Skip to main content

Genetics and Breeding of Pear

  • Chapter
  • First Online:
The Pear Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Although Pyrus consists of 22 primary species, nearly all scion breeding is focused on three species, including Pyrus communis (European pear), Pyrus pyrifolia (sand pear), and Pyrus × bretschneideri (white pear). Most scion breeding programs around the world are in one of two camps: those breeding for European (P. communis) soft- or firm-textured pears, and those breeding for crisp-textured Asian pears (P. pyrifolia and P. × bretschneideri). Intercrossing among species is typically limited, except in New Zealand where it is a core aspect of the breeding program. The lack of effective control of pests and diseases in pear combined with increased consumer preferences for fruits grown with low chemical inputs and low environmental impacts is driving breeding programs to incorporate plant resistance to major pests and diseases. On the other hand, the range of vigor-controlling rootstocks for pear production is limited. Quince (Cydonia oblonga) rootstocks are preferred in Europe, as they offer vigor control, precocity, and ease of propagation. To date, utilization of quince rootstocks in North America has been restricted due to their lack of cold tolerance. Identification and testing of cold hardy quince selections could change this. Pyrus rootstocks are currently preferred in North America and in Asia because of their cold hardiness; however, they are more vigorous than quince, yet their yield efficiency is lower. Thus, vigor control is among breeding targets for Pyrus rootstocks. Hybrids between Pyrus species are now being used to overcome some of these deficiencies and to include adaption to highly alkaline soils. In addition, other species, such as Amelanchier, are being tested for their potentials to confer dwarfing, excellent cold tolerance, potential non-host resistance to pear decline, resistance to fire blight, and good yield efficiency. Recent identification of genetic markers for scion vigor control and precocity is a positive step for future breeding of enhanced Pyrus rootstocks. Overall, the development of cultivars and rootstocks with new or improved characters would be facilitated by the availability of molecular markers for traits of interest. However, pear breeding programs lag behind those of apple in application of marker-assisted selection and genomic selection to speed-up cultivar/rootstock development, and to ensure programs are more effective and efficient in their utilization of available resources. As current genetic markers are validated in more populations, and the pear reference genome sequence undergoes further refinement, these technologies will play a larger role in pear breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abaci ZT, Sevinindik E, Ayvaz M (2016) Comparative study of bioactive components in pear genotypes from Ardahan/Turkey. Biotech Biotechnol Equip 30(1):36–43

    Article  CAS  Google Scholar 

  • Abd El-Zaher MH, Essa MA, Khahil BM, El-Bassel EH (2015) Selection of low chilling requirements of F1 pear hybrid seedlings. J Hort Sci Orn Plants 7:1–6

    Google Scholar 

  • Abe K, Kotobuki K (1998a) Inheritance of high resistance to Venturia nashicola Tanaka et Yamamoto in Japanese pear (Pyrus pyrofolia Nakai) and Chinese pear (P. ussuriensis Maxim.). J Jpn Soc Hort Sci 67(5):677–680

    Article  Google Scholar 

  • Abe K, Sato Y, Saito T, Kurihara A, Kotobuki K (1993) Inheritance of ripening time of fruit of Japanese pear (Pryus pyrifolia Nakai). Jpn J Breed 43(2):289–298. https://doi.org/10.1270/jsbbs1951.43.289

    Article  Google Scholar 

  • Abe K, Saito Y, Kurihara A, Kotobuki K (1995) Narrow-sense heritability of fruit characters in Japanese pear (Pyrus pyrifolia Nakai). Breed Sci 45:1–5

    Google Scholar 

  • Abe K, Kotobuki K, Saito T, Terai O (2000) Inheritance of resistance to pear scab from European pears to Asian pears. J Jpn Soc Hort Sci 69:1–8. https://doi.org/10.2503/jjshs.69.1

    Article  Google Scholar 

  • Abe K, Saito T, Terai O, Sato Y, Kotobuki K (2008) Genotypic difference for the susceptibility of Japanese, Chinese and European pears to Venturia nashicola, the cause of scab on Asian pears. Plant Breed 127(4):407–412

    Article  Google Scholar 

  • Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135(2):187–204

    Article  Google Scholar 

  • Anon (2014) Rootstocks. Apple and Pear Australia, 23/5/2018

    Google Scholar 

  • Anon About Q-Eline. http://www.q-elinenet/about-q-eline/, 25/5/2018

  • Anon Rootstock research at East Malling: a history. http://www.emr.ac.uk/projects/rootstock-research-east-malling-history/, 25/5/2018

  • Anon Cydonia Catalog NCGR-Corvallis. https://www.arsusdagov/ARSUserFiles/20721500/catalogs/cydcoldhtml, 25/5/2018

  • Bagnara GL, Rivalta L, Laghi M, Quarta R, Lecomte P (1993) Cross combinations for fire blight resistance in pear. Acta Hort 338:369–374

    Article  Google Scholar 

  • Bagnara GL, Rivalta L, Laghi M, Quarta R (1996) Evaluation of fire blight resistance in pear: Combining ability and breeding strategy. Acta Hortic 441:383–392

    Article  Google Scholar 

  • Banno K, Hayashi T, Tanabe K, Tokuzumi A (1988) In vitro propagation of Japanese pear rootstocks. Plant Tiss Cult Lett 5(2):87–89

    Article  Google Scholar 

  • Barbosa ACL, Sarkar D, Pinto MDS, Ankolekar C, Greene D, Shetty K (2013) Type 2 diabetes relevant bioactive potential of freshly harvested and long-term stored pears using in vitro assay models. J Food Biochem 37(6):677–686

    Article  CAS  Google Scholar 

  • Batlle I, Lozano L, Iglesias I, Carbó J, Bonany J, White AG, Volz RK, Brewer LR (2008) The IRTA-HR pear scion breeding programme: aiming for high fruit quality under warm growing conditions. Acta Hortic 800:455–460

