Skip to main content

Abstract

This chapter describes the detection of molecular traces of life in endolithic microbial communities from the Preandean region of the Atacama Desert. There, the extreme aridity and solar irradiation reach the highest values found anywhere on Earth (including ultraviolet light) and create pressures on those phototrophic microorganisms, which have to cope with them. The biosynthesis of photosynthetic pigments and photoprotective biomolecules is an important component of the survival strategies of endolithic cyanobacteria and algae. They have to maintain a balance between light harvesting and protection against an excess of harmful irradiation. Raman spectroscopy, including Raman mapping, was combined with microscopic methods to detect such biosignatures in vivo within native specimens and to describe their spatial distribution within the rock. The nondestructive nature of Raman spectroscopic analysis allowed chemical information about these microbial biomolecules to be obtained while their spatial context within any particular microhabitat remained preserved. As a result, we observed spatial gradients of pigment composition (scytonemin, carotenoids, chlorophyll, and phycobilins) in cryptoendolithic, chasmoendolithic, and hypoendolithic habitats within the studied rock transects. Simultaneous information about the composition of the surrounding mineral matrix was also obtained during acquisition of the Raman images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev 74:311–345

    Article  CAS  PubMed  Google Scholar 

  • Culka A, Osterrothová K, Hutchinson I, Ingley R, McHugh M, Oren A, Edwards HGM, Jehlička J (2014) Detection of pigments of halophilic endoliths from gypsum: Raman portable instrument and European Space Agency’s prototype analysis. Philos Trans R Soc A 372:20140205

    Article  CAS  Google Scholar 

  • Dillon JG, Castenholz RW (1999) Scytonemin, a cyanobacterial sheath pigment, protects against UVC radiation implications for early photosynthetic life. J Phycol 35:673–681

    Article  CAS  Google Scholar 

  • Dillon JG, Tatsumi CM, Tandingan PG, Castenholz RW (2002) Effect of environmental factors on the synthesis of scytonemin, a UV-screening pigment, in a cyanobacterium (Chroococcidiopsis sp.). Arch Microbiol 177:322–331

    Article  CAS  PubMed  Google Scholar 

  • DiRuggiero J, Wierzchos J, Robinson CK, Souterre T, Ravel J, Artieda O, Souza-Egipsy V, Ascaso C (2013) Microbial colonisation of chasmoendolithic habitats in the hyper-arid zone of the Atacama Desert. Biogeosciences 10:2439–2450

    Article  Google Scholar 

  • Edwards HGM, Garcia-Pichel F, Newton EM, Wynn-Williams DD (2000) Vibrational Raman spectroscopic study of scytonemin, the UV-protective cyanobacterial pigment. Spectrochim Acta A 56:193–200

    Article  Google Scholar 

  • Edwards HGM, Cockell ChS, Newton EM, Wynn-Williams DD (2004) Protective pigmentation in UVB-screened Antarctic lichens studied by Fourier transform Raman spectroscopy: an extremophile bioresponse to radiation stress. J Raman Spectrosc 35:463–469

    Article  CAS  Google Scholar 

  • Foucher F, Guimbretiére G, Bost N, Westall F (2017) Petrographical and mineralogical applications of Raman mapping. In: Maaz K (ed) Raman spectroscopy and applications. IntechOpen. https://www.intechopen.com/books/raman-spectroscopy-and-applications/petrographical-and-mineralogical-applications-of-raman-mapping. doi:10.5772/65112

    Google Scholar 

  • Garcia-Pichel F (1998) Solar ultraviolet and the evolutionary history of cyanobacteria. Orig Life Evol Biosph 28:321–347

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1991) Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J Phycol 27:395–409

    Article  CAS  Google Scholar 

  • Hanagata N, Dubinsky Z (1999) Secondary carotenoid accumulation in Scendesmus Komarekii (Chlorophyceae, Chlorophyta). J Phycol 35:960–966

    Article  CAS  Google Scholar 

  • Jehlička J, Oren A, Vítek P (2012) Use of Raman spectroscopy for identification of compatible solutes in halophilic bacteria. Extremophiles 16:507–514

    Article  PubMed  CAS  Google Scholar 

  • Jehlička J, Edwards HGM, Oren A (2014) Raman spectroscopy of microbial pigments. Appl Environ Microbiol 80:3286–3295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jehlička J, Culka A, Mana L, Oren A (2018) Using a portable Raman spectrometer to detect carotenoids of halophilic prokaryotes in synthetic inclusions in NaCl, KCl, and sulfates. Anal Bioanal Chem 410:4437–4445

    Article  PubMed  CAS  Google Scholar 

  • Kirilovsky D, Kerfeld CA (2016) Cyanobacterial photoprotection by the orange carotenoid protein. Nat Plants 2:16180

