Skip to main content
Log in

Using a portable Raman spectrometer to detect carotenoids of halophilic prokaryotes in synthetic inclusions in NaCl, KCl, and sulfates

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cell suspensions of the haloarchaea Halorubrum sodomense and Halobacterium salinarum and the extremely halophilic bacterium Salinibacter ruber (Bacteroidetes) in saturated solutions of chlorides and sulfates (NaCl, KCl, MgSO4·7H2O, K2SO4, and (NH4)Al(SO4)2·12H2O) were left to evaporate to produce micrometric inclusions in laboratory-grown crystals. Raman spectra of these pinkish inclusions were obtained using a handheld Raman spectrometer with green excitation (532 nm). This portable instrument does not include any microscopic tool. Acceptable Raman spectra of carotenoids were obtained in the range of 200–4000 cm−1. This detection achievement was related to the mode of illumination and collection of scattered light as well as due to resonance Raman enhancement of carotenoid signals under green excitation. The position of diagnostic Raman carotenoid bands corresponds well to those specific carotenoids produced by a given halophile. To our best knowledge, this is the first study of carotenoids included in the laboratory in crystalline chlorides and sulfates, using a miniature portable Raman spectrometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dubessy J, Poty B, Ramboz C. Advances in C-O-H-N-S fluid geochemistry based on micro-Raman spectrometric inclusions. Eur J Min. 1989;1:517–34.

    Article  CAS  Google Scholar 

  2. Walter BF, Steele-MacInnis M, Markl G. Sulfate brines in fluid inclusions of hydrothermal veins: compositional determinations in the system H2O-Na-Ca-Cl-SO4. Geochim Cosmochim Acta. 2017;209:184–203.

    Article  CAS  Google Scholar 

  3. Wang J, Lowenstein TK. Anomalously high Cretaceous paleobrine temperatures: hothouse, hydrothermal or solar heating? Fortschr Mineral. 2017;7:245–59.

    Article  Google Scholar 

  4. Dickensheets DL, Wynn-Williams DD, Edwards HGM, Schoen C, Crowder C, Newton EM. A novel miniature confocal microscope/Raman spectrometer system for biomolecular analysis on future Mars missions after Antarctic trials. J Raman Spectrosc. 2000;31:633–5.

    Article  CAS  Google Scholar 

  5. Jehlička J, Oren A. Use of a handheld Raman spectrometer for fast screening of microbial pigments in cultures of halophilic microorganisms and in microbial communities in hypersaline environments in nature. J Raman Spectrosc. 2013;44:1285–91.

    Article  CAS  Google Scholar 

  6. Vítek P, Jehlička J, Edwards HGM, Hutchinson I, Ascaso C, Wierzchos J, et al. Miniaturized Raman instrumentation detects carotenoids in Mars—analogue rocks from the Mojave and Atacama deserts. Phil Trans Roy Soc A. 2014;372:20140196.

    Article  CAS  Google Scholar 

  7. Warren JK. Evaporites: sediments, resources and hydrocarbons. 2nd ed. Berlin-Heidelberg: Springer Verlag; 2006.

    Book  Google Scholar 

  8. Winters YD, Lowenstein TK, Timofeeff MN. Identification of carotenoids in ancient salt from Death Valley, Saline Valley, and Searles Lake, California using laser Raman spectroscopy. Astrobiology. 2013;13:1065–80.

    Article  CAS  PubMed  Google Scholar 

  9. Conner AJ, Benison KC. Acidophilic halophilic microorganisms in fluid inclusions in halite from Lake Magic, Western Australia. Astrobiology. 2013;13:850–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McEwen AS, Ojha L, Dundas CM, Mattson SS, Byrne S, Wray JJ, et al. Seasonal flows on warm Martian slopes. Science. 2011;333:740–3.

    Article  CAS  PubMed  Google Scholar 

  11. Cabrol NA, Grin EA. The evolution of lacustrine environments on Mars: is Mars only hydrologically dormant? Icarus. 2001;149:291–328.

    Article  CAS  Google Scholar 

  12. Martinez GM, Renno NO. Water and brines on Mars: current evidence and implications for MSL. Space Sci Rev. 2013;175:29–51.

    Article  CAS  Google Scholar 

  13. Osterloo MM, Hamilton VE, Bandfield JL, Glotch TD, Baldridge AM, Christensen PR, et al. Chloride-bearing materials in the southern highlands of Mars. Science. 2008;319:1651–4.

    Article  CAS  PubMed  Google Scholar 

  14. Ojha L, Wilhelm MB, Murchie SL, McEwen AS, Wray JJ, Hanley J, et al. Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat Geosci. 2015;11:829–33.

    Article  CAS  Google Scholar 

  15. Edwards HG, Russell NC, Wynn-Williams DD. Fourier transform Raman spectroscopic and scanning electron microscopic study of cryptoendolithic lichens from Antarctica. J Raman Spectrosc. 1997;28:685–90.

    Article  CAS  Google Scholar 

  16. Edwards HGM, Hutchinson I, Ingley R, Jehlička J. Biomarkers and their Raman spectroscopic signatures: a spectral challenge for analytical astrobiology. Phil Trans Roy Soc A. 2014;372:3205–21.

    Google Scholar 

  17. Storme JY, Golubic S, Wilmotte A, Kleinteich J, Velázquez D, Javaux EJ. Raman characterization of the UV-protective pigment gloeocapsin and its role in the survival of cyanobacteria. Astrobiology. 2015;15(10):843–57.