    Article  Google Scholar 

  • Bell RL (1991) Pears (Pyrus). In: Moore JN, Ballington JR (eds) Genetic resources of temperate fruit and nut crops. Acta Hortic, vol 290, pp 657–700

    Google Scholar 

  • Bell RL (1992) Additional East European Pyrus germplasm with resistances to pear psylla nymphal feeding. HortScience 27(5):412–413

    Article  Google Scholar 

  • Bell RL (2013a) Host resistance to pear pyslla of breeding program selections and cultivars. HortScience 48:143–145

    Article  Google Scholar 

  • Bell RL (2013b) Inheritance of resistance to pear psylla nymphal feeding in pear (Pyrus communis L.) of European origin. HortScience 48(4):425–427

    Article  Google Scholar 

  • Bell RL (2019) Genetics, genomics, and breeding for fire blight resistance in pear. In: Korban SS (ed) The pear genome. Intl Springer Publ.

    Google Scholar 

  • Bell RL, Itai A (2011) Pyrus. In: Kole C (ed) Wild Crop Relatives: genomic and breeding resources: temperate fruits. Springer, Berlin, pp 147–177

    Chapter  Google Scholar 

  • Bell RL, Janick J (1990) Quantitative genetic analysis of fruit quality in pear. J Am Soc Hort Sci 115(5):829–834

    Article  Google Scholar 

  • Bell RL, Puterka GL (2004) Modes of host plant resistance to pear psylla: a review. Acta Hortic 663:183–188

    Article  Google Scholar 

  • Bell RL, Stuart LC (1990) Resistance to eastern European Pyrus germplasm to pear psylla nymphal feeding. HortScience 25(7):789–791

    Google Scholar 

  • Bell RL, Van der Zwet T (1987) Virulence of Erwinia amylovora isolates on Pyrus host clones. HortScience 22:1058

    Google Scholar 

  • Bell RL, Van der Zwet T (1996) Stability of host resistance of pear to fire blight. Acta Hortic 411:413–414

    Article  Google Scholar 

  • Bell RL, Janick J, Zimmerman RH, Van der Zwet T (1977) Estimation of heritability and combining ability for fire blight resistance in pear. J Am Soc Hort Sci 102(2):133–138

    Google Scholar 

  • Bell RL, van der Zwet T, Thibault B, Bonn WG, Lecomte P (1990) Environmental and strain effects on screening for fire blight resistance. Acta Hortic 237:343–350

    Article  Google Scholar 

  • Bell RL, Quamme HA, Layne REC, Skirven RM (1996) Pears. In: Jannick J, Moore JN (eds) Fruit breeding. Tree and tropical fruits. Wiley, NY, pp 441–514

    Google Scholar 

  • Bellini E, Nin S (2002) Breeding for new traits in pear. Acta Hortic 596:217–224

    Article  Google Scholar 

  • Belrose I (2016) World Pear Review 2016. www.e-belrose.com

  • Benedek P, Szabó T, Nyéki J, Soltész M, Szabó Z, Konrád-Németh C (2010) Susceptibility of European pear genotypes in a gene bank to pear psylla damage and possible exploitation of resistant varieties in organic farming. Intl J Hort Sci 16(3):95–101

    Google Scholar 

  • Bhat ZA, Dhillon WS, S Shafi RH, Rather JA, Mir AH, Shafi W, Rashid R, Bhat JA, Rather TR, Wani TA (2012) Influence of storage temperature on viability and in vitro germination capacity of pear (Pyrus spp.) pollen. J Agric Sci 4 (11):128

    Google Scholar 

  • Bokscczanin K, Dondini L, Przybyla AA (2009) First report on the presence of fire blight resistance in linkage group 11 of Pyrus ussuerensis Maxim. J Appl Genet 50(2):99–104

    Article  Google Scholar 

  • Booi S, Dyk MMv, Preez MGd, Rees DJG, Labuschagne I (2005) Molecular typing of red and green phenotypes of ‘Bon Rouge’ pear trees, with the use of microsatellites. Acta Hortic 671: 293–297

    Google Scholar 

  • Bouvier L, Bourcy M, Boulay M, Tellier M, Guérif P, Denancé C, Durel C-E, Lespinasse Y (2011) European pear cultivar resistance to bio-pests: Scab (Venturia pirini) and Pyslla (Cacopyslla pyri). Acta Hortic 909:459–470

    Article  CAS  Google Scholar 

  • Bouvier L, Bourcy M, Boulay M, Tellier M, Guerif P, Denance C, Durel CE, Lespinasse Y (2012) A new pear scab resistance gene Rvp1 from the European pear cultivar ‘Navara’ maps in a genomic region syntenic to an apple scab resistance gene cluster on linkage group 2. Tree Genet Genomes 8(1):53–60

    Article  Google Scholar 

  • Bower JH, Biasi WV, Mitcham E (2003) Effect of ethylene in the storage environment on quality of ‘Bartlett pears’. Postharv Biol Tech 28:371–379

    Article  CAS  Google Scholar 

  • Branişte N, Andrieş N, Ghidra V (2008) Pear genetic breeding to improve Romanian varieties. Acta Hortic 800:491–496

    Article  Google Scholar 

  • Brewer LR, Palmer JW (2011) Global pear breeding programmes: goals, trends and progress for new cultivars and new rootstocks. Acta Hortic 909:105–120

    Article  Google Scholar 

  • Brewer LR, Alspach P, Morgan C (2008a) Manipulation of pear seedlings to reduce juvenility. Acta Hortic 800:289–296

    Article  Google Scholar 

  • Brewer LR, Morgan C, Alspach PA, Volz RK, White AG (2008b) Interspecific pear breeding for flavour and texture. Acta Hortic 800:461–468

