Skip to main content
Log in

Some notes on linear sufficiency

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this paper we review some important aspects of the linear sufficiency of statistics \(\mathbf {F}\mathbf {y}\) and consider the relations of the best linear unbiased estimators of the estimable parametric functions under the linear model \(\fancyscript{A}\) and its counterpart \(\fancyscript{A}_{t}\) obtained by transforming \(\fancyscript{A}\) by the matrix \(\mathbf {F}\). Most results obtained appear in literature but often in scattered form. Our aim is provide a concise view of this problem area and discuss some possible misunderstandings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arendacká B, Puntanen S (2014) Further remarks on the connection between fixed linear model and mixed linear model. Stat Pap, http://dx.doi.org/10.1007/s00362-014-0611-9

  • Baksalary JK, Drygas H (1992) A note on the concepts of sufficiency in the general Gauss-Markov model: a coordinate-free approach. Forschungsbericht 92/2, Universität Dortmund, Fachbereich Statistik

  • Baksalary JK, Kala R (1981) Linear transformations preserving best linear unbiased estimators in a general Gauss-Markoff model. Ann Stat 9:913–916

    Article  MathSciNet  MATH  Google Scholar 

  • Baksalary JK, Kala R (1986) Linear sufficiency with respect to a given vector of parametric functions. J Stat Plan Inference 14:331–338

    Article  MathSciNet  MATH  Google Scholar 

  • Baksalary JK, Mathew T (1986) Linear sufficiency and completeness in an incorrectly specified general Gauss-Markov model. Sankhyā Ser A 48:169–180

    MathSciNet  MATH  Google Scholar 

  • Baksalary JK, Mathew T (1990) Rank invariance criterion and its application to the unified theory of least squares. Linear Algebra Appl 127:393–401

    Article  MathSciNet  MATH  Google Scholar 

  • Baksalary JK, Puntanen S, Styan GPH (1990) A property of the dispersion matrix of the best linear unbiased estimator in the general Gauss-Markov model. Sankhyā Ser A 52:279–296

    MathSciNet  MATH  Google Scholar 

  • Baksalary JK, Rao CR, Markiewicz A (1992) A study of the influence of the “natural restrictions” on estimation problems in the singular Gauss-Markov model. J Stat Plan Inference 31:335–351

    Article  MathSciNet  MATH  Google Scholar 

  • Baksalary OM, Trenkler G (2009) A projector oriented approach to the best linear unbiased estimator. Stat Pap 50:721–733

    Article  MathSciNet  MATH  Google Scholar 

  • Bhimasankaram P, Sengupta D (1996) The linear zero functions approach to linear models. Sankhyā Ser B 58:338–351

    MathSciNet  MATH  Google Scholar 

  • Davidson R, MacKinnon JG (2004) Econometric theory and methods. Oxford University Press, New York

    Google Scholar 

  • Drygas H (1983) Sufficiency and completeness in the general Gauss-Markov model. Sankhyā Ser A 45:88–98

    MathSciNet  MATH  Google Scholar 

  • Frisch R, Waugh FV (1933) Partial time regressions as compared with individual trends. Econometrica 1:387–401

    Article  MATH  Google Scholar 

  • Gourieroux C, Monfort A (1980) Sufficient linear structures: econometric applications. Econometrica 48:1083–1097

    Article  MathSciNet  MATH  Google Scholar 

  • Groß J (1998) A note on the concepts of linear and quadratic sufficiency. J Stat Plan Inference 70:88–98

    MathSciNet  MATH  Google Scholar 

  • Groß J (2004) The general Gauss-Markov model with possibly singular dispersion matrix. Stat Pap 45:311–336

    Article  MathSciNet  MATH  Google Scholar 

  • Groß J, Puntanen S (2000) Estimation under a general partitioned linear model. Linear Algebra Appl 321:131–144

    Article  MathSciNet  MATH  Google Scholar 

  • Groß J, Puntanen S (2005) Extensions of the Frisch-Waugh-Lovell Theorem. Discuss Math Probab Stat 25:39–49

    MathSciNet  MATH  Google Scholar 

  • Hauke J, Markiewicz A, Puntanen S (2012) Comparing the BLUEs under two linear models. Commun Stat Theory Methods 41:2405–2418

    Article  MathSciNet  MATH  Google Scholar 

  • Isotalo J, Puntanen S (2006a) Linear sufficiency and completeness in the partitioned linear model. Acta Comment Univ Tartu Math 10:53–67