    Article  CAS  PubMed  Google Scholar 

  • Lee E (2012) Imaging modes. In: Zoubir A (ed) Raman imaging, techniques and applications, Springer series in optical sciences, vol 168. Berlin: Springer, pp 1–37

    Google Scholar 

  • Lunch CK, LaFountain AM, Thomas S, Frank HA, Lewis LA, Cardon ZG (2013) The xanthophyll cycle and NPQ in diverse desert and aquatic green algae. Photosynth Res 115:139–151

    Article  CAS  PubMed  Google Scholar 

  • Malherbe C, Hutchinson IB, McHugh M, Ingley R, Jehlička J, Edwards HGM (2017) Accurate differentiation of carotenoid pigments using flight representative Raman spectrometers. Astrobiology 17:351–362

    Article  CAS  PubMed  Google Scholar 

  • Meslier V, Cristina Casero M, Dailey M, Wierzchos J, Ascaso C, Artieda O, McCullough PR, DiRuggiero J (2018) Fundamental drivers for endolithic microbial community assemblies in the hyperarid Atacama Desert. Environ Microbiol 20:1765–1781

    Article  PubMed  Google Scholar 

  • Morillas H, Maguregui M, Marcaida I, Trebolazabala J, Salcedo I, Madariaga JM (2015) Characterization of the main colonizer and biogenic pigments present in the red biofilm from La Galea Fortress sandstone by means of microscopic observations and Raman imaging. Microchem J 121:48–55

    Article  CAS  Google Scholar 

  • Nägeli C (1849) Gattungen einzelliger Algen, physiologisch und systematisch bearbeitet. Neue Denkschrift Allg Schweiz Natur Ges 10:1–138

    Google Scholar 

  • Nägeli C, Schwenderer S (1877) Das Mikroskop, 2. Leipzig: Wilhelm Engelmann Verlag

    Google Scholar 

  • Nasdala L, Beyssac O, Schopf JW, Bleisteiner B (2012) Application of Raman-based images in the Earth sciences. In: Zoubir A (ed) Raman imaging, techniques and applications. Springer series in optical sciences 168. Berlin: Springer, pp 145–187

    Chapter  Google Scholar 

  • Prats-Mateu B, Gierlinger N (2017) Tip in-light on: advantages, challenges, and applications of combining AFM and Raman microscopy on biological samples. Microsc Res Tech 80:30–40

    Article  CAS  PubMed  Google Scholar 

  • Proteau PJ, Gerwick WH, Garcia-Pichel F, Castenholz R (1993) The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49:825–829

    Article  CAS  PubMed  Google Scholar 

  • Samek O, Jonáš A, Pilát Z, Zemánek P, Nedbal L, Tříska J, Kotas P, Trtílek M (2010) Raman microspectroscopy of individual algal cells: sensing unsaturation of storage lipids in vivo. Sensors 10:8635–8651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soule T, Palmer K, Gao Q, Potrafka RM, Stout V, Garcia-Pichel G (2009) A comparative genomics approach to understanding the biosynthesis of the sunscreen scytonemin in cyanobacteria. BMC Genomics 10:336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vandenabeele P, Jehlička J, Vítek P, Edwards HGM (2012) On the definition of Raman spectroscopic detection limits for the analysis of biomarkers in solid matrices. Planet Space Sci 62:48–54

    Article  CAS  Google Scholar 

  • Varnali T, Edwards HGM (2013a) A potential new biosignature of life in iron-rich extreme environments: an iron(III) complex of scytonemin and proposal for its identification using Raman spectroscopy. Planet Space Sci 82–83:128–135

    Article  CAS  Google Scholar 

  • Varnali T, Edwards HGM (2013b) Theoretical study of novel complexed structures for methoxy derivatives of scytonemin: potential biomarkers in iron-rich stressed environments. Astrobiology 13:861–869

    Article  CAS  PubMed  Google Scholar 

  • Varnali T, Edwards HGM (2014) Reduced and oxidized scytonemin: theoretical protocol for Raman spectroscopic identification of potential key biomolecules for astrobiology. Spectrochim Acta A 117:72–77

    Article  CAS  Google Scholar 

  • Venckus P, Paliulis S, Kostkevičiene J, Dementjev A (2018) CARS microscopy of scytonemin in cyanobacteria Nostoc commune. J Raman Spectrosc 49:1333–1338

    Article  CAS  Google Scholar 

  • Villar SEJ, Edwards HGM, Seaward MRD (2005) Raman spectroscopy of hot desert, high altitude epilithic lichens. Analyst 130:730–737

    Article  CAS  PubMed  Google Scholar 

  • Villar SEJ, Edwards HGM, Benning LG (2006) Raman spectroscopic and scanning electron microscopic analysis of a novel biological colonisation of volcanic rocks. Icarus 184:158–169

