Skip to main content

Further Properties of the Linear Sufficiency in the Partitioned Linear Model

  • Conference paper
  • First Online:
Matrices, Statistics and Big Data (IWMS 2016)

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Included in the following conference series:

Abstract

A linear statistic Fy, where F is an f × n matrix, is called linearly sufficient for estimable parametric function K β under the model \({\mathcal {M}} = \{ \mathbf {y}, \mathbf {X}{\boldsymbol {\beta }}, \mathbf {V} \}\), if there exists a matrix A such that AFy is the \( \operatorname {\mathrm {BLUE}}\) for K β. In this paper we consider some particular aspects of the linear sufficiency in the partitioned linear model where X = (X 1 : X 2) with β being partitioned accordingly. We provide new results and new insightful proofs for some known facts, using the properties of relevant covariance matrices and their expressions via certain orthogonal projectors. Particular attention will be paid to the situation under which adding new regressors (in X 2) does not affect the linear sufficiency of Fy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baksalary, J. K. (1984). A study of the equivalence between a Gauss–Markoff model and its augmentation by nuisance parameters. Mathematische Operationsforschung und Statistik, Series Statistics, 15, 2–35.

    MathSciNet  MATH  Google Scholar 

  2. Baksalary, J. K. (1987). Algebraic characterizations and statistical implications of the commutativity of orthogonal projectors. In T. Pukkila & S. Puntanen (Eds.), Proceedings of the second international tampere conference in statistics (vol. A 184, pp. 113–142). Tampere: University of Tampere.

    Google Scholar 

  3. Baksalary, J. K., & Kala, R. (1981). Linear transformations preserving best linear unbiased estimators in a general Gauss–Markoff model. Annals of Statistics, 9, 913–916.

    Article  MathSciNet  Google Scholar 

  4. Baksalary, J. K., & Kala, R. (1986). Linear sufficiency with respect to a given vector of parametric functions. Journal of Statistical Planning and Inference, 14, 331–338.

    Article  MathSciNet  Google Scholar 

  5. Baksalary, J. K., & Mathew, T. (1986). Linear sufficiency and completeness in an incorrectly specified general Gauss–Markov model. Sankhyā: The Indian Journal of Statistics, Series A, 48, 169–180.

    MathSciNet  MATH  Google Scholar 

  6. Dong, B., Guo, W., & Tian, Y. (2014). On relations between BLUEs under two transformed linear models. Journal of Multivariate Analysis, 13, 279–292.

    Article  MathSciNet  Google Scholar 

  7. Drygas, H. (1983). Sufficiency and completeness in the general Gauss–Markov model. Sankhyā: The Indian Journal of Statistics, Series A, 45, 88–98.

    MathSciNet  MATH  Google Scholar 

  8. Groß, J., & Puntanen, S. (2000). Estimation under a general partitioned linear model. Linear Algebra and its Applications, 321, 131–144.

    Article  MathSciNet  Google Scholar 

  9. Haslett, S. J., & Puntanen, S. (2010). Effect of adding regressors on the equality of the BLUEs under two linear models. Journal of Statistical Planning and Inference, 140, 104–110.

    Article  MathSciNet  Google Scholar 

  10. Isotalo, J., & Puntanen, S. (2006). Linear sufficiency and completeness in the partitioned linear model. Acta et Commentationes Universitatis Tartuensis de Mathematica, 10, 53–67.

    MathSciNet  MATH  Google Scholar 

  11. Isotalo, J., & Puntanen, S. (2009). Linear sufficiency and completeness in the context of estimating the parametric function in the general Gauss–Markov model. Journal of Statistical Planning and Inference, 139, 722–733.

    Article  MathSciNet  Google Scholar 

  12. Isotalo, J., Puntanen, S., & Styan, G. P. H. (2008). A useful matrix decomposition and its statistical applications in linear regression. Communications in Statistics—Theory and Methods, 37, 1436–1457.

    Article  MathSciNet  Google Scholar 

  13. Kala, R., & Pordzik, P. R. (2009). Estimation in singular partitioned, reduced or transformed linear models. Statistical Papers, 50, 633–638.

    Article  MathSciNet  Google Scholar 

  14. Kala, R., Puntanen, S., & Tian, Y. (2017). Some notes on linear sufficiency. Statistical Papers, 58(1), 1–17. http://dx.doi.org/10.1007/s00362-015-0682-2.

    Article  MathSciNet  Google Scholar 

  15. Kala, R., Markiewicz, A., & Puntanen, S. (2017). Some further remarks on the linear sufficiency in the linear model. In N. Bebiano (Ed.), Applied and computational matrix analysis. Basel: Springer. http://dx.doi.org/10.1007/978-3-319-49984-0.

    Google Scholar 

  16. Markiewicz, A., & Puntanen, S. (2009). Admissibility and linear sufficiency in linear model with nuisance parameters. Statistical Papers, 50, 847–854.

    Article  MathSciNet  Google Scholar 

  17. Markiewicz, A., & Puntanen, S. (2015). All about the ⊥ with its applications in the linear statistical models. Open Mathematics, 13, 33–50.

    Article  MathSciNet  Google Scholar 

  18. Marsaglia, G., & Styan, G. P. H. (1974). Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra, 2, 269–292.

    Article  MathSciNet  Google Scholar 

  19. Müller, J. (1987). Sufficiency and completeness in the linear model. Journal of Multivariate Analysis, 21, 312–323.

    Article  MathSciNet  Google Scholar 

  20. Milliken, G. A., & Akdeniz, F. (1977). A theorem on the difference of the generalized inverses of two nonnegative matrices. Communications in Statistics—Theory and Methods, 6, 1747–1751.

    Article  MathSciNet  Google Scholar 

  21. Puntanen, S., Styan, G. P. H., & Isotalo, J. (2011). Matrix tricks for linear statistical models: Our personal top twenty. Heidelberg: Springer.

    Book  Google Scholar 

  22. Rao, C. R. (1973). Representations of best linear estimators in the Gauss–Markoff model with a singular dispersion matrix. Journal of Multivariate Analysis, 3, 276–292.

    Article  MathSciNet  Google Scholar 

  23. Rao, C. R., & Mitra, S. K. (1971). Generalized inverse of matrices and its applications. New York: Wiley.

    MATH  Google Scholar 

  24. Tian, Y., & Puntanen, S. (2009). On the equivalence of estimations under a general linear model and its transformed models. Linear Algebra and its Applications, 430, 2622–2641.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Thanks go to the referees for constructive comments. Part of this research was done during the meeting of an International Research Group on Multivariate Models in the Mathematical Research and Conference Center, Bȩdlewo, Poland, March 2016, supported by the Stefan Banach International Mathematical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simo Puntanen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Markiewicz, A., Puntanen, S. (2019). Further Properties of the Linear Sufficiency in the Partitioned Linear Model. In: Ahmed, S., Carvalho, F., Puntanen, S. (eds) Matrices, Statistics and Big Data. IWMS 2016. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-030-17519-1_1

Download citation

Publish with us

Policies and ethics