    MathSciNet  MATH  Google Scholar 

  • Isotalo J, Puntanen S (2006b) Linear prediction sufficiency for new observations in the general Gauss-Markov model. Commun Stat Theory Methods 35:1011–1023

    Article  MathSciNet  MATH  Google Scholar 

  • Kala R (1981) Projectors and linear estimation in general linear models. Commun Stat Theory Methods 10:849–873

    Article  MathSciNet  MATH  Google Scholar 

  • Kala R, Pordzik PR (2009) Estimation in singular partitioned, reduced or transformed linear models. Stat Pap 50:633–638

    Article  MathSciNet  MATH  Google Scholar 

  • Lovell MC (1963) Seasonal adjustment of economic time series and multiple regression analysis. J Am Stat Assoc 58:993–1010

    Article  MathSciNet  MATH  Google Scholar 

  • Lovell MC (2008) A simple proof of the FWL Theorem. J Econ Educ 39:88–91

    Article  Google Scholar 

  • Markiewicz A, Puntanen S, Styan GPHS (2010) A note on the interpretation of the equality of OLSE and BLUE. Pak J Stat 26:127–134

    MathSciNet  Google Scholar 

  • Mitra SK (2000) My encounters with the null matrix. J Indian Stat Assoc 38:363–367

    Google Scholar 

  • Mitra SK, Moore BJ (1973) Gauss-Markov estimation with an incorrect dispersion matrix. Sankhyā Ser A 35:139–152

    MathSciNet  MATH  Google Scholar 

  • Müller J (1987) Sufficiency and completeness in the linear model. J Multivar Anal 21:312–323

    Article  MathSciNet  Google Scholar 

  • Müller J, Rao CR, Sinha BK (1984) Inference on parameters in a linear model: a review of recent results. In: Hinkelmann K (ed) Experimental design, statistical models, and genetic statistics. Dekker, New York, pp 277–295

    Google Scholar 

  • Passi RM (1976) Linear model estimation with extraneous estimates of a parametric subset, with an application to aircraft tracking. Technometrics 21:511–514

    Article  MATH  Google Scholar 

  • Puntanen S, Styan GPH (1989) The equality of the ordinary least squares estimator and the best linear unbiased estimator (with discussion). Am Stat 43:151–161 [Commented by O Kempthorne on pp 161–162 and by SR Searle on pp 162–163, Reply by the authors on p 164]

  • Puntanen S, Styan GPH (1990) Reply [to R Christensen (1990), RW Farebrother (1990), and DA Harville (1990)] (Letter to the Editor). Am Stat 44:192–193

  • Puntanen S, Styan GPH, Isotalo J (2011) Matrix tricks for linear statistical models: our personal top twenty. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Rao CR (1967) Least squares theory using an estimated dispersion matrix and its application to measurement of signals. In: LM Le Cam, J Neyman (eds) Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. Berkeley, California, 1965/1966, vol. 1, University of California Press, Berkeley, pp 355–372

  • Rao CR (1968) A note on a previous lemma in the theory of least squares and some further results. Sankhyā Ser A 30:245–252

    MathSciNet  Google Scholar 

  • Rao CR, Mitra SK (1971) Generalized inverse of matrices and its applications. Wiley, New York

    MATH  Google Scholar 

  • Sengupta D, Jammalamadaka SR (2003) Linear models: an integrated approach. World Scientific, River Edge

    Book  MATH  Google Scholar 

  • Tian Y, Puntanen S (2009) On the equivalence of estimations under a general linear model and its transformed models. Linear Algebra Appl 430:2622–2641

    Article  MathSciNet  MATH  Google Scholar 

  • Zellner A (1962) An efficient method of estimating seemingly unrelated regression equations and tests for aggregation bias. J Am Stat Assoc 57:348–368

    Article  MathSciNet  MATH  Google Scholar 

  • Zyskind G (1967) On canonical forms, non-negative covariance matrices and best and simple least squares linear estimators in linear models. Ann Math Stat 38:1092–1109

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Sincere thanks go to Barbora Arendacká and Jarkko Isotalo for helpful discussions. The constructive comments of the referees are also gratefully acknowledged. Part of this research was done during the meeting of a Research Group on Mixed and Multivariate Models in the Mathematical Research and Conference Center, Bȩdlewo, Poland, October 2013, supported by the Stefan Banach International Mathematical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simo Puntanen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kala, R., Puntanen, S. & Tian, Y. Some notes on linear sufficiency. Stat Papers 58, 1–17 (2017). https://doi.org/10.1007/s00362-015-0682-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-015-0682-2

Keywords

Mathematics Subject Classification

Navigation