Skip to main content
Log in

Microbial Decolorization of an Azo Dye Reactive Black 5 Using White-Rot Fungus Pleurotus eryngii F032

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The growth of white-rot fungus Pleurotus eryngii F032 in a suitable medium can degrade an azo dye Reactive Black 5 (RB5), because of its ability to produce ligninolytic enzymes such as lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase that able to degrade and transform the complex structure of the dye into a less toxic compound. The effect of environmental factors such as initial concentration of Reactive Black 5, pH, temperature of growth medium, surfactant (Tween 80), and agitation were also investigated. The productions of ligninolytic enzymes were enhanced by increasing the white-rot fungi growth in optimum conditions. The decolorization of Reactive Black 5 were analyzed by using UV–vis spectrophotometer at the maximum absorbance of 596 nm. The white-rot fungus, P. eryngii F032 culture exhibited 93.56 % decolorization of 10 mg/L RB5 within 72 h of incubation in dark condition with agitation. The optimum pH and temperature for the decolorizing activity was recorded at pH 3 and 40 °C, respectively. The addition of surfactant (Tween 80) increased the decolorization to 93.57 % and agitation of growth medium at 120 rpm enhanced the distribution of nutrients to the fungus thus optimized the enzymatic reaction that resulted maximum decolorization of RB5 which was 93.57 %. The molecular docking studies were performed using Chimera visualization software as to analyze the decolorization mechanism of RB5 at molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ali, H. (2010). Biodegradation of synthetic dyes—a review. Water, Air, and Soil Pollution, 213, 251–273.

    Article  CAS  Google Scholar 

  • Banat, I. M., Nigam, P., & Singh, D. (1996). Microbial decolourization of textile dye containing effluents—a review. Bioresource Technology, 58, 217–227.

    Article  CAS  Google Scholar 

  • Bardi, L., & Marzona, M. (2010). Factors affecting the complete mineralization of azo dyes. Biodegradation of azo dyes. Handbook Environment Chemistry, 9, 195–210.

    Article  Google Scholar 

  • Bayramonglu, G., & Arica, M. Y. (2007). Biosorption of benzidine based textile dyes “Direct Blue 1 and Direct Red 128” using native and heat treated biomass of Trametes versicolor. Journal of Hazardous Materials, 143, 135–143.

    Article  Google Scholar 

  • Grosdidier, A., Zoete, V., & Michielin, O. (2011). SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acid Research, 39, W270–W277.

    Article  CAS  Google Scholar 

  • Guaratini, C. C. I., Fogg, A. G., & Zanoni, M. V. B. (2001). Assessment of the application of cathodic stripping voltammetry to the analysis of diazo reactive dyes and their hydrolysis products. Dyes and Pigments, 50, 211–221.

    Article  CAS  Google Scholar 

  • Guha, R., Howard, M. T., Hutchison, G. R., Murray-Rust, P., Rzepa, H., Steinbec, C., et al. (2006). The blue obelisk-interoperability in chemical informatics. Journal of Chemical Information and Modeling, 46, 991–998.

    Article  CAS  Google Scholar 

  • Hadibarata, T., Tachibana, S., & Askari, M (2011). Identification of metabolites from phenanthrene oxidation by phenoloxidase and dioxygenase of Polyporus sp. S133. Journal of Microbiology and Biotechnology, 21, 299–304.

    Google Scholar 

  • Hadibarata, T., Yusoff, A. R. M., Aris, A., Salmiati, Hidayat, T., & Kristanti, R. A. (2012a). Decolorization of azo, triphenylmethane and anthraquinone dyes by laccase of a newly isolated Armillaria sp. F022. Water, Air, and Soil Pollution, 223, 1045–1054.

    Article  CAS  Google Scholar 

  • Hadibarata, T., Yusoff, A. R. M., & Kristanti, R. A. (2012b). Decolorization and metabolism of anthraquinone-type by laccase of white-rot fungi Polyporus sp. S133. Water, Air, and Soil Pollution, 223, 933–941.

    Article  CAS  Google Scholar 

  • Hadibarata, T., Teh, Z. C., Rubiyatno, Zubir, M. M. F. A., Khudhair, A. B., Yusoff, A. R. M., et al. (2013). Identification of naphthalene metabolism by white rot fungus Pleurotus eryngii. Bioprocess and Biosystems Engineering. doi:10.1007/s00449-013-0884-8.

    Google Scholar 

  • Hazeroual, Y., Kim, B. S., Kim, C. S., Blaghen, M., & Lee, K. M. (2006). Biosorption of bromophenol blue from aqueous solution by Rhizopus stolonifer biomass. Water, Air, and Soil Pollution, 177, 135–146.

    Article  Google Scholar 

  • Kaushik, P., & Malik, A. (2009). Fungal dye decolourization: recent advances and future potential. Environment International, 35, 127–141.

    Article  CAS  Google Scholar 

  • Kumari, K., & Abraham, T. E. (2007). Biosorption of anionic textile dyes by nonviable biomass of fungi and yeast. Bioresource Technology, 98, 1704–1710.

