Skip to main content

Applying Science to Practice

  • Chapter
  • First Online:
The Food-Energy-Water Nexus

Abstract

  Throughout this book, we note the interdisciplinary nature of nexus research: engaging the full range of physical, life, social, and engineering sciences and integrating them through sophisticated models. Because the objective of Nexus research is to support decision-making ranging from the level of an individual facility to the global Sustainable Development Goals, it is critical to precisely understand stakeholder decisions and questions before producing analysis and data. A degree of uncertainty can be tolerated, but science is not at all useful to decision-makers if the wrong questions, even slightly wrong or misframed questions are addressed. Having the participation of multiple stakeholders in decision-making processes and providing tools that are co-developed with the concerns and needs of the stakeholders are very important to making robust decisions and taking steps towards successful decisions. This chapter discusses how stakeholders can come together as Communities of Practice to utilize tools that enhance their ability to make decisions by maximizing areas of agreement and minimizing areas of conflict. Four case studies are utilized to illustrate such applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Visual Analytics

  • Choo, J., Lee, H., Kihm, J., & Park, H. (2010). iVisClassifier: An interactive visual analytics system for classification based on supervised dimension reduction. In IEEE symposium on visual analytics science and technology (pp. 27–34). Salt Lake City, UT: IEEE.

    Chapter  Google Scholar 

Immersive Environments

  • Chandler, T., et al. (2015, September). Immersive analytics. In 2015 Big Data Visual Analytics (BDVA) (pp. 1–8). IEEE.

    Google Scholar 

  • Sušnik, J., et al. (2018). Multi-stakeholder development of a serious game to explore the water-energy-food-land-climate nexus: The SIM4NEXUS approach. Water, 10(2), 139. https://doi.org/10.3390/w10020139.

    Article  Google Scholar 

  • White, D. D., Wutich, A., Larson, K. L., Gober, P., Lant, T., & Senneville, C. (2010). Credibility, salience, and legitimacy of boundary objects: Water managers’ assessment of a simulation model in an immersive decision theater. Science and Public Policy, 37(3), 219–232.

    Article  Google Scholar 

Communities of Practice

Further Reading

  • Andrienko, G., Andrienko, N., Mladenov, M., Mock, M., & Politz, C. (2012). Identifying place histories from activity traces with an eye to parameter impact. IEEE Transactions on Visualization and Computer Graphics, 18(5), 675–688.

    Article  Google Scholar 

  • Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rodenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F. I., & Papale, D. (2010). Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science, 329, 834–838.

    Article  CAS  Google Scholar 

  • Bizikova, L., Roy, D., Swanson, D., Venema, H. D., & McCandless, M. (2013). The water-energy-food security nexus: Towards a practical planning and decision-support framework for landscape investment and risk management. Winnipeg, Manitoba: International Institute for Sustainable Development.

    Google Scholar 

  • Borowski, I., & Hare, M. (2007). Exploring the gap between water managers and researchers: Difficulties of model-based tools to support practical water management. Water Resources Manage, 21(7), 1049–1074.

    Article  Google Scholar 

  • Bosilovich, M. G., Akella, S., Coy, L., Cullather, R., Draper, C., Gelaro, R., & Kovach, R. (2015). MERRA-2: Initial evaluation of the climate. Technical Report Series on Global Modeling and Data Assimilation, NASA/TM–2015-104606/Vol. 43.

    Google Scholar 

  • Brown, E. T., Liu, J., Brodley, C. E., & Chang, R. (2012). Dis-function: Learning distance functions interactively. In IEEE conference on visual analytics science and technology (pp. 83–92). Seattle, WA: IEEE.

    Google Scholar 

  • Burch, S., Sheppard, S. R. J., Shaw, A., & Flanders, D. (2010). Planning for climate change in a flood-prone community: Municipal barriers to policy action and the use of visualizations as decision-support tools. Journal of Flood Risk Management, 3(2), 126–139.

    Article  Google Scholar 

  • Cash, D. W. (2001). “In order to aid in diffusing useful and practical information”: Agricultural extension and boundary organizations. Science, Technology & Human Values, 26(4), 431–453.

    Article  Google Scholar 

  • Chen, K., & Liu, L. (2006). iVIBRATE: Interactive visualization based framework for clustering large datasets. ACM Transactions on Information Systems, 24(2), 245–294.

    Article  Google Scholar 

  • Clark, W. C., Tomich, T. P., van Noordwijk, M., Guston, D., Catacutan, D., Dickson, N. M., & McNie, E. (2011). Boundary work for sustainable development: Natural resource management at the Consultative Group on International Agricultural Research (CGIAR). Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.0900231108.

