Skip to main content

Repetitive Sequences in Pear

  • Chapter
  • First Online:
The Pear Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 789 Accesses

Abstract

Repetitive sequences account for a large proportion of the pear genome, suggesting that they play critical roles in the evolution of Pyrus. One form of repetitive sequences is transposable elements, which have been predominantly investigated thus far, including DNA transposons and retrotransposons. Approximately 22.5% of the ‘Bartlett’ genome (P. communis) and 42.4% of the ‘Suli’ genome (P. pyrifolia) are reported to be Long Terminal Repeat (LTR)-retrotransposons (LTR-RTs). Thus, investigation of transposable elements will offer new insights of the evolutionary history of Pyrus. LTR-RTs exhibit high heterogeneity and their copy numbers vary with the Pyrus species. The dynamics of LTR-RTs are an important source of genetic variation in Pyrus species. As of now, the function and development mechanism of transposable elements have not yet been fully understood. In this chapter, advances of transposable elements in Pyrus are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bailey L (1917) Standard cyclopedia of horticulture. Macmillan Press, New York, USA

    Google Scholar 

  • Bergman CM, Quesneville H (2007) Discovering and detecting transposable elements in genome sequences. Brief Bioinform 8(6):382–392

    Article  CAS  Google Scholar 

  • Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, Bailey P, Reforgiato-Recupero G, Martin C (2012) Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24(3):1242–1255

    Article  CAS  Google Scholar 

  • Chagne D, Crowhurst RN, Pindo M, Thrimawithana A, Deng C, Ireland H, Fiers M, Dzierzon H, Cestaro A, Fontana P, Bianco L, Lu A, Storey R, Knabel M, Saeed M, Montanari S, Kim YK, Nicolini D, Larger S, Stefani E, Allan AC, Bowen J, Harvey I, Johnston J, Malnoy M, Troggio M, Perchepied L, Sawyer G, Wiedow C, Won K, Viola R, Hellens RP, Brewer L, Bus VG, Schaffer RJ, Gardiner SE, Velasco R (2014) The draft genome sequence of European pear (Pyrus communis L. ‘Bartlett’). Plos One 9(4):e92644

    Article  Google Scholar 

  • Daron J, Glover N, Pingault L, Theil S, Jamilloux V, Paux E, Barbe V, Mangenot S, Alberti A, Wincker P, Quesneville H, Feuillet C, Choulet F (2014) Organization and evolution of transposable elements along the bread wheat chromosome 3B. Genome Biol 15(12):546

    Article  Google Scholar 

  • De Felice B, Wilson RR, Argenziano C, Kafantaris I, Conicella C (2009) A transcriptionally active copia-like retroelement in Citrus limon. Cell Mol Biol Lett 14(2):289–304

    Article  Google Scholar 

  • Du J, Tian Z, Hans CS, Laten HM, Cannon SB, Jackson SA, Shoemaker RC, Ma J (2010) Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant J 63(4):584–598

    Article  CAS  Google Scholar 

  • El Baidouri M, Panaud O (2013) Comparative genomic paleontology across plant kingdom reveals the dynamics of TE-driven genome evolution. Genome Biol Evol 5(5):954–965

    Article  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3(5):329–341

    Article  CAS  Google Scholar 

  • Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A (1992) Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res 20(14):3639–3644

    Article  CAS  Google Scholar 

  • Havecker ER, Gao X, Voytas DF (2004) The diversity of LTR retrotransposons. Genome Biol 5(6):225

    Article  Google Scholar 

  • Hirochika H, Okamoto H, Kakutani T (2000) Silencing of retrotransposons in arabidopsis and reactivation by the ddm1 mutation. Plant cell 12(3):357–369

    Article  CAS  Google Scholar 

  • Jiang S, Cai D, Sun Y, Teng Y (2016a) Isolation and characterization of putative functional long terminal repeat retrotransposons in the Pyrus genome. Mob DNA 7:1

    Article  Google Scholar 

  • Jiang S, Zheng X, Yu P, Yue X, Ahmed M, Cai D, Teng Y (2016b) Primitive genepools of asian pears and their complex hybrid origins inferred from fluorescent sequence-specific amplification polymorphism (SSAP) markers based on LTR retrotransposons. Plos One 11(2):e0149192

    Article  Google Scholar 

  • Jiang S, Zong Y, Yue X, Postman J, Teng Y, Cai D (2015) Prediction of retrotransposons and assessment of genetic variability based on developed retrotransposon-based insertion polymorphism (RBIP) markers in Pyrus L. Mol Genet Genomic 290(1):225–237

    Article  CAS  Google Scholar 

  • Kalendar R, Flavell AJ, Ellis TH, Sjakste T, Moisy C, Schulman AH (2011) Analysis of plant diversity with retrotransposon-based molecular markers. Heredity 106(4):520–530

    Article  CAS  Google Scholar 

  • Kalendar R, Schulman AH (2006) IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat Protoc 1(5):2478–2484

    Article  CAS  Google Scholar 

  • Kim H, Terakami S, Nishitani C, Kurita K, Kanamori H, Katayose Y, Sawamura Y, Saito T, Yamamoto T (2012) Development of cultivar-specific DNA markers based on retrotransposon-based insertional polymorphism in Japanese pear. Breed Sci 62(1):53–62