    Article  CAS  Google Scholar 

  • Liao, C. S., Hung, C. H., & Chao, S. L. (2012). Decolorization of azo dye Reactive Black B by Bacillus cereus strain HJ-1. Chemosphere, 90, 2109–2114.

    Article  Google Scholar 

  • Lu, Y., Yan, L., Wang, Y., Zhou, S., Fu, J., & Zhang, J. (2009). Biodegradation of phenolic compounds from coking wastewater by immobilized white-rot fungus Phanerochaete chrysosporium. Journal of Hazardous Materials, 165, 1091–1097.

    Article  CAS  Google Scholar 

  • Lucas, M. S., & Peres, J. A. (2007). Degradation of Reactive Black 5 by Fenton/UV-C and ferrioxalate/ H2O2/ solar light processes. Dyes and Pigments, 74, 622–629.

    Article  CAS  Google Scholar 

  • Lucas, M., Meryens, V., & Vanhull, S. (2008). Synthetic dyes decolourisation by white-rot fungi; development of original micro titre plate method and screening. Enzyme and Microbial Technology, 42, 97–106.

    Article  CAS  Google Scholar 

  • Morris, G. M., Huey, R., Lindstorm, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., et al. (2009). Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility. Journal of Computational Chemistry, 16, 2785–2791.

    Article  Google Scholar 

  • O’Mahony, T., Guibal, E., & Tobin, J. M. (2002). Reactive dye biosorption by Rhizopus arrhizus biomass. Enzyme and Microbial Technology, 31, 456–463.

    Article  Google Scholar 

  • Osma, J. F., Toca-Herrera, L., & Rodriguez-Couto, S. (2010). Transformation pathway of Remazol Brilliant Blue R by immobilised laccase. Bioresource Technology, 101, 8509–8514.

    Article  CAS  Google Scholar 

  • Palmieri, G., Cennamo, G., & Sannia, G. (2005). Remazol Brilliant Blue R decolourization by the fungus Pleurotus Ostreatus and its oxidative enzymatic system. Enzyme and Microbial Technology, 36, 17–24.

    Article  CAS  Google Scholar 

  • Perez-Boadal, M., Ruiz-Dueñas, F. J., Pogni, R., Basosi, R., Choinowski, T., Martinez, M. J., et al. (2005). Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron pathways. Journal of Molecular Biology, 354, 385–402.

    Article  Google Scholar 

  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., et al. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1065–1612.

    Article  Google Scholar 

  • Saratale, R. G., Saratale, G. D., Kalyani, D. C., Chang, J. S., & Govindwar, S. P. (2009). Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR. Bioresource Technology, 100, 2493–2500.

    Article  CAS  Google Scholar 

  • Senthilkumar, S., Perumalsamy, M., & Prabhu, H. J. (2011). Decolourisation potential of white-rot fungus Phanerochaete Chrysporium on synthetic dye bath effluent containing Amino Black 10B. Journal of Saudi Chemical Society. doi:10.1016/j.jscs.2011.10.010.

    Google Scholar 

  • Usha, M. S., Sasirekha, B., Bela, R. B., Devi, S., Kamalini, C., Manasa, G. A., et al. (2006). Optimization of Reactive Black 5 dye and Reactive Red 120 dye degradation. Journal of Chemical and Pharmaceutical Research, 3(6), 450–457.

    Google Scholar 

  • Vijaykumar, M. H., Veeranagouda, Y., Neelakanteshwar, K., & Karegoudar, T. B. (2006). Decolorization of 1:2 metal complex dye Acid blue 193 by a newly isolated fungus, Cladosporium cladosporioides. World Journal of Microbiology and Biotechnology, 22, 157–162.

    Article  CAS  Google Scholar 

  • Yesilada, O., & Ozcan, B. (1998). Decolourization of Orange II dye with the crude culture filtrate of white-rot fungus, Coriolus versicolor. Turkish Journal of Biology, 22, 463–476.

    Google Scholar 

  • Yi-Chin, T., Lin, Y. J., Obbard, J. P., & Yen-Peng, T. (2003). Decolourisation of azo-dyes by white-rot fungi (WRF) isolated in Singapore. Enzyme and Microbial Technology, 33, 569–575.

    Article  Google Scholar 

  • Zouari-Mechichi, H., Mechichi, T., Dhouib, A., Sayadi, S., Martinez, A. T., & Martinez, M. J. (2006). Laccase purification and characterization from Trametes trogii isolated Tunisia: decolorization of textile dyes by the purified enzyme. Enzyme and Microbial Technology, 39, 141–148.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A part of this research was financially supported by a Research University Grant of Universiti Teknologi Malaysia (Vote QJ1.3000.2522.02H65), which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Hadibarata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadibarata, T., Adnan, L.A., Yusoff, A.R.M. et al. Microbial Decolorization of an Azo Dye Reactive Black 5 Using White-Rot Fungus Pleurotus eryngii F032. Water Air Soil Pollut 224, 1595 (2013). https://doi.org/10.1007/s11270-013-1595-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1595-0

Keywords

Navigation