    Article  Google Scholar 

  • Brewer LR, Alspach PA, Morgan C, Bus VGM (2009) Resistance to scab caused by Venturia pirina in interspecific pear (Pyrus spp.) hybrids. NZ J Crop Hort Sci 37(3):211–218

    Google Scholar 

  • Brewer LR, Morgan CGT, Alspach PA, Volz RK (2011) Heritability and parental breeding value estimates of abrasion-induced skin discolouration on pear fruit. Acta Hortic 909:127–136

    Article  Google Scholar 

  • Briolini G, Cappeli A, Rivalta L, Rosati P (1988) Observations on Pyrus communis resistance to Psylla pyri. Acta Hortic 224:211–222

    Article  Google Scholar 

  • Bus VGM, Rikkerink EHA, Caffier V, Durel C-E, Plummer KM (2011) Revision of the nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus. Ann Rev Phytopathol 49(1):391–413. https://doi.org/10.1146/annurev-phyto-072910-095339

    Article  CAS  Google Scholar 

  • Cabrefiga J, Montesinos E (2005) Analysis of aggressiveness of Erwinia amylovora using disease-dose and time relationships. Phytopathol 95(12):1430–1437

    Article  Google Scholar 

  • Cao Ye (2014) Pear varieties in China. China Agricultural Press

    Google Scholar 

  • Cao Y, Huang L, Li S, Yang Y (2002) Genetics of ploidy and hybridized combination types for polyploid breeding in pear. Acta Hortic 587:207–210

    Article  Google Scholar 

  • Cao Y, Chang YH, Chen Q, Dai M, Dong X, Hu H, Liu J, Qi D, Shi Z, Sun J, Tian L, Wang Y, Wang W, Zhang YY, Zhang J (2014) Pear varieties in China. China Agricultural Press, Beijing

    Google Scholar 

  • Chagne D, Crowhurst RN, Pindo M, Thrimawithana A, Deng C, Ireland H, Fiers M, Dzierzon H, Cestaro A, Fontana P, Bianco L, Lu A, Storey R, Knaebel M, Saeed M, Montanari S, Kim YK, Nicolini D, Larger S, Stefani E, Allan AC, Bowen J, Harvey I, Johnston J, Malnoy M, Troggio M, Perchepied L, Sawyer G, Wiedow C, Won K, Viola R, Hellens RP, Brewer L, Bus VGM, Schaffer RJ, Gardiner SE, Velasco R (2014) The draft genome sequence of European pear (Pyrus communis L. ‘Bartlett’). Plos One 9(4). https://doi.org/10.1371/journal.pone.0092644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chevalier M, Bernard C, Tellier M, Lespinasse Y, Filmond R, Le Lezec M (2004) Variability in the reaction of several pear (Pyrus communis) cultivars to different inocula of Venturia pirini. Acta Hortic 663:177–182

    Article  Google Scholar 

  • Cho KH, Shin IS, Kim KT, Suh EJ, Hong SS, Lee HJ (2009) Development of AFLP and CAPS markers linked to the scab resistance gene, Rvn2, in an inter-specific hybrid pear (Pyrus spp.). J Hort Sci Biotech 84(6):619–624

    Google Scholar 

  • Civolani S (2012) The past and present of pear protections against the pear psylla, Cacopsylla pyri L. In: Perveen F (ed) Insecticides—pest engineering. InTech, Rijeka, pp 385–408

    Google Scholar 

  • Corwin JA, Kliebenstein DJ (2017) Quantitaitve resistance: more than just perception of a pathogen. Plant Cell 29:655–665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crane MB, Lewis D (1940) Genetical studies in pears. II. A classification of cultivated varieties. J Pomol 18:52–60

    Google Scholar 

  • Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19(9):592–601

    Article  CAS  PubMed  Google Scholar 

  • Dondini L, Sansavini S (2012) European pear. In: Badenes J, Byrne DH (eds) Fruit breeding. Handbook of plant breeding, vol 8. Springer Science+Business Media, 369–413

    Google Scholar 

  • Dondini L, Costa F, Pierantoni L, Gaiotti F, Chiodini R, Tartarini S, Sansavini S (2004) The RGA family. Promising gene analog related to fireblight and Sharka resistance in pear and apricot. Acta Hortic 663:161–165

    Article  CAS  Google Scholar 

  • Dondini L, Pierantoni L, Ancarani V, D’Angelo M, Cho KH, Shin IS, Musacchi S, Kang SJ, Sansavini S (2008) The inheritance of the red colour character in European pear (Pyrus communis) and its map position in the mutated cultivar ‘Max Red Bartlett’. Plant Breed 127(5):524–526

    Article  Google Scholar 

  • Dondini L, De Franceschi P, Ancarani V, Civolani S, Fano EA, Musacchi S (2015) Identification of a QTL for psylla resistance in pear via genome scanning approach. Sci Hort 197:568–572

    Article  Google Scholar 

  • Drain BD (1943) Southern pear breeding. Proc Am Soc Hort Sci 42:301–304

    Google Scholar 

  • Durel CE, Guerif P, Belouin A, Le Lezec M (2004) Estimation of fire blight resistance heritability in the French pear breeding programme using a pedigree-based approach. Acta Hortic 663:251–255

    Article  Google Scholar 

  • Eccher Zerbini P (2002) The quality of pear fruit. Acta Hortic 596:805–810

    Article  Google Scholar 

  • Einhorn T, Postman J, Dittrich F, Treutter D, Neumüller M (2017) Development of cold-hardy Quince and Amelanchier rootstocks for dwarfing, precocity, and high productivity of pear. http://interperaweebly.com/uploads/1/7/0/4/17040934/einhorn_presentationpdf

  • Elkins R, Bell R, Einhorn T (2012) Needs assessment for future US pear rootstock research directions based on the current state of pear production and rootstock research. J Am Soc Hort Sci 66:153–163

    Google Scholar 

  • Espley R, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49(3):414–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng S, Wang Y, Yang S, Xu Y, Chen X (2010) Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10. Planta 232(1):245–255