    Article  CAS  PubMed  Google Scholar 

  18. Jehlička J, Edwards HGM, Oren A. Bacterioruberin and salinixanthin carotenoids of extremely halophilic Archaea and Bacteria: a Raman spectroscopic study. Spectrochim Acta A: Molecul Biomolecul Spectrosc. 2013;106:99–103.

    Article  CAS  Google Scholar 

  19. Jehlička J, Culka A, Nedbalová L. Colonization of snow by microorganisms as revealed using miniature Raman spectrometers—possibilities for detecting carotenoids of psychrophiles on mars? Astrobiology. 2016;16:913–24.

    Article  CAS  PubMed  Google Scholar 

  20. Jehlička J, Edwards HGM, Osterrothová K, Novotná J, Nedbalová L, Kopecký, J, Němec I, Oren A. Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms: implications for astrobiology. Phil Trans R Soc A 2014;372, no. 2030.

  21. Miralles I, Jorge-Villar SE, van Wesemael B, Lazaro R. Raman spectroscopy detection of biomolecules in biocrusts from differing environmental conditions. Spectrochim Acta A: Molecul Biomolecul Spectrosc. 2017;171:40–51.

    Article  CAS  Google Scholar 

  22. Merlin JC. Resonance Raman spectroscopy of carotenoids and carotenoid-containing systems. Pure Appl Chem. 1985;57:785–92.

    Article  CAS  Google Scholar 

  23. Withnall R, Chowdhry BZ, Silver J, Edwards HGM, de Oliveira LFC. Raman spectra of carotenoids in natural products. Spectrochim Acta A. 2003;59:2207–12.

    Article  CAS  Google Scholar 

  24. Vítek P, Edwards HGM, Jehlička J, Ascaso C, De los Ríos A, Valea S, et al. Microbial colonization of halite from the hyper-arid Atacama desert studied by Raman spectroscopy. Phil Trans Roy Soc A. 2010;368:3205–21.

    Article  CAS  Google Scholar 

  25. Malherbe C, Hutchinson IB, McHugh M, Ingley R, Jehlička J, Edwards HGM. Accurate differentiation of carotenoid pigments using flight representative Raman spectrometers. Astrobiology. 2017;17:351–62.

    Article  CAS  PubMed  Google Scholar 

  26. Oren A, Hirschberg J, Mann V, Jehlička J. Effects of nicotine on the biosynthesis of carotenoids in halophilic Archaea (class Halobacteria): an HPLC and Raman spectroscopy study. Extremophiles. 2018;22:359–66.

  27. Marshall CP, Leuko S, Coyle CM, Walter MR, Burns BP, Neilan BA. Carotenoid analysis of halophilic Archaea by resonance Raman spectroscopy. Astrobiology. 2007;7:631–43.

    Article  CAS  PubMed  Google Scholar 

  28. Vítek P, Jehlička J, Edwards HGM, Osterrothová K. Identification of β-carotene in an evaporitic matrix—evaluation of Raman spectroscopic analysis for astrobiological research on Mars. Analyt Bioanalyt Chem. 2009;393:1967–75.

    Article  CAS  Google Scholar 

  29. Osterrothová K, Jehlička J. Feasibility of Raman microspectroscopic identification of biomarkers through gypsum crystals. Spectrochim Acta A. 2011;80:8–13.

    Article  CAS  Google Scholar 

  30. Fendrihan S, Musso M, Stan-Lotter H. Raman spectroscopy as a potential method for the detection of extremely halophilic archaea embedded in halite in terrestrial and possibly extraterrestrial samples. J Raman Spectrosc. 2009;40:1996–2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schubert BA, Lowenstein TK, Timofeeff MN. Microscopic identification of prokaryotes in modern and ancient halite, Saline Valley and Death Valley, California. Astrobiology. 2009;9:467–82.

    Article  CAS  PubMed  Google Scholar 

  32. Schubert BA, Timofeeff MN, Lowenstein TK, Polle JEW. Dunaliella cells in fluid inclusions in halite: significance for long-term survival of prokaryotes. Geomicrobiol J. 2010;27:61–75.

    Article  CAS  Google Scholar 

  33. Culka A, Košek F, Drahota P, Jehlička J. Use of miniaturized Raman spectrometer for detection of sulfates of different hydration states—significance for mars studies. Icarus. 2014;243:440–53.

    Article  CAS  Google Scholar 

  34. Debeau M. Raman spectrum of potassium sulfate. Rev Phys Appl. 1972;7:49–53.

    Article  CAS  Google Scholar 

  35. Vandenabeele P, Jehlička J, Vítek P, Edwards HGM. On the definition of Raman spectroscopic detection limits for the analysis of biomarkers in solid matrices. Planet Space Sci. 2012;62:48–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Czech Science Foundation Project 17-04270S. This research was also supported by Center for Geosphere Dynamics (UNCE/SCI/006). AO was supported by grant no. 2221/15 from the Israel Science Foundation. This study was further supported by the Erasmus+ inter-institutional agreement between the Charles University, Prague, and the Hebrew University of Jerusalem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Jehlička.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jehlička, J., Culka, A., Mana, L. et al. Using a portable Raman spectrometer to detect carotenoids of halophilic prokaryotes in synthetic inclusions in NaCl, KCl, and sulfates. Anal Bioanal Chem 410, 4437–4443 (2018). https://doi.org/10.1007/s00216-018-1098-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1098-3

Keywords

Navigation