    Article  CAS  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304(5673):982

    Article  Google Scholar 

  • Kuhn BC, Lopez-Ribera I, da Silva Machad MDEF, Vicient CM (2014) Genetic diversity of maize germplasm assessed by retrotransposon-based markers. Electrophoresis 35(12–13):1921–1927

    Article  CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33(1):479–532

    Article  CAS  Google Scholar 

  • Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14(5):860–869

    Article  CAS  Google Scholar 

  • Meyers BC, Tingley SV, Morgante M (2001) Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 11(10):1660–1676

    Article  CAS  Google Scholar 

  • Palhares AC, Rodrigues-Morais TB, Van Sluys MA, Domingues DS, Maccheroni W Jr, Jordao H Jr, Souza AP, Marconi TG, Mollinari M, Gazaffi R, Garcia AA, Vieira ML (2012) A novel linkage map of sugarcane with evidence for clustering of retrotransposon-based markers. BMC Genet 13:51

    Article  CAS  Google Scholar 

  • Peterson DG, Schulze SR, Sciara EB, Lee SA, Bowers JE, Nagel A, Jiang N, Tibbitts DC, Wessler SR, Paterson AH (2002) Integration of cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. Genome Res 12(5):795–807

    Article  CAS  Google Scholar 

  • Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA, Panaud O (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16(10):1262–1269

    Article  CAS  Google Scholar 

  • Rubstov GA (1944) Geographical distribution of the genus Pyrus and trends and factors in its evolution. Am Nat 78:358–366

    Article  Google Scholar 

  • Sabot F, Schulman AH (2006) Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome. Heredity 97(6):381–388

    Article  CAS  Google Scholar 

  • SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20(1):43–45

    Article  CAS  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274(5288):765–768

    Article  CAS  Google Scholar 

  • Shapiro JA (2005) Retrotransposons and regulatory suites. BioEssays 27(2):122–125

    Article  CAS  Google Scholar 

  • Smykal P, Bacova-Kerteszova N, Kalendar R, Corander J, Schulman AH, Pavelek M (2011) Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theor Appl Genet 122(7):1385–1397

    Article  CAS  Google Scholar 

  • Sun J, Hao Y, Li L, Song Y, Fan L, Zhang S, Wu J (2015) Evaluation of new irap markers of pear and their potential application in differentiating bud sports and other rosaceae species. Tree Genet Genomes 11(2):1–13

    Article  Google Scholar 

  • Teng Y, Tanabe K (2004) Reconsideration on the origin of cultivated pears native to East Asia. Acta Hortic 634:175–182

    Article  Google Scholar 

  • Tsukahara S, Kobayashi A, Kawabe A, Mathieu O, Miura A, Kakutani T (2009) Bursts of retrotransposition reproduced in Arabidopsis. Nature 461(7262):423–426

    Article  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagne D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouze P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel CE, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42(10):833–839

    Article  CAS  Google Scholar 

  • Verde I, Abbott AG, Scalabrin S, Jung S, Shu SQ, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F, Zuccolo A, Rossini L, Jenkins J, Vendramin E, Meisel LA, Decroocq V, Sosinski B, Prochnik S, Mitros T, Policriti A, Cipriani G, Dondini L, Ficklin S, Goodstein DM, Xuan PF, Del Fabbro C, Aramini V, Copetti D, Gonzalez S, Horner DS, Falchi R, Lucas S, Mica E, Maldonado J, Lazzari B, Bielenberg D, Pirona R, Miculan M, Barakat A, Testolin R, Stella A, Tartarini S, Tonutti P, Arus P, Orellana A, Wells C, Main D, Vizzotto G, Silva H, Salamini F, Schmutz J, Morgante M, Rokhsar DS, Initiative IPG (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45(5):487-U447

    Article  Google Scholar 

  • Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BB, Powell W (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253(6):687–694

    Article  CAS  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12):973–982

    Article  CAS  Google Scholar 

  • Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23(2):396–408

    Article  CAS  Google Scholar 

  • Yin H, Du J, Wu J, Wei S, Xu Y, Tao S, Wu J, Zhang S (2015) Genome-wide annotation and comparative analysis of long terminal repeat retrotransposons between pear species of P. bretschneideri and P. communis. Sci Rep 5:17644

    Article  CAS  Google Scholar 

  • Yin H, Du JC, Li LT, Jin C, Fan L, Li M, Wu J, Zhang SL (2014) Comparative genomic analysis reveals multiple long terminal repeats, lineage-specific amplification, and frequent interelement recombination for Cassandra retrotransposon in pear (Pyrus bretschneideri Rehd.). Genome Biol Evol 6(6):1423–1436

    Article  CAS  Google Scholar 

  • Yin H, Wu X, Shi D, Chen Y, Qi K, Ma Z, Zhang S (2017) TGTT and AACA: two transcriptionally active LTR retrotransposon subfamilies with a specific LTR structure and horizontal transfer in four Rosaceae species. Mob DNA 8:14

    Article  Google Scholar 

  • Zheng X, Cai D, Potter D, Postmand J, Liu J, Teng Y (2014) Phylogeny and evolutionary histories of Pyrus L. revealed by phylogenetic trees and networks based on data from multiple DNA sequences. Mol Phylogenet Evol 80:54–65

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanwen Teng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiang, S., Teng, Y. (2019). Repetitive Sequences in Pear. In: Korban, S. (eds) The Pear Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-11048-2_8

Download citation

Publish with us

Policies and ethics