    Article  CAS  PubMed  Google Scholar 

  • Fischer M (2007) New pear rootstocks from Dresden-Pillnitz. Acta Hort 732:239–245

    Article  Google Scholar 

  • Galvis Sánchez AC, Gil-Izquierdo A, Gil MI (2003) Comparative study of six pear cultivars in terms of their phenolic and vitamin C contents and antioxidant capacity. J Sci Food Agric 83(10):995–1003

    Article  CAS  Google Scholar 

  • Gharehaghaji AN, Arzani K, Abdollahi H, Shojaeiyan A, Dondini L, Franceschi Pd (2014) Genomic characterization of self-incompatibility ribonucleases in the Central Asian pear germplasm and introgression of new alleles from other species of the genus Pyrus. Tree Genet Genomes 10(2):411–428

    Article  Google Scholar 

  • Gill US, Lee S, Mysore KS (2015) Host versus nonhost resistance: distinct wars with similar arsenals. Phytopathol 105(5):580–587

    Article  Google Scholar 

  • Goldway M, Takasaki-Yasuda T, Sanzol J, Mota M, Zisovich A, Stern RA, Sansavini S (2009) Renumbering the S-RNase alleles of European pears (Pyrus communis L.) and cloning the S109 RNase allele. Sci Hort 119(4):417–422

    Article  CAS  Google Scholar 

  • Gonai T, Terakami S, Nishitani C, Yamamoto T, Kasumi M (2009) The validity of marker-assisted selection using DNA markers linked to a pear scab resistance gene (Vnk) in two populations. J Jpn Soc Hort Sci 78(1):49–54

    Article  CAS  Google Scholar 

  • González-Domínguez E, Armengol J, Rossi V (2017) Biology and epidemiology of Venturia species affecting fruit crops: a review. Front Plant Sci 8:1496. https://doi.org/10.3389/fpls.2017.01496

    Article  PubMed  PubMed Central  Google Scholar 

  • Hae-Sung H, Jae-Kyun B, Whee-Cheon K, ll-Sheob S (2015) Inheritance of fruit ripening time in oriental pear (Pyrus pyrifolia var. culta Nakai). Hort Sci Tech 33:712–721

    Google Scholar 

  • Hancock JF, Lobos GA (2008) Pears. In: Hancock JF (ed) Temperate fruit crop breeding. Germplasm to genomics. Springer, USA, pp 299–336

    Chapter  Google Scholar 

  • Harker FR, Marsh KB, Young H, Murray SH, Gunson FA, Walker SB (2002) Sensory interpretation of instrumental measurements 2: sweet and acid taste of apple fruit. Postharv Biol Tech 24(3):241–250

    Article  Google Scholar 

  • Harris MK, Lamb RC (1973) Resistance to the Pear Psylla in Pears with Pyrus ussuriensis Lineage. J Am Soc Hort Sci 98:378–381

    Google Scholar 

  • Hauagge R, Cummins JN (2013) Pear breeding for low chilling. In: Erez A (ed) Temperate fruit crops in warm climates. Springer Science and Business Media, B.V., pp 288–303

    Google Scholar 

  • Hodkinson ID (2009) Life cycle variation and adaptation in jumping plant lice (Insecta: Hemiptera: Psylloidea): a global synthesis. J Nat Hist 43(1–2):65–179

    Article  Google Scholar 

  • Hudina M, Štampar F (2004) Effect of climatic and soil conditions on sugars and organic acids content of pear fruits (Pyrus communis l.) cvs. ‘Williams’ and ‘Conference’. Acta Hortic 636:527–531

    Google Scholar 

  • Hunter DM, Layne REC (2004) Introductions from the AAFC-Harrow tree fruit breeding programs. Acta Hortic 663:907–910. https://doi.org/10.17660/ActaHortic.2004.663.166

    Article  Google Scholar 

  • Inoue E, Kasumi M, Sakuma F, Anzai H, Amano K, Hara H (2006) Identification of RAPD marker linked to fruit skin color in Japanese pear (Pyrus pyrifolia Nakai). Sci Hort 107(3):254–258

    Article  CAS  Google Scholar 

  • Ishii H, Udagawa H, Nishimoto S, Tsuda T, Nakashima H (1992) Scab resistance in pear species and cultivars. Acta Phytopathol Entomol Hungar 27:293–298

    Google Scholar 

  • Itai A, Fujita N (2008) Identification of climacteric and nonclimacteric phenotypes of Asian pear cultivars by CAPS analysis of 1-aminocyclopropane-1-carboxylate synthase genes. HortScience 43(1):119–121

    Article  CAS  Google Scholar 

  • Itai A, Kawata T, Tanabe K, Tamura F, Uchiyama M, Tomomitsu M, Shiraiwa N (1999) Identification of 1-aminocyclopropane-1-carboxylic acid synthase genes controlling the ethylene level of ripening fruit in Japanese pear (Pyrus pyrifolia Nakai). Mol Gen Genet 261(1):42–49

    Article  CAS  PubMed  Google Scholar 

  • Itai A, Kotaki T, Tanabe K, Tamura F, Kawaguchi D, Fukuda M (2003) Rapid identification of 1-aminocyclopropane-1-carboxylate (ACC) synthase genotypes in cultivars of Japanese pear (Pyrus pyrifolia Nakai) using CAPS markers. Theor Appl Genet 106(7):1266–1272

    Article  CAS  PubMed  Google Scholar 

  • Iwata H, Hayashi T, Terakami S, Takada N, Saito T, Yamamoto T (2013a) Genomic prediction of trait segregation in a progeny population: a case study of Japanese pear (Pyrus pyrifolia). BMC Genet 14:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Iwata H, Hayashi T, Terakami S, Takada N, Sawamura Y, Yamamoto T (2013b) Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia. Breed Sci 63(1):125–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaeger SR, Lund CM, Lau K, Harker FR (2003) In search of the “ideal” pear (Pyrus spp.): results of a multidisciplinary exploration. J Food Sci 68(3):1108–1117. https://doi.org/10.1111/j.1365-2621.2003.tb08296.x