  • Cliburn, D. C., Feddema, J. J., Miller, J. R., & Slocum, T. A. (2002). Design and evaluation of a decision support system in a water balance application. Computers & Graphics, 26(6), 931–949.

    Google Scholar 

  • Cosgrove, B. A., Lohmann, D., Mitchell, K. E., Houser, P. R., Wood, E. F., Schaake, J. C., & Robock, A. (2003). Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. Journal of Geophysical Research, 108(D22). https://doi.org/10.1029/2002JD003118.

  • Cutts, B. B., White, D. D., & Kinzig, A. P. (2011). Participatory geographic information systems for the co-production of science and policy in an emerging boundary organization. Environmental Science & Policy, 14(8), 977–985.

    Article  Google Scholar 

  • Dilling, L., & Lemos, M. C. (2011). Creating usable science: Opportunities and constraints for climate knowledge use and their implications for science policy. Global Environmental Change, 21(2), 680–689.

    Article  Google Scholar 

  • Fujimura, J. H. (1992). Crafting science: Standardized packages, boundary objects, and “translation.”. In A. Pickering (Ed.), Science as practice and culture. University of Chicago Press. pp. 168–211. http://www.philsci.univ.kiev.ua/UKR/courses/asp/asp-lit/Andrew%20Pickering%20(Ed.)-Science%20as%20Practice%20and%20Culture-University%20of%20Chicago%20Press%20(1992)%20(1).pdf

  • Furrer, R., Knutti, R., Sain, S. R., Nychka, D. W., & Meehl, G. A. (2007). Spatial patterns of probabilistic temperature change projections from a multivariate Bayesian analysis. Geophysical Research Letters, 34(6).

    Google Scholar 

  • Guo, D., Chen, J., MacEachren, A. M., & Liao, K. (2006). A visualization system for space-time and multivariate patterns (VIS-STAMP). IEEE Transactions on Visualization and Computer Graphics, 12(6), 1461–1474.

    Article  Google Scholar 

  • Harris, G. (2002). Energy, water, and food scenarios. Best Partners.

    Google Scholar 

  • Hellegers, P., & Zilberman, D. (2008). Interactions between water, energy, food and environment: Evolving perspectives and policy issues. Water Policy, 10(S1), 1–10.

    Article  Google Scholar 

  • Hu, Q., Johnston, E., & Hemphill, L. (2012). Fostering cooperative community behavior with IT tools: The influence of a designed deliberative space on efforts to address collective challenges. The Journal of Community Informatics, 9(1).

    Google Scholar 

  • Jin, H., & Guo, D. (2009). Understanding climate change patterns with multivariate geovisualization. In ICDM workshops (pp. 217–222).

    Google Scholar 

  • Isendahl, N., Dewulf, A., Brugnach, M., Francois, G., Moellenkamp, S., & Pahl-Wostl, C. (2009). Assessing framing of uncertainties in water management practice. Water Resources Management, 23(15), 3191–3205.

    Article  Google Scholar 

  • Isendahl, N., Dewulf, A., & Pahl-Wostl, C. (2010). Making framing of uncertainty in water management practice explicit by using a participant-structured approach. Journal of Environmental Management, 91(4), 844–851.

    Article  Google Scholar 

  • Khan, S., & Hanjra, M. A. (2009). Footprints of water and energy inputs in food production – Global perspectives. Food Policy, 34, 130–140.

    Article  Google Scholar 

  • Kates, R. W., et al. (2001). Sustainability science. Science, 292(5517), 641–642. https://doi.org/10.1126/science.1059386.

    Article  CAS  Google Scholar 

  • Kehrer, J., & Hauser, H. (2013). Visualization and visual analysis of multifaceted scientific data: A survey. IEEE Transactions on Visualization and Computer Graphics, 19(3), 495–513.

    Article  Google Scholar 

  • Kelly, R. E. (2009). The AMSR-E snow depth algorithm: Description and initial results. Journal of the Remote Sensing Society of Japan, 29(1), 307–317.

    Google Scholar 

  • Knutti, R. (2008). Hotter or not? Should we believe model predictions of future climate change? Significance, 5(4), 159–162.

    Article  Google Scholar 

  • Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., & Meehl, G. (2010). Challenges in combining projections from multiple climate models. Journal of Climate, 23(10), 2739–2758.

