proline-rich motif

RT-PCR:

Reverse-transcriptase polymerase chain reaction

SCID:

Severe combined immune deficient

SH3:

Src-homology 3

shRNA:

Small hairpin RNA

References

  1. Stein U, Schlag PM (2007) Clinical, biological, and molecular aspects of metastasis in colorectal cancer. Recent Results Cancer Res 176:61–80

    Article  PubMed  CAS  Google Scholar 

  2. O’Connell JB, Maggard MA, Ko CY (2004) Colon cancer survival rates with the new American Joint Committee on cancer sixth edition staging. J Natl Cancer Inst 96:1420–1425

    Article  PubMed  Google Scholar 

  3. Di Costanzo F, Doni L (2005) Adjuvant therapy in colon cancer: which treatment in 2005? Ann Oncol 16 (Suppl 4): iv69–iv73

    Google Scholar 

  4. Macdonald JS (1997) Adjuvant therapy for colon cancer. CA Cancer J Clin 47:243–256

    Article  PubMed  CAS  Google Scholar 

  5. Morris EJ, Forman D, Thomas JD et al (2010) Surgical management and outcomes of colorectal cancer liver metastases. Br J Surg 97:1110–1118

    Article  PubMed  CAS  Google Scholar 

  6. Stein U, Walther W, Arlt F et al (2009) MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nat Med 15:59–67

    Article  PubMed  CAS  Google Scholar 

  7. Shirahata A, Shinmura K, Kitamura Y et al (2010) MACC1 as a marker for advanced colorectal carcinoma. Anticancer Res 30:2689–2692

    PubMed  CAS  Google Scholar 

  8. Galimi F, Torti D, Sassi F et al (2011) Genetic expression analysis of MET, MACC1, and HGF in metastatic colorectal cancer: response to Met inhibition in patient xenografts and pathologic correlations. Clin Cancer Res 17:3146–3156

    Article  PubMed  CAS  Google Scholar 

  9. Shirahata A, Sakata M, Kitamura Y et al (2010) MACC1 as a marker for peritoneal-disseminated gastric carcinoma. Anticancer Res 30:3441–3444

    PubMed  Google Scholar 

  10. Shimokawa H, Uramoto H, Onitsuka T et al (2011) Overexpression of MACC1 mRNA in lung adenocarcinoma is associated with postoperative recurrence. J Thorac Cardiovasc Surg 141:895–898

    PubMed  CAS  Google Scholar 

  11. Chundong G, Uramoto H, Onitsuka T et al (2011) Molecular diagnosis of MACC1 status in lung adenocarcinoma by immunohistochemical analysis. Anticancer Res 31:1141–1145

    PubMed  Google Scholar 

  12. Shirahata A, Fan W, Sakuraba K et al (2011) MACC1 as a marker for vascular invasive hepatocellular carcinoma. Anticancer Res 31:777–780

    PubMed  Google Scholar 

  13. Qiu J, Huang P, Liu Q et al (2011) Identification of MACC1 as a novel prognostic marker in hepatocellular carcinoma. J Transl Med 9:166

    Article  PubMed  CAS  Google Scholar 

  14. Stein U, Dahlmann M, Walther W (2010) MACC1–more than metastasis? Facts and predictions about a novel gene. J Mol Med 88:11–18

    Article  PubMed  CAS  Google Scholar 

  15. Kokoszyńska K, Kryński J, Rychlewski L et al (2009) Unexpected domain composition of MACC1 links MET signaling and apoptosis. Acta Biochim Pol 56:317–323

    PubMed  Google Scholar 

  16. Martin GS (2001) The hunting of the Src. Nat Rev Mol Cell Biol 2:467–475

    Article  PubMed  CAS  Google Scholar 

  17. Lu XL, Cao X, Liu XY et al (2010) Recent progress of Src SH2 and SH3 Inhibitors as anticancer agents. Curr Med Chem 17:1117–1124

    Article  PubMed  CAS  Google Scholar 

  18. Birchmeier C, Birchmeier W, Gherardi E et al (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4:915–925

    Article  PubMed  CAS  Google Scholar 

  19. Stein U, Smith J, Walther W et al (2009) MACC1 controls Met: what a difference an Sp1 site makes. Cell Cycle 8:2467–2469