    Article  CAS  Google Scholar 

  • Kang X (2010) The research on polymorphism of the flavor components of ripe fruit of Chinese Pyrus ussuriensis Maxim local varieties. Central South University Forestry and Technology, China

    Google Scholar 

  • Khan MA, Zhao Y, Korban SS (2012) Molecular mechanisms of pathogenesis and resistance to the bacterial pathogen Erwinia amylovora, causal agent of fire blight disease in Rosaceae. Plant Mol Biol Rep 30(2):247–260. https://doi.org/10.1007/s11105-011-0334-1

    Article  CAS  Google Scholar 

  • Kikuchi A (1924) On the origin of Japanese pear and inheritance of the skin colours of their fruits. Jpn J Genet 3:1–27

    Article  Google Scholar 

  • Kikuchi A (1930) On skin color of the Japanese pear, and its inheritance. Contr Inst Plant Ind 8:1–50

    Google Scholar 

  • Kim Y-K, Kang S-S, Won K-H, Shin I-S, Cho K-S, Ma K-B, Kim M-S, Choi J-J, Choi J-H (2016) Breeding of the scab-resistant pear cultivar ‘Greensis’. Korean J Hort Sci Tech 34(4):655–661

    Google Scholar 

  • Knabel M, Friend AP, Palmer JW, Diack R, Gardiner SE, Tustin S, Schaffer R, Foster T, Chagne D (2017) Quantitative trait loci controlling vegetative propagation traits mapped in European pear (Pyrus communis L.). Tree Genet Genomes 13(3). https://doi.org/10.1007/s11295-017-1141-0

  • Knäbel M, Friend AP, Palmer JW, Diack R, Wiedow C, Alspach P, Deng C, Gardiner SE, Tustin DS, Schaffer R, Foster T, Chagné D (2015) Genetic control of pear rootstock-induced dwarfing and precocity is linked to a chromosomal region syntenic to the apple Dw1 loci. BMC Plant Biol 15:230. https://doi.org/10.1186/s12870-015-0620-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolniak-Ostek J (2016) Content of bioactive compounds and antioxidant capacity in skin tissues of pear. J Funct Foods 23(Supplement C):40–51. https://doi.org/10.1016/j.jff.2016.02.022

    Article  CAS  Google Scholar 

  • Kretzschmar AA, Brighenti LM, Rufato L, Pelizza TR, Silveira FN, Miquelutti DJ, Faoro ID (2011) Chilling requirement for dormancy bud break in European pear. Acta Hortic 909:85–88. https://doi.org/10.17660/ActaHortic.2011.909.7

    Article  Google Scholar 

  • Kumar S, Chagne D, Bink MCAM, Volz RK, Whitworth CJ, Carlisle C (2012) Genomic selection for fruit quality traits in apple (Malus × domestica Borkh.). PLoS ONE 7(5):e36674. https://doi.org/10.1371/journal.pone.0036674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Kirk C, Deng C, Wiedow C, Knaebel M, Brewer L (2017) Genotyping-by-sequencing of pear (Pyrus spp.) accessions unravels novel patterns of genetic diversity and selection footprints. Hort Res 4:17015. https://doi.org/10.1038/hortres.2017.15

  • Laurens F, Aranzana MJ, Arus P, Bassi D, Bink M, Bonany J, Caprera A, Corelli-Grappadelli L, Costes E, Durel C-E, Mauroux J-P, Muranty H, Nazzicari N, Pascal T, Patocchi A, Peil A, Quilot-Turion B, Rossini L, Stella A, Troggio M, Velasco R, van de Weg E (2018) An integrated approach for increasing breeding efficiency in apple and peach in Europe. Hort Res 5:1–14

    Article  CAS  Google Scholar 

  • Layne REC, Bailey CH, Hough LF (1968) Efficacy of transmission of fire blight resistance in Pyrus. Can J Plant Sci 48(3):231–243

    Article  Google Scholar 

  • Lespinasse Y, Chevalier M, Durel CE, Guerif P, Tellier M, Denance C, Belouin A, Robert P (2008) Pear breeding for scab and psylla resistance. Acta Hortic 800:475–481

    Article  Google Scholar 

  • Li JC, Yi K, Liu C, Sui HT, Wang JZ, Zhang QJ (2004) Studies on the inheritance of volatiles in pear fruit. Acta Hortic 663:345–348

    Article  CAS  Google Scholar 

  • Liu J, Cui H, Wang L, Wang X, Yang J, Zhang Z, Li X, Qiao Y (2011) Analysis of pear fruit acid/low-acid trait by SSR marker. J Fruit Sci 28(3):389–393

    CAS  Google Scholar 

  • Liu L, Chen C-X, Zhu Y-F, Xue L, Liu Q-W, Qi K-J, Zhang S-L, Wu J (2016) Maternal inheritance has impact on organic acid content in progeny of pear (Pyrus spp.) fruit. Euphytica 209(2):305–321

    Article  CAS  Google Scholar 

  • Lombard PB, Westwood MN (1987) Pear rootstocks. In: Rom RC, Carlson RF (eds) Rootstocks for fruit crops. Wiley, New York, pp 145–183

    Google Scholar 

  • Luby JJ, Shaw DV (2001) Does marker-assisted selection make dollars and sense in a fruit breeding program? HortScience 36:872–879

    Article  Google Scholar 

  • Moffett AA (1933) Cytological studies in cultivated pears. Genetica 15:511–518

    Article  Google Scholar 

  • Momol MT, Aldwinckle HS (2000) Genetic diversity and host range of Erwinia amylovora. In: Vanneste JL (ed) Fire blight. The disease and its causative agent, Erwinia amylovora. CABI Publish, Wallingford, pp 55–72