    Article  Google Scholar 

  • Knutti, R., Masson, D., & Gettelman, A. (2013). Climate model genealogy: Generation CMIP5 and how we got there. Geophysical Research Letters, 40(6), 1194–1199.

    Article  Google Scholar 

  • Kraucunas, I., et al. (2015). Investigating the nexus of climate, energy, water, and land at decision-relevant scales: The Platform for Regional Integrated Modeling and Analysis (PRIMA). Climatic Change, 129(3–4), 573–588.

    Article  Google Scholar 

  • Kumar, S. V., Peters-Lidard, C. D., Tian, Y., Houser, P. R., Geiger, J., Olden, S., & Lighty, L. (2006). Land information system – An interoperable framework for high resolution land surface modeling. Environmental Modelling and Software, 21, 1402–1415.

    Article  Google Scholar 

  • Ladstädter, F., Steiner, A. K., Lackner, B. C., Pirscher, B., Kirchengast, G., Kehrer, J., Hauser, H., Muigg, P., & Doleisch, H. (2010). Exploration of climate data using interactive visualization. Journal of Atmospheric and Oceanic Technology, 27(4), 667–679.

    Article  Google Scholar 

  • Lang, D. J., et al. (2012). Transdisciplinary research in sustainability science: practice, principles, and challenges. Sustainability Science, 7(Suppl 1), 25. https://doi.org/10.1007/s11625-011-0149-x.

    Article  Google Scholar 

  • Lubchenco, J. (1998). Entering the century of the environment: A new social contract for science. Science, 279, 491–497.

    Article  CAS  Google Scholar 

  • Masson, D., & Knutti, R. (2011). Spatial-scale dependence of climate model performance in the CMIP3 ensemble. Journal of Climate, 24(11), 2680–2692.

    Article  Google Scholar 

  • Mitchell, K. E., Lohmann, D., Houser, P. R., Wood, E. F., Schaake, J. C., Robock, A., & Cosgrove, B. A. (2004). The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling systems. Journal of Geophysical Research, 109(D07S90). https://doi.org/10.1029/2003JD003823.

  • Miralles-Wilhelm, F. (2016). Development and application of integrative modeling tools in support of food-energy-water nexus planning—A research agenda. Journal of Environmental Studies and Sciences. https://doi.org/10.1007/s13412-016-0361-1.

  • Mohtar, R. H. (2017). Making the leap into the nexus: Changing nexus. Presentation at the Watershed conference, Vatican City, 22 Mar 2017.

    Google Scholar 

  • Mohtar, R. H., & Daher, B. (2016). Water–energy–food nexus framework for facilitating multi-stakeholder dialogue. Water International. https://doi.org/10.1080/02508060.2016.1149759.

  • Mushtaq, S., Maraseni, T. N., Maroulis, J., & Hafeez, M. (2009). Energy and water tradeoffs in enhancing food security: A selective international assessment. Energy Policy, 37, 3635–3644.

    Article  Google Scholar 

  • Owe, M., de Jeu, R., & Walker, J. P. (2001). A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Transactions on Geoscience and Remote, 39(8), 1643–1654.

    Article  Google Scholar 

  • Pahl-Wostl, C. (2009). A conceptual framework for analysing adaptive capacity and multi-level learning processes in resource governance regimes. Global Environmental Change, 19, 354–365.

    Article  Google Scholar 

  • Pelekis, N., Andrienko, G., Andrienko, N., Kopanakis, I., Marketos, G., & Theodoridis, Y. (2012). Visually exploring movement data via similarity-based analysis. Journal of Intelligent Information Systems, 38(2), 343–391.

    Article  Google Scholar 

  • Potter, K., Wilson, A., Bremer, P.-T., Williams, D., Doutriaux, C., Pascucci, V., & Johnson, C. (2009a). Visualization of uncertainty and ensemble data: Exploration of climate modeling and weather forecast data with integrated visus-cdat systems. Journal of Physics: Conference Series, 180, 012089, IOP Publishing.

    Google Scholar 

  • Potter, K., Wilson, A., Bremer, P.-T., Williams, D., Doutriaux, C., Pascucci, V., & Johnson, C. (2009b). Ensemble-vis: A framework for the statistical visualization of ensemble data. In IEEE international conference on data mining workshops (pp. 233–240). Miami, FL: IEEE.

    Google Scholar 

  • Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., & Bosilovich, M. G. (2011). MERRA – NASA’s modern-era retrospective analysis for research and applications. Journal of Climate, 24, 3624–3648.

    Article  Google Scholar 

  • Roy, B. (1993). Decision science or decision-aid science? European Journal of Operational Research, 66(2), 184–203.