    Article  PubMed  CAS  Google Scholar 

  20. Arlt F, Stein U (2009) Colon cancer metastasis: MACC1 and Met as metastatic pacemakers. Int J Biochem Cell Biol 41:2356–2359

    Article  PubMed  CAS  Google Scholar 

  21. Servais EL, Colovos C, Bograd AJ et al (2011) Animal models and molecular imaging tools to investigate lymph node metastases. J Mol Med 89:753–769

    Article  PubMed  Google Scholar 

  22. Albini A, Iwamoto Y, Kleinman HK et al (1987) A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 47:3239–3245

    PubMed  CAS  Google Scholar 

  23. Marquet RL, van den Tol MP, Jeekell J (2001) Sodium hyaluronate enhances colorectal tumour cell metastatic potential in vitro and in vivo. Br J Surg 88:246–250

    Article  Google Scholar 

  24. Zumsteg A, Strittmatter K, Klewe-Nebenius D et al (2010) A bioluminescent mouse model of pancreatic {beta}-cell carcinogenesis. Carcinogenesis 31:1465–1474

    Article  PubMed  CAS  Google Scholar 

  25. McNally LR, Welch DR, Beck BH et al (2010) KISS1 over-expression suppresses metastasis of pancreatic adenocarcinoma in a xenograft mouse model. Clin Exp Metastasis 27:591–600

    Article  PubMed  CAS  Google Scholar 

  26. Shin JH, Chung JK, Kang JH et al (2004) Noninvasive imaging for monitoring of viable cancer cells using a dual-imaging reporter gene. J Nucl Med 45:2109–2115

    PubMed  Google Scholar 

  27. Naylor LH (1999) Reporter gene technology: the future looks bright. Biochem Pharmacol 58:749–757

    Article  PubMed  CAS  Google Scholar 

  28. Contag CH, Jenkins D, Contag PR et al (2000) Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2:41–52

    Article  PubMed  CAS  Google Scholar 

  29. Welsh S, Kay SA (1997) Reporter gene expression for monitoring gene transfer. Curr Opin Biotechnol 8:617–622

    Article  PubMed  CAS  Google Scholar 

  30. Jenkins DE, Oei Y, Hornig YS et al (2003) Bioluminescent imaging (BLI) to improve and refine traditional murine models of tumor growth and metastasis. Clin Exp Metastasis 20:733–744

    Article  PubMed  CAS  Google Scholar 

  31. Dinca EB, Sarkaria JN, Schroeder MA et al (2007) Bioluminescence monitoring of intracranial glioblastoma xenograft: response to primary and salvage temozolomide therapy. J Neurosurg 107:610–616

    Article  PubMed  CAS  Google Scholar 

  32. Rehemtulla A, Stegman LD, Cardozo SJ et al (2000) Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia 2:491–495

    Article  PubMed  CAS  Google Scholar 

  33. Paroo Z, Bollinger RA, Braasch DA et al (2004) Validating bioluminescence imaging as a high-throughput, quantitative modality for assessing tumor burden. Mol Imaging 3:117–124

    Article  PubMed  Google Scholar 

  34. Sack U, Walther W, Scudiero D et al (2011) S100A4-induced cell motility and metastasis is restricted by the Wnt/{beta}-catenin pathway inhibitor calcimycin in colon cancer cells. Mol Biol Cell 22:3344–3354

    Article  PubMed  CAS  Google Scholar 

  35. Yamaguchi H, Wyckoff J, Condeelis J (2005) Cell migration in tumors. Curr Opin Cell Biol 17:559–564

    Article  PubMed  CAS  Google Scholar 

  36. Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Biomater 3:413–438

    Article  PubMed  Google Scholar 

  37. Mizuguchi H, Xu Z, Ishii-Watabe A et al (2000) IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol Ther 1:376–382

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Pia Hermann and Jutta Aumann for their technical assistance and to Mathias Dahlmann, Felicitas Schmid, Clara Lemos, Anne Enders and Patrick Tauscher for their methodological and scientific advice.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Stein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pichorner, A., Sack, U., Kobelt, D. et al. In vivo imaging of colorectal cancer growth and metastasis by targeting MACC1 with shRNA in xenografted mice. Clin Exp Metastasis 29, 573–583 (2012). https://doi.org/10.1007/s10585-012-9472-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-012-9472-6

Keywords

Navigation