    Chapter  Google Scholar 

  • Montanari S, Guérif P, Ravon E, Denancé C, Muranty H, Velasco R, Chagné D, Bus VGM, Robert P, Perchepied L, Durel C-E (2015) Genetic mapping of Cacopsylla pyri resistance in an interspecific pear (Pyrus spp.) population. Tree Genet Genomes 11(4):74. https://doi.org/10.1007/s11295-015-0901-y

  • Montanari S, Brewer L, Lamberts R, Velasco R, Malnoy M, Perchepied L, Guerif P, Durel CE, Bus VGM, Gardiner SE, Chagne D (2016a) Genome mapping of postzygotic hybrid necrosis in an interspecific pear population. Hort Res 3:15064. https://doi.org/10.1038/hortres.2015.64

    Article  CAS  Google Scholar 

  • Montanari S, Perchepied L, Renault D, Frijters L, Velasco R, Horner M, Gardiner SE, Chagne D, Bus VGM, Durel CE, Malnoy M (2016b) A QTL detected in an interspecific pear population confers stable fire blight resistance across different environments and genetic backgrounds. Mol Breed 36(47):1–16

    CAS  Google Scholar 

  • Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K (2007) Loss of anthocyanins in red-wine grape under high temperature. J Exp Bot 58(8):1935–1945

    Article  CAS  PubMed  Google Scholar 

  • Necas T, Laňar L, Ondrášek I, Náměstek J, Láčík J, Kosina J (2016) Propagation of selected pear and quince rootstocks by hardwood cuttings. Acta Univ Agric Silvic Mendelianae Brun 64(4):1211–1217

    Article  CAS  Google Scholar 

  • Nin S, Ferri A, Sacchetti P, Giordani E (2012) Pear resistance to psylla (Cacopsylla pyri L.): a review. Adv Hort Sci 26(2):59–74

    Google Scholar 

  • Nishio S, Yamada M, Sawamura Y, Takada N, Saito T (2011) Environmental variance components of fruit ripening date as used in both phenotypic and marker-assisted selection in Japanese pear breeding. HortScience 46(11):1540–1544

    Article  Google Scholar 

  • Nishitani C, Yamaguchi-Nakamura A, Hosaka F, Terakami S, Shimizu T, Yano K, Itai A, Saito T, Yamamoto T (2012) Parthenocarpic genetic resources and gene expression related to parthenocarpy among four species in pear (Pyrus spp.). Sci Hort 136:101–109. https://doi.org/10.1016/j.scienta.2011.12.029

    Article  CAS  Google Scholar 

  • Norelli JL, Aldwinckle HS, Beer SV (1984) Differential host × pathogen interaction among cultivars of apple and strains of Erwinia amylovora. Phytopathology 74(2):136–139

    Article  Google Scholar 

  • Ntladi SM, Human JP, Bester C, Vervalle J, Roodt-Wilding R, Tobutt KR (2018) Quantitative trait loci (QTL) mapping of blush skin and flowering time in a European pear (Pyrus communis) progeny of ‘Flamingo’ × ‘Abate Fetel’. Tree Genet Genomes 14(5):70. https://doi.org/10.1007/s11295-018-1280-y

    Article  Google Scholar 

  • Oraguzie NC, Whitworth CJ, Brewer L, Hall A, Volz RK, Bassett H, Gardiner SE (2010) Relationships of PpACS1 and PpACS2 genotypes, internal ethylene concentration and fruit softening in European (Pyrus communis) and Japanese (Pyrus pyrifolia) pears during cold air storage. Plant Breed 129(2):219–226

    Article  CAS  Google Scholar 

  • Ouvrard D (2017) Psyl’list-the world Psylloidea database. http://www.catalogueoflife.org/annual-checklist/2017/details/database/id/54

  • Palonen P, Buszard D (1997) Current state of cold hardiness research on fruit crops. Can J Plant Sci 77:399–420

    Article  Google Scholar 

  • Park DH, Lee Y-G, Cha J-S, Oh C-S (2017) Current status of fire blight caused by Erwinia amylovra and action for its management in Korea. J Plant Pathol 99:59–63

    Google Scholar 

  • Pasqualini E, Civolani S, Musacchi S, Ancarini V, Dondini L (2006) Cacopsylla pyri behaviour on new pear selections for host resistance programs. Bull Insect 59(1):27–37

    Google Scholar 

  • Patil BS, Uckoo RM, Jayaprakasha GK, Palma MA (2016) Consumers’ changing perceptions of quality: revisiting the science of fruit and vegetable cultivation for improved health benefits. Acta Hortic 1120:459–468

    Article  Google Scholar 

  • Peace CP (2017) DNA-informed breeding of rosaceous crops: Promises, progress and prospects. Hort Res 4:17006

    Article  Google Scholar 

  • Peil A, Bus VGM, Geider K, Richter K, Flachowsky H, Hanke MV (2009) Improvment of fire blight resistance in apple and pear. Intl J Plant Breed 3(1):1–27

    Article  Google Scholar 

  • Perchepied L, Leforestier D, Ravon E, Guerif P, Denance C, Tellier M, Terakami S, Yamamoto T, Chevalier M, Lespinasse Y, Durel CE (2015) Genetic mapping and pyramiding of two new pear scab resistance QTLs. Mol Breed 35(10). https://doi.org/10.1007/s11032-015-0391-5

  • Perchepied L, Guerif P, Ravon E, Denance C, Laurens F, Robert P, Bouvier L, Lespinasse Y, Durel CE (2016) Polygenic inheritance of resistance to Cacopsylla pyri in a Pyrus communis × P. ussuriensis progeny is explained by three QTLs involving an epistatic interaction. Tree Genet Genomes 12(6):1–10