    Article  Google Scholar 

  • Sanyal, J., Zhang, S., Dyer, J., Mercer, A., Amburn, P., & Moorhead, R. (2010). Noodles: A tool for visualization of numerical weather model ensemble uncertainty. IEEE Transactions on Visualization and Computer Graphics, 16(6), 1421–1430.

    Article  Google Scholar 

  • Scott, C. A., Pierce, S. A., Pasqualetti, M. J., Jones, A. L., Montz, B. E., & Hoover, J. H. (2011). Policy and institutional dimensions of the water–energy nexus. Energy Policy, 39(10), 6622–6630.

    Article  Google Scholar 

  • Serrat-Capdevila, A., Browning-Aiken, A., Lansey, K., Finan, T., & Valdes, J. B. (2009). Increasing social–ecological resilience by placing science at the decision table: The role of the San Pedro Basin (Arizona) decision-support system model. Ecology and Society, 14(1), 37.

    Article  Google Scholar 

  • Serrat-Capdevila, A., Valdes, J. B., & Gupta, H. V. (2011). Decision support systems in water resources planning and management: Stakeholder participation and the sustainable path to science-based decision making. In C. Jao (Ed.), Efficient decision support systems—Practice and challenges from current to future (pp. 423–440). Rijeka, Croatia: InTech.

    Google Scholar 

  • Simon, H. A. (1960). The new science of management decision. New York: HarperCollins.

    Book  Google Scholar 

  • Smith, D. W., Welch, M., Bennett, K. E., Padgham, J., & Mohtar, R. (2017). Building a WEF Nexus Community of Practice (NCoP). Current Sustainable/Renewable Energy Reports, 4(3), 168–172. Springer.. https://doi.org/10.1007/s40518-017-0080-6.

    Article  Google Scholar 

  • Star, S. L., & Griesemer, J. R. (1989). Institutional ecology, ‘translations’ and boundary objects: Amateurs and professionals in Berkeley’s Museum of Vertebrate Zoology, 1907–1939. Social Studies of Science, 19(3), 387–420.

    Article  Google Scholar 

  • Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., & Watkins, M. M. (2004). GRACE measurements of mass variability in the earth system. Science, 305, 503–505.

    Article  CAS  Google Scholar 

  • Tebaldi, C., & Knutti, R. (2007). The use of the multi-model ensemble in probabilistic climate predictions. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 365(1857), 2053–2075.

    Article  Google Scholar 

  • Tebaldi, C., Smith, R. L., Nychka, D., & Mearns, L. O. (2005). Quantifying uncertainty in projections of regional climate change: A Bayesian approach the analysis of multimodel ensembles. Journal of Climate, 18(10), 1524–1540.

    Article  Google Scholar 

  • White, D. D. (2013). Framing water sustainability in an environmental decision support system. Society & Natural Resources, 26(11), 1365–1373. https://doi.org/10.1080/08941920.2013.788401.

    Article  Google Scholar 

  • White, D. D., Wutich, A. Y., Larson, K. L., & Lant, T. (2015). Water management decision-makers’ evaluations of uncertainty in a decision support system: The case of WaterSim in the decision theater. Journal of Environmental Planning and Management, 58(4), 616–630.

    Article  Google Scholar 

  • Williams, D. (2014). Visualization and Analysis Tools for Ultrascale Climate Data. Eos, Transactions American Geophysical Union. 95. 10.1002/2014EO420002 https://eos.org/science-updates/visualization-analysis-tools-ultrascale-climate-data

    Google Scholar 

  • Wutich, A., Lant, T., White, D. D., Larson, K. L., & Gartin, M. (2010). Comparing focus group and individual responses on sensitive topics: a study of water decision-makers in a desert city. Field Methods, 22(1), 88–110.

    Article  Google Scholar 

  • Yokohata, T., Annan, J. D., Hargreaves, J. C., Jackson, C. S., Tobis, M., Webb, M., & Collins, M. (2012). Reliability of multi-model and structurally different single-model ensembles. Climate Dynamics, 39, 599–616.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Saundry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eftelioglu, E., Miralles-Wilhelm, F.R., Mohtar, R., Ruddell, B.L., Saundry, P., Shekhar, S. (2020). Applying Science to Practice. In: Saundry, P., Ruddell, B. (eds) The Food-Energy-Water Nexus. AESS Interdisciplinary Environmental Studies and Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-030-29914-9_17

Download citation

Publish with us

Policies and ethics