    Article  CAS  Google Scholar 

  • Vítek P, Osterrothová K, Jehlička J (2009a) Beta-carotene—a possible biomarker in Martian evaporitic environment: Raman micro-spectroscopic study. Planet Space Sci 57:454–459

    Article  CAS  Google Scholar 

  • Vítek P, Jehlička J, Edwards HGM, Osterrothová K (2009b) Identification of β-carotene in an evaporitic matrix—evaluation of Raman spectroscopic analysis for astrobiological research on Mars. Anal Bioanal Chem 393:1967–1975

    Article  PubMed  CAS  Google Scholar 

  • Vítek P, Edwards HGM, Jehlicka J, Ascaso C, De los Rıos A, Valea S, Villar SEJ, Davila AF, Wierzchos J (2010) Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy. Philos Trans R Soc A 368:3205–3221

    Article  CAS  Google Scholar 

  • Vítek P, Edwards HGM, Jehlička J, Cox R (2011) Evaluation of portable Raman instrumentation for identification of β-carotene and mellitic acid in two-component mixtures with halite. Spectrochim Acta A 80:32–35

    Article  CAS  Google Scholar 

  • Vítek P, Jehlicka J, Edwards HGM, Hutchinson I, Ascaso C, Wierzchos J (2012) Miniaturized Raman system and the detection of traces of life in halite from the Atacama Desert: some considerations for the search for life signatures on Mars. Astrobiology 12:1095–1099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vítek P, Camara-Gallego B, Edwards HGM, Jehlička J, Ascaso C, Wierzchos J (2013) Phototrophic community in gypsum crust from the Atacama Desert studied by Raman spectroscopy and microscopic imaging. Geomicrobiol J 30:399–410

    Article  CAS  Google Scholar 

  • Vítek P, Jehlička J, Ascaso C, Mašek V, Gómez-Silva B, Oliváres H, Wierzchos J (2014) Distribution of scytonemin in endolithic microbial communities from halite crusts in the hyperarid zone of the Atacama Desert, Chile. FEMS Microbiol Ecol 90:351–366

    PubMed  Google Scholar 

  • Vítek P, Ascaso C, Artieda O, Wierzchos J (2016) Raman imaging in geomicrobiology: endolithic phototrophic microorganisms in gypsum from the extreme sun irradiation area in the Atacama Desert. Anal Bioanal Chem 408:483–492

    Article  CAS  Google Scholar 

  • Vítek P, Ascaso C, Artieda O, Casero MC, Wierzchos J (2017) Discovery of carotenoid red-shift in endolithic cyanobacteria from the Atacama Desert. Sci Rep 7:11116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang A, Korotev RL, Jolliff BL, Ling Z (2015) Raman imaging of extraterrestrial materials. Planet Space Sci 112:23–34

    Article  CAS  Google Scholar 

  • Wei J, Wang AA, Lambert JL, Wettergreen D, Cabrol N, Warren-Rhodes K, Zacny K (2015) Autonomous soil analysis by the Mars micro-beam Raman spectrometer (MMRS) on-board a rover in the Atacama Desert: a terrestrial test for planetary exploration. J Raman Spectrosc 46:810–821

    Article  CAS  Google Scholar 

  • Wierzchos J, DiRuggiero J, Vítek P, Artieda O, Souza-Egipsy V, Škaloud P, Tisza M, Davila AF, Vílchez C, Garbayo I, Ascaso C (2015) Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front Microbiol 6:934

    Article  PubMed  PubMed Central  Google Scholar 

  • Wierzchos J, Cristina Casero M, Artieda O, Ascaso C (2018) Endolithic microbial habitats as refuges for life in polyextreme environment of the Atacama Desert. Curr Opin Microbiol 43:124–131

    Article  PubMed  Google Scholar 

  • Wilhelm MB, Sanz-Arranz JA, Sobron P, Rull F, Davila AF (2017) Critical assessment of biosignature detection with Raman spectroscopy on biologically lean soils. Paper presented at the Astrobiology Science Conference 2017, Mesa, 24–28 Apr 2017. https://www.hou.usra.edu/meetings/abscicon2017/pdf/3424.pdf. Accessed 24 Nov 2019

  • Wu H, Volponi JV, Oliver AE, Parikh AN, Simmons BA, Singh S (2011) In vivo lipidomics using single-cell Raman spectroscopy. Proc Natl Acad Sci U S A 108:3809–3814

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic within National Sustainability Program I (NPU I) grant number LO1415, INTER-COST grant number LTC18036 to P. Vítek, and grant number PGC2018-094076-B-I00 to all authors from the Ministry of Science, Innovation and Universities, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Vítek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vítek, P., Wierzchos, J. (2020). Desert Biosignatures. In: Farías, M. (eds) Microbial Ecosystems in Central Andes Extreme Environments. Springer, Cham. https://doi.org/10.1007/978-3-030-36192-1_5

Download citation

Publish with us

Policies and ethics