    Google Scholar 

  • Pierantoni L, Cho KH, Shin IS, Chiodini R, Tartarini S, Dondini L, Kang SJ, Sansavini S (2004) Characterisation and transferability of apple SSRs to two European pear F-1 populations. Theor Appl Genet 109(7):1519–1524

    Article  CAS  PubMed  Google Scholar 

  • Pierantoni L, Dondini L, Cho KH, Shin IS, Gennari F, Chiodini R, Tartarini S, Kang SJ, Sansavini S (2007) Pear scab resistance QTLs via a European pear (Pyrus communis) linkage map. Tree Genet Genomes 3(4):311. https://doi.org/10.1007/s11295-11006-10070-11290

  • Pierantoni L, Dondini L, Franceschi Pd, Musacchi S, Winkel BSJ, Sansavini S (2010) Mapping of an anthocyanin-regulating MYB transcription factor and its expression in red and green pear, Pyrus communis. Plant Physiol Biochem 48(12):1020–1026

    Article  CAS  PubMed  Google Scholar 

  • Postman JD (1994) Graft compatibility of pear with related genera. Acta Hortic 367:380

    Article  Google Scholar 

  • Postman JD, Spotts RA, Calabro J (2005) Scab resistance in Pyrus germplasm. Acta Hortic 671:601–608

    Article  Google Scholar 

  • Puterka GJ (1997) Intraspecific variation in pear psylla (Psyllidae: Homoptera) nymphal survival and development on resistant and susceptible pear. Env Entomol 26(3):552–558

    Article  Google Scholar 

  • Quamme HA (1984) Observations of Psylla resistance among several pear cultivars and species. Fruit Var J Agric Food Chem 38(2):34–36

    Google Scholar 

  • Quamme HA (1991) Application of thermal analysis to breeding fruit crops for increased cold hardiness. HortScience 26(5):513–517

    Article  Google Scholar 

  • Quamme HA, Bonn WG (1981) Virulence of Erwinia amylovora and its influence on the determination of fire blight resistance of pear cultivars and seedlings. Can J Plant Pathol 3(4):187–190

    Article  Google Scholar 

  • Quamme HA, Kappel F, Hall JW (1990) Efficacy of early selection for fire blight resistance and the analysis of combining ability for the fire blight resistance in several pear progenies. Can J Plant Sci 70:905–913

    Article  Google Scholar 

  • Quarta R, Puggioni D (1985) Survey on the variety susceptibility to pear psylla. Acta Hortic 159:77–86

    Article  Google Scholar 

  • Rivalta L, Dradi M, Rosati C (2002) Thirty years of pear breeding activity at ISF Forlì, Italy: a review. Acta Hortic 596:233–238

    Article  Google Scholar 

  • Robert P, Raimbault T (2005) Resistance of some Pyrus communis cultivars and Pyrus hybrids to the pear psylla Cacopsylla pyri (Homoptera, psyllidae). Acta Hortic 671:571–575

    Article  Google Scholar 

  • Rumayor FIA, Martínez CA, Vázquez R (2005) Breeding pears for warm climates in Mexico. Acta Hortic 671:31. https://doi.org/10.17660/ActaHort

    Article  Google Scholar 

  • Saeed M, Brewer L, Johnston J, McGhie TK, Gardiner SE, Heyes JA, Chagné D (2014) Genetic, metabolite and developmental determinism of fruit friction discolouration in pear. BMC Plant Biol 14(1):241. https://doi.org/10.1186/s12870-014-0241-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito T (2016) Advances in Japanese pear breeding in Japan. Breed Sci 66(1):46–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Saito T, Kotobuki K, Sato Y, Abe K, Machida Y, Kurihara A, Kajiura I, Terai O, Shoda M, Sawamura Y, Ogata T, Masuda R, Nishibata T, Kashimura Y, Kosono T, Fukuda H, Kihara T, Suzuki K (2015) New Japanese pear cultivar ‘Nashi chuukanbohon nou 1 gou’, with the homozygote of haplotype for self-compatibility (Pyrus pyrifolia Nakai). Bull NARO Inst Fruit Tree Sci 20

    Google Scholar 

  • Sams CE (1999) Preharvest factors affecting postharvest texture. Postharv Biol Technol 15(3):249–254

    Article  Google Scholar 

  • Sanzol J, Rallo P, Herrero M (2003) Stigmatic receptivity limits the effective pollination period in ‘Agua de Aranjuez’ pear. J Am Soc Hort Sci 128(4):458–462

    Article  Google Scholar 

  • Sarkar D, Ankolekar C, Pinto M, Shetty K (2015) Dietary functional benefits of Bartlett and Starkrimson pears for potential management of hyperglycemia, hypertension and ulcer bacteria Helicobacter pylori while supporting beneficial probiotic bacterial response. Food Res Intl 69(Supplement C):80–90. https://doi.org/10.1016/j.foodres.2014.12.014

    Article  CAS  Google Scholar 

  • Sawamura Y, Mase N, Takada N, Sato A, Nishitani C, Abe K, Masuda T, Yamamoto T, Saito T, Kotobuki K (2013) A self-compatible pollen-part mutant of Japanese pear produced by crossing ‘Kosui’ with pollen from gamma-irradiated ‘Kosui’. J Jpn Soc Hort Sci 82(3):222–226

    Article  Google Scholar 

  • Sestras R, Botez C, Ardelean M, Oltean I, Sestras (2009) Response of pear genotypes to psylla sp. attack in central Transylvania, Romania. Acta Hortic 814:845–850

    Google Scholar 

  • Sha S (2012) Pear organic acid components, content changes and genetic identification. Nanjing Agricultural University, Nanjing

    Google Scholar 

  • Sha S, Li J, Wu J, Zhang S (2011) Characteristics of organic acids in the fruit of different pear species. African J Agric Res 6:2403–2410

    Google Scholar 

  • Shaltiel-Harpaz L, Soroker V, Kedoshim R, Hason R, Sokalsky T, Hatib K, Bar-Ya’akov I, Holland D (2014) Two pear accessions evaluated for susceptibility to pear psylla Cacopsylla bidens (Šulc) in Israel. Pest Manag Sci 70(2):234–239

    Article  CAS  PubMed  Google Scholar 

  • Sherman WB, Lyrene PM (2003) Low chill breeding of deciduous fruits at the university of Florida. Acta Hortic 622:599–605

    Article  Google Scholar 

  • Shin YU, Yim YJ, Cho HM, Yae BW, Kim MS, Kim YK (1983) Studies on the inheritance of fruit characteristics of Oriental pear, Pyrus serotina Rehder var. culta (in Korean). Res Rep Office Rural Dev (Hort) 25:108–117

    Google Scholar 

  • Shin IS, Kim WC, Hwang HS, Shin YU (2002) Achievements of pear breeding in Korea. Acta Hortic 596:247–250

    Article  Google Scholar 

  • Shin IS, Shin YU, Hwang HS (2008) Heritability of fruit characters of interspecific hybrids between Pyrus pyrifolia and P. ussuriensis or P. breschneideri. Acta Hortic 800:535–540

    Article  Google Scholar 

  • Simard MH, Michelesi JC, Masseron (2004) Pear rootstock breeding in France. Acta Hortic 658:535–540

    Google Scholar 

  • Smits THM, Duffy B, Sundin GW, Zhao YF, Rezzonico F (2017) Erwinia amylovora in the genomics era: from genomes to pathogen virulence, regulation, and disease control strategies. J Plant Pathol 99:7–23

    Google Scholar 

  • Stephenson K (2015) Northwest pear industry continues nutritional research investment. http://usapears.org/wp-content/uploads/2015/01/Bartlett-Bin.jpg

  • Steyn WJ, Holcroft DM, Wand SJE, Jacobs G (2004) Anthocyanin degradation in detached pome fruit with reference to preharvest red color loss and pigmentation patterns of blushed and fully red pears. J Am Soc Hort Sci 129(1):13–19

    Article  CAS  Google Scholar 

  • Steyn WJ, Wand SJE, Holcroft DM, Jacobs G (2005) Red colour development and loss in pears. Acta Hortic 671:79–85

    Article  CAS  Google Scholar 

  • Sugar D, Mitcham EJ, Kupferman E (2009) Re-thinking the chill requirement for pear ripening. Postharvest Information Network, December. http://postharvest.tfrec.wsu.edu/REP2009B.pdf

  • Sun Q, Sun H, Bell R, Li H, Xin L (2011) Variation of phenotype, ploidy level, and organogenic potential of in vitro regenerated polyploids of Pyrus communis. Plant Cell Tiss Org Cult 107:131–140

    Article  Google Scholar 

  • Tamura F (2012) Recent advances in research on Japanese pear rootstocks. J Jpn Soc Hort Sci 81(1):1–10

    Article  CAS  Google Scholar 

  • Tanaka S, Yamamoto S (1964) Studies on pear scab. II. Taxonomy of the causal fungus of Japanese pear scab. Ann Phytopathol Soc Jap 29:128–136

    Article  Google Scholar 

  • Tanrıöven D, Ekşi A (2005) Phenolic compounds in pear juice from different cultivars. Food Chem 93(1):89–93

    Article  CAS  Google Scholar 

  • Teng Y (2011) The pear industry and research in China. Acta Hortic 909:161–170

    Article  Google Scholar 

  • Terakami S, Shoda M, Adachi Y, Gonai T, Kasumi M, Sawamura Y, Iketani H, Kotobuki K, Patocchi A, Gessler C, Hayashi T, Yamamoto T (2006) Genetic mapping of the pear scab resistance gene Vnk of Japanese pear cultivar Kinchaku. Theor Appl Genet 113(4):743–752

    Article  CAS  PubMed  Google Scholar 

  • Thompson SS, Janick J, Williams EB (1962) Evaluation of the resistance to fireblight of pear. Proc Am Soc Hort Sci 80 (105–113)

    Google Scholar 

  • Thompson JM, Zimmerman RH, Van der Zwet T (1975) Inheritance of fire blight resistance in Pyrus. I. A dominant gene, Se, causing sensitivity. J Hered 66:259–264

    Article  Google Scholar 

  • Thomson GE, Turpin S, Goodwin I (2018) A review of preharvest anthocyanin development in full red and blush cultivars of European pear. NZ J Crop Hort Sci 46(2):81–100

    Article  CAS  Google Scholar 

  • Trapman M, Blommers L (1992) An attempt to pear sucker management in the Netherlands. J Appl Entomol 114(1–5):38–51

    Article  Google Scholar 

  • Tromp J, Borsboom O (1994) The effect of autumn and spring temperature on fruit set and on the effective pollination period in apple and pear. Sci Hort 60(1):23–30. https://doi.org/10.1016/0304-4238(94)90059-0

    Article  Google Scholar 

  • Ubi BE, Honda C, Bessho H, Kondo S, Wada M, Kobayashi S, Moriguchi T (2006) Expression analysis of anthocyanin biosynthetic genes in apple skin: Effect of UV-B and temperature. Plant Sci 170(3):571–578

    Article  CAS  Google Scholar 

  • Valle D, Burckhardt D, Mujica V, Zoppolo R, Morelli E (2017) The occurrence of the pear psyllid, Cacopsylla bidens (Šulc, 1907) (Insecta: Hemiptera: Psyllidae), in Uruguay. Check List 13(2):1–4. https://doi.org/10.15560/13.2.2088

    Article  Google Scholar 

  • Van der Zwet T (1977) Possibility of combining low levels of fire blight resistane in pear. Acta Hortic 69:97–103

    Article  Google Scholar 

  • Van der Zwet T, Oitto WA, Westwood MN (1974) Variability in degree of fire blight resistance within and between Pyