Skip to main content

White Rot Fungi and Their Enzymes for the Treatment of Industrial Dye Effluents

  • Chapter
  • First Online:
Recent Advancement in White Biotechnology Through Fungi

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

The major thrust of scientific research is pollution control due to increased discharge and improper management of industrial wastes, especially textile industries. Textile industry is one of the major industries, which uses many xenobiotics as dyes and releases several undesirable pollutants into the environment. A wide variety of dyes were used in the textile industry, which are complex structured and constitute the largest group among the recalcitrant xenobiotics. Due to lower degree of dye fixation to fabrics, more than 10% of the dyes goes into wastewater and released into the environment unaltered. Dye removal can be done with physical and physicochemical methods, but these methods are expensive and require operation expertise. Complete breakdown of the dye molecules is the desired outcome and that is possible with biological means. Decolourization with biological means has gained great attention, and many researchers suggested several biotechnological approaches for combating the textile pollution. Many bacteria are having enzymes for complete degradation of the azodyes, but it needs alterations in the process. Recently, fungal decolourization, especially white rot fungi, is gaining importance, and these fungi are capable of producing one or more extracellular, non-specific, non-selective enzymes which can able to degrade a wide range of xenobiotics. The white rot fungal enzymes are mainly composed of lignin peroxidase, manganese-dependent peroxidases, laccases and hydrogen peroxide-producing peroxidases. They are the most efficient microorganisms degrading textile dyes, which are structurally different and complex. White rot fungal enzymes and its degradation abilities to remove synthetic dyes from textile wastewater are compiled in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abadulla E, Tzanov T, Costa S, Robra K-H, Cavaco-Paulo A, Gübitz GM (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol 66:3357–3362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anastasi A, Spina F, Prigione V, Tigini V, Giansanti P, Varese GC (2010) Scale-up of a bioprocess for textile wastewater treatment using Bjerkandera adusta. Bioresour Technol 101:3067–3075

    Article  CAS  PubMed  Google Scholar 

  • Anliker R (1979) Ecotoxicology of dyestuffs—a joint effort by industry. Ecotoxicol Environ Saf 3:59–74

    Article  CAS  PubMed  Google Scholar 

  • Asgher M, Kausar S, Bhatti HN, Shah SAH, Ali M (2008) Optimization of medium for decolorization of solar golden yellow R direct textile dye by Schizophyllum commune IBL-06. Int Biodeterior Biodegradation 61:189–193

    Article  CAS  Google Scholar 

  • Balan DS, Monteiro RT (2001) Decolorization of textile indigo dye by ligninolytic fungi. J Biotechnol 89:141–145

    Article  CAS  PubMed  Google Scholar 

  • Banat IM, Nigam P, Singh D, Marchant R (1997) Microbial decolorization of textile-dye-containing effluents: a review. Bioresour Technol 61:103–103

    Article  CAS  Google Scholar 

  • Ben Younes S, Mechichi T, Sayadi S (2007) Purification and characterization of the laccase secreted by the white rot fungus Perenniporia tephropora and its role in the decolourization of synthetic dyes. J Appl Microbiol 102:1033–1042

    CAS  PubMed  Google Scholar 

  • Beydilli M, Pavlostathis S, Tincher W (1998) Decolorization and toxicity screening of selected reactive azo dyes under methanogenic conditions. Water Sci Technol 38:225–232

    Article  CAS  Google Scholar 

  • Blánquez P, Sarrà M, Vicent T (2008) Development of a continuous process to adapt the textile wastewater treatment by fungi to industrial conditions. Process Biochem 43:1–7

    Article  CAS  Google Scholar 

  • Boer CG, Obici L, de Souza CGM, Peralta RM (2004) Decolorization of synthetic dyes by solid state cultures of Lentinula (Lentinus) edodes producing manganese peroxidase as the main ligninolytic enzyme. Bioresour Technol 94:107–112

    Article  CAS  PubMed  Google Scholar 

  • Borchert M, Libra JA (2001) Decolorization of reactive dyes by the white rot fungus Trametes versicolor in sequencing batch reactors. Biotechnol Bioeng 75:313–321

    Article  CAS  PubMed  Google Scholar 

  • Bourbonnais R, Paice MG, Reid ID, Lanthier P, Yaguchi M (1995) Lignin oxidation by laccaseisozymes from Trametes versicolor and role of the mediator 2, 2′-azinobis (3-ethylbenzthiazoline-6-sulfonate) in Kraft lignin depolymerization. Appl Environ Microbiol 61:1876–1880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron M, Timofeevski S, Aust S (2000) Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Appl Microbiol Biotechnol 54:751–758

    Article  CAS  PubMed  Google Scholar 

  • Carliell CM, Barclay SJ, Naidoo N, Buckley CA, Mulholland DA, Senior E (1995) Microbial decolourisation of a reactive azo dye under anaerobic conditions. Water SA 21(1):61–69

    CAS  Google Scholar 

  • Chagas EP, Durrant LR (2001) Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju. Enzym Microb Technol 29:473–477

    Article  CAS  Google Scholar 

  • Chander M, Arora DS (2007) Evaluation of some white-rot fungi for their potential to decolourise industrial dyes. Dyes Pigments 72:192–198

    Article  CAS  Google Scholar 

  • Chavan R (2001) Indian textile industry-environmental issues. Indian J Fibre Text Res 26:11–21

    CAS  Google Scholar 

  • Christian V, Shrivastava R, Shukla D, Modi H, Vyas BRM (2005) Mediator role of veratryl alcohol in the lignin peroxidase-catalyzed oxidative decolorization of Remazol Brilliant Blue R. Enzym Microb Technol 36:426–431

    Article  CAS  Google Scholar 

  • Chudgar RJ (1985) In: Kroschwitz (ed) Kirk Othmer encyclopedia of chemical technology, 4th edn. Wiley, New York, pp 821–875

    Google Scholar 

  • Chung KT (2000) Mutagenicity and carcinogenicity of aromatic amines metabolically produced from azo dyes. J Environ Sci Health 18:51–74

    Article  Google Scholar 

  • Chung K-T, Fulk GE, Egan M (1978) Reduction of azo dyes by intestinal anaerobes. Appl Environ Microbiol 35:558–562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collins PJ, Field JA, Teunissen P, Dobson A (1997) Stabilization of lignin peroxidases in white rot fungi by tryptophan. Appl Environ Microbiol 63:2543–2548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conneely A, Smyth W, McMullan G (2002) Study of the white-rot fungal degradation of selected phthalocyanine dyes by capillary electrophoresis and liquid chromatography. Anal Chim Acta 451:259–270

    Article  CAS  Google Scholar 

  • Cripps C, Bumpus JA, Aust SD (1990) Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1114–1118

    CAS  PubMed  PubMed Central  Google Scholar 

  • D’Souza-Ticlo D, Verma AK, Mathew M, Raghukumar C (2006) Effect of nutrient nitrogen on laccase production, its isozyme pattern and effluent decolorization by the fungus NIOCC# 2a, isolated from mangrove wood. Indian J Mar Sci 34(4):364–372

    Google Scholar 

  • Diamantidis G, Effosse A, Potier P, Bally R (2000) Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biol Biochem 32:919–927

    Article  CAS  Google Scholar 

  • Edwards JC (2000) Investigation of color removal by chemical oxidation for three reactive textile dyes and spent textile dye wastewater. (Doctoral dissertation, Virginia Tech)

    Google Scholar 

  • Eichlerova I, Homolka L, Nerud F (2006) Synthetic dye decolorization capacity of white rot fungus Dichomitussqualens. Bioresour Technol 97:2153–2159

    Article  CAS  PubMed  Google Scholar 

  • El Monssef RAA, Hassan EA, Ramadan EM (2016) Production of laccase enzyme for their potential application to decolorize fungal pigments on aging paper and parchment. Ann Agric Sci 61:145–154

    Article  Google Scholar 

  • Ellouze M, Sayadi S (2016) White-rot fungi and their enzymes as a biotechnological tool for xenobiotic bioremediation. In: Management of hazardous wastes. InTech, London, pp 103–120.

    Google Scholar 

  • Fang Z, Sato T, Smith JRL, Inomata H, Arai K, Kozinski JA (2008) Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water. Bioresour Technol 99:3424–3430

    Article  CAS  PubMed  Google Scholar 

  • Faraco V, Pezzella C, Miele A, Giardina P, Sannia G (2009) Bio-remediation of colored industrial wastewaters by the white-rot fungi Phanerochaete chrysosporium and Pleurotus ostreatus and their enzymes. Biodegradation 20:209–220

    Article  CAS  PubMed  Google Scholar 

  • Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719

    Article  CAS  PubMed  Google Scholar 

  • Forgacs E, Cserhati T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30:953–971

    Article  CAS  PubMed  Google Scholar 

  • Freeman HS, Sokolowska J (1999) Developments in dyestuff chemistry. Rev Prog Color Relat Top 29:8–22

    Article  CAS  Google Scholar 

  • Ghaly A, Ananthashankar R, Alhattab M, Ramakrishnan V (2014) Production, characterization and treatment of textile effluents: a critical review. J Chem Eng Process Technol 5:1–19

    Google Scholar 

  • Gill P, Arora D, Chander M (2002) Biodecolourization of azo and triphenylmethane dyes by Dichomitus squalens and Phlebia sp. J Ind Microbiol Biotechnol 28:201–203

    Article  CAS  PubMed  Google Scholar 

  • Gochev V, Krastanov A (2007) Isolation of laccase producing Trichoderma spp. Bulgarian J Agr Sci 13:171

    Google Scholar 

  • Gomaa OM, Linz JE, Reddy C (2008) Decolorization of Victoria blue by the white rot fungus, Phanerochaete chrysosporium. World J Microbiol Biotechnol 24:2349–2356

    Article  Google Scholar 

  • Gomes E, Aguiar AP, Carvalho CC, Bonfá MRB, Rd S, Boscolo M (2009) Ligninases production by Basidiomycetes strains on lignocellulosic agricultural residues and their application in the decolorization of synthetic dyes. Braz J Microbiol 40:31–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta BL (1992) Salinisation and Alkalisation of ground water pollution due to textile hand processing Industries in Pali. Curr Agric 16:59

    Google Scholar 

  • Hadibarata T, Adnan LA, Yusoff ARM, Yuniarto A, Zubir MMFA, Khudhair AB, Teh ZC, Naser MA (2013) Microbial decolorization of an azo dye reactive black 5 using white-rot fungus Pleurotus eryngii F032. Water Air Soil Pollut 224:1595

    Article  CAS  Google Scholar 

  • Harazono K, Nakamura K (2005) Decolorization of mixtures of different reactive textile dyes by the white-rot basidiomycete Phanero chaetesordida and inhibitory effect of polyvinyl alcohol. Chemosphere 59:63–68

    Article  CAS  PubMed  Google Scholar 

  • Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role from in lignin degradation. Microbiol Rev 13:125–135

    CAS  Google Scholar 

  • Heinfling A, Martinez M, Martinez A, Bergbauer M, Szewzyk U (1998) Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Appl Environ Microbiol 64:2788–2793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hofrichter M, Lundell T, Hatakka A (2001) Conversion of milled pine wood by manganese peroxidase from Phlebia radiata. Appl Environ Microbiol 67:4588–4593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hölker U, Dohse J, Höfer M (2002) Extracellular laccases in ascomycetes Trichoderma atroviride and Trichoderma harzianum. Folia Microbiol 47:423–427

    Article  Google Scholar 

  • Horning RH (1977) Characterization and treatment of textile dyeing wastewaters. Text Chem Color 9(4):24

    CAS  Google Scholar 

  • Husain Q (2010) Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: a review. Rev Environ Sci Biotechnol 9(2):117–140

    Article  CAS  Google Scholar 

  • Ishikawa YET, Leder A (2000) Chemical economics handbook: dyes. SRI Chemical and Health Business Services, Menlo Park

    Google Scholar 

  • Jain N, Kaur A, Singh D, Dahiya S (2000) Degradation of acrylic Red 2 B dye by P. crysosporium: involvement of carbon and nitrogen source. J Environ Biol 21:179–183

    CAS  Google Scholar 

  • Järvinen J, Taskila S, Isomäki R, Ojamo H (2012) Screening of white-rot fungi manganese peroxidases: a comparison between the specific activities of the enzyme from different native producers. AMB Express 2:62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaal EE, Field JA, Joyce TW (1995) Increasing ligninolytic enzyme activities in several white-rot basidiomycetes by nitrogen-sufficient media. Bioresour Technol 53:133–139

    Article  CAS  Google Scholar 

  • Karim MAA, Annuar MSM (2009) Novel application of coconut husk as growth support matrix and natural inducer of fungal laccase production in a bubble column reactor. Asia-Pac J Mol Biol Biotechnol 17:47–52

    Google Scholar 

  • Kaushik P, Malik A (2009) Fungal dye decolourization: Recent advances and future potential. Environ Int 35:127–141

    Article  CAS  PubMed  Google Scholar 

  • Kiiskinen LL, Rättö M, Kruus K (2004) Screening for novel laccase-producing microbes. J Appl Microbiol 97:640–646

    Article  CAS  PubMed  Google Scholar 

  • Kirby N, Marchant R, McMullan G (2000) Decolourisation of synthetic textile dyes by Phlebia tremellosa. FEMS Microbiol Lett 188:93–96

    Article  CAS  PubMed  Google Scholar 

  • Kothandaraman V, Aboo K, Sastry C (1976) Characteristics of wastes from a textile mill. Indian J Environ Health 18:99–112

    CAS  Google Scholar 

  • Kunjadia PD, Sanghvi GV, Kunjadia AP, Mukhopadhyay PN, Dave GS (2016) Role of ligninolytic enzymes of white rot fungi (Pleurotus sp.) grown with azo dyes. Springerplus 5:1487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levin L, Papinutti L, Forchiassin F (2004) Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes. Bioresour Technol 94:169–176

    Article  CAS  PubMed  Google Scholar 

  • Lewis DM (1999) Coloration in the next century. Rev Prog Color Relat Top 29:23–28

    Article  CAS  Google Scholar 

  • Loyd CK (1992) Anaerobic/aerobic degradation of a textile dye wastewater. (Doctoral dissertation, Virginia Tech)

    Google Scholar 

  • Ma L, Zhuo R, Liu H, Yu D, Jiang M, Zhang X, Yang Y (2014) Efficient decolorization and detoxification of the sulfonatedazo dye Reactive Orange 16 and simulated textile wastewater containing Reactive Orange 16 by the white-rot fungus Ganoderma sp. En3 isolated from the forest of Tzu-chin Mountain in China. Biochem Eng J 82:1–9

    Article  CAS  Google Scholar 

  • Maas R, Chaudhari S (2005) Adsorption and biological decolourization of azo dye Reactive Red 2 in semicontinuous anaerobic reactors. Process Biochem 40:699–705

    Article  CAS  Google Scholar 

  • Maijala P, Kleen M, Westin C, Poppius-Levlin K, Herranen K, Lehto J, Reponen P, Mäentausta O, Mettälä A, Hatakka A (2008) Biomechanical pulping of softwood with enzymes and white-rot fungus Physisporinus rivulosus. Enzym Microb Technol 43:169–177

    Article  CAS  Google Scholar 

  • Manavalan T, Manavalan A, Thangavelu KP, Heese K (2013) Characterization of optimized production, purification and application of laccase from Ganoderma lucidum. Biochem Eng J 70:106–114

    Article  CAS  Google Scholar 

  • McCurdy MW (1991) Chemical reduction and oxidation combined with biodegradation for the treatment of a textile dye wastewater. (Doctoral dissertation, Virginia Tech)

    Google Scholar 

  • McMullan G, Meehan C, Conneely A, Kirby N, Robinson T, Nigam P, Banat I, Marchant R, Smyth W (2001) Microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotechnol 56:81–87

    Article  CAS  PubMed  Google Scholar 

  • Mester T, Field JA (1998) Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem 273:15412–15417

    Article  CAS  PubMed  Google Scholar 

  • Michaels GB, Lewis DL (1985) Sorption and toxicity of azo and triphenylmethane dyes to aquatic microbial populations. Environ Toxicol Chem 4:45–50

    Article  CAS  Google Scholar 

  • Michniewicz A, Ledakowicz S, Ullrich R, Hofrichter M (2008) Kinetics of the enzymatic decolorization of textile dyes by laccase from Cerrena unicolor. Dyes Pigments 77:295–302

    Article  CAS  Google Scholar 

  • Mohorčič M, Teodorovič S, Golob V, Friedrich J (2006) Fungal and enzymatic decolourisation of artificial textile dye baths. Chemosphere 63:1709–1717

    Article  PubMed  CAS  Google Scholar 

  • Moreira-Neto S, Mussatto SI, Machado K, Milagres AM (2013) Decolorization of salt-alkaline effluent with industrial reactive dyes by laccase-producing basidiomycetes strains. Lett Appl Microbiol 56:283–290

    Article  CAS  PubMed  Google Scholar 

  • Morozova O, Shumakovich G, Gorbacheva M, Shleev S, Yaropolov A (2007) “Blue” laccases. Biochem Mosc 72:1136–1150

    Article  CAS  Google Scholar 

  • Niku-Paavola ML, Karhunen E, Salola P, Raunio V (1988) Ligninolytic enzymes of the white-rot fungus Phlebia radiata. Biochem J 254:877–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novotný Č, Erbanova P, Cajthaml T, Rothschild N, Dosoretz C, Šašek V (2000) Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Appl Microbiol Biotechnol 54:850–853

    Article  PubMed  Google Scholar 

  • O’neill C, Lopez A, Esteves S, Hawkes F, Hawkes D, Wilcox S (2000) Azo-dye degradation in an anaerobic-aerobic treatment system operating on simulated textile effluent. Appl Microbiol Biotechnol 53:249–254

    Article  PubMed  Google Scholar 

  • Osorio Echavarría J, Vidal Benavides AI, Quintero Díaz JC (2011) Decolorization of textile wastewater using the white rot fungi anamorph R1 of Bjerkandera sp. Revista Facultad de Ingeniería Universidad de Antioquia 57:85–93

    Google Scholar 

  • Özsoy HD, Ünyayar A, Mazmancı MA (2005) Decolourisation of reactive textile dyes Drimarene Blue X3LR and Remazol Brilliant Blue R by Funaliatrogii ATCC 200800. Biodegradation 16:195–204

    Article  PubMed  CAS  Google Scholar 

  • Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G (2000) Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66:920–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peralta-Zamora P, Pereira CM, Tiburtius ER, Moraes SG, Rosa MA, Minussi RC, Durán N (2003) Decolorization of reactive dyes by immobilized laccase. Appl Catal B Environ 42(2):131–144

    Article  CAS  Google Scholar 

  • Périé FH, Gold MH (1991) Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens. Appl Environ Microbiol 57:2240–2245

    PubMed  PubMed Central  Google Scholar 

  • Puscas EL, Stanescu MD, Fogorasi M, Dalea V (2003) Dezvoltarea durabila prin protectia mediului si biotehnologii textile. Editura Universitatii Aurel Vlaicu, Arad

    Google Scholar 

  • Revankar MS, Lele SS (2006) Synthetic dye decolorization capacity of white rot fungus Dichomitus squalens. Bioresour Technol 97:2153–2159

    Article  CAS  Google Scholar 

  • Rita de Cássia M, de Barros GE, Pereira N Jr, Marin-Morales MA, Machado KMG, de Gusmão NB (2013) Biotreatment of textile effluent in static bioreactor by Curvularia lunata URM 6179 and Phanerochaete chrysosporium URM 6181. Bioresour Technol 142:361–367

    Article  CAS  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Article  CAS  PubMed  Google Scholar 

  • Roriz MS, Osma JF, Teixeira JA, Couto SR (2009) Application of response surface methodological approach to optimise Reactive Black 5 decolouration by crude laccase from Trametes pubescens. J Hazard Mater 169:691–696

    Article  CAS  PubMed  Google Scholar 

  • Sadhasivam S, Savitha S, Swaminathan K, Lin F-H (2008) Production, purification and characterization of mid-redox potential laccase from a newly isolated Trichoderma harzianum WL1. Process Biochem 43:736–742

    Article  CAS  Google Scholar 

  • Sarayu K, Sandhya S (2012) Current technologies for biological treatment of textile wastewater--a review. Appl Biochem Biotechnol 167:645–661

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar S, Manivasagan R, Chinnappan K (2013) Biodegradation and decolourization of textile dye wastewater using Ganoderma lucidum. Biotechnol Adv 3:71–79

    Google Scholar 

  • Senthilkumar S, Perumalsamy M, Prabhu HJ (2014) Decolourization potential of white-rot fungus Phanerochaete chrysosporium on synthetic dye bath effluent containing Amido black 10B. J Saudi Chem Soc 18:845–853

    Article  Google Scholar 

  • Shaul GM, Holdsworth TJ, Dempsey CR, Dostal KA (1991) Fate of water soluble azo dyes in the activated sludge process. Chemosphere 22:107–119

    Article  CAS  Google Scholar 

  • Singhal V, Rathore VS (2001) Effects of Zn2+ and Cu2+ on growth, lignin degradation and ligninolytic enzymes in Phanerochaete chrysosporium. World J Microbiol Biotechnol 17(3):235–240

    Article  CAS  Google Scholar 

  • Sivasamy P (2008) Decolorisation of textile effluent. Tamil Nadu Agricultural University M.Sc Thesis

    Google Scholar 

  • Sudhakar P, Palaniappan R, Gowrisankar R (2002) Degradation of azo dye (Black-E) by an indigenous bacterium Pseudomonas sp. BSP-4. Asian J Microbiol Biotechnol Environ Sci 4:203–208

    CAS  Google Scholar 

  • Sugiura M, Hirai H, Nishida T (2003) Purification and characterization of a novel lignin peroxidase from white-rot fungus Phanerochaete sordida YK-624. FEMS Microbiol Lett 224:285–290

    Article  CAS  PubMed  Google Scholar 

  • Swamy J, Ramsay J (1999) The evaluation of white rot fungi in the decoloration of textile dyes. Enzym Microb Technol 24:130–137

    Article  CAS  Google Scholar 

  • Teerapatsakul C, Parra R, Bucke C, Chitradon L (2007) Improvement of laccase production from Ganoderma sp. KU-Alk4 by medium engineering. World J Microbiol Biotechnol 23:1519–1527

    Article  CAS  Google Scholar 

  • Tekere M, Mswaka A, Zvauya R, Read J (2001a) Growth, dye degradation and ligninolytic activity studies on Zimbabwean white rot fungi. Enzym Microb Technol 28:420–426

    Article  CAS  Google Scholar 

  • Tekere M, Zvauya R, Read JS (2001b) Ligninolytic enzyme production in selected sub-tropical white rot fungi under different culture conditions. J Basic Microbiol 41:115–129

    Article  CAS  PubMed  Google Scholar 

  • Teli M (2008) Textile coloration industry in India. Color Technol 124(1):1–13

    Article  CAS  Google Scholar 

  • Toh YC, Yen JJL, Obbard JP, Ting YP (2003) Decolourisation of azo dyes by white-rot fungi (WRF) isolated in Singapore. Enzym Microb Technol 33:569–575

    Article  CAS  Google Scholar 

  • Tortella GR, Rubilar O, Gianfreda L, Valenzuela E, Diez MC (2008) Enzymatic characterization of Chilean native wood-rotting fungi for potential use in the bioremediation of polluted environments with chlorophenols. World J Microbiol Biotechnol 24:2805

    Article  CAS  Google Scholar 

  • Udayasoorian C, Prabu P (2005) Biodegradation of phenols by ligninolytic fungus Trametes versicolor. J Biol Sci 5:558–561

    Article  Google Scholar 

  • Urek RO, Pazarlioglu NK (2007) Enhanced production of manganese peroxidase by Phanerochaete chrysosporium. Braz Arch Biol Technol 50:913–920

    Article  CAS  Google Scholar 

  • Vaidya A (1982) Environmental pollution during chemical processing of synthetic fibers. Colourage 14:3–10

    Google Scholar 

  • Vasina DV, Moiseenko KV, Fedorova TV, Tyazhelova TV (2017) Lignin-degrading peroxidases in white-rot fungus Trametes hirsuta 072. Absolute expression quantification of full multigene family. PLoS One 12:0173813

    Article  CAS  Google Scholar 

  • Velázquez-Cedeño M, Farnet A, Ferré E, Savoie J (2004) Variations of lignocellulosic activities in dual cultures of Pleurotus ostreatus and Trichoderma longibrachiatum on unsterilized wheat straw. Mycologia 96:712–719

    Article  PubMed  Google Scholar 

  • Vijaya P, Padmavathy P, Sandhya S (2003) Decolourization and biodegradation of reactive azo dyes by mixed culture. Indian J Biotechnol 2:259–263

    CAS  Google Scholar 

  • Viswanath B, Chandra MS, Pallavi H, Reddy BR (2008) Screening and assessment of laccase producing fungi isolated from different environmental samples. Afr J Biotechnol 7(8):1129–1133

    Google Scholar 

  • Vyas B, Molitoris H-P (1995) Involvement of an extracellular H2O2-dependent ligninolytic activity of the white rot fungus Pleurotus ostreatus in the decolorization of Remazol brilliant blue R. Appl Environ Microbiol 61:3919–3927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187

    Article  CAS  PubMed  Google Scholar 

  • Will R, Ishikawa Y, Leder A (2000) Synthetic dyes, chemical economics handbook: synthetic dyes. SRI Chemical & Health Business Services, Menlo Park

    Google Scholar 

  • Willmott N, Guthrie J, Nelson G (1998) The biotechnology approach to colour removal from textile effluent. J Soc Dye Colour 114:38–41

    Article  CAS  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307

    Article  CAS  PubMed  Google Scholar 

  • Yadav A, Verma P, Kumar R, Kumar V, Kumar K (2017) Current applications and future prospects of eco-friendly microbes. EU Voice 3:21–22

    Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the Genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/B978-0-444-63501-3.00001-6

    Chapter  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent advancement in white biotechnology through fungi volume 1: diversity and enzymes perspectives. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019b) Recent advancement in white biotechnology through fungi. Volume 2: perspective for value-added products and environments. Springer International Publishing, Cham

    Book  Google Scholar 

  • Zissi U, Lyberatos G (2001) Partial degradation of p-aminoazobenzene by a defined mixed culture of Bacillus subtilis and Stenotrophomonas maltophilia. Biotechnol Bioeng 72:49–54

    Article  CAS  PubMed  Google Scholar 

  • Zollinger H (1961) Azo and diazo chemistry: aliphatic and aromatic compounds. Interscience Publishers, New York, p 444

    Google Scholar 

  • Zollinger H (2003) Color chemistry: syntheses, properties, and applications of organic dyes and pigments. John Wiley & Sons

    Google Scholar 

  • Zouari-Mechichi H, Mechichi T, Dhouib A, Sayadi S, Martinez AT, Martinez MJ (2006) Laccase purification and characterization from Trametes trogii isolated in Tunisia: decolorization of textile dyes by the purified enzyme. Enzym Microb Technol 39:141–148

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, for providing laboratory facilities. The authors extend their gratitude to Mrs. P. Divya and Mr. P. Sivasamy for providing textile wastes-related data.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Periasamy, D., Mani, S., Ambikapathi, R. (2019). White Rot Fungi and Their Enzymes for the Treatment of Industrial Dye Effluents. In: Yadav, A., Singh, S., Mishra, S., Gupta, A. (eds) Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-25506-0_4

Download citation

Publish with us

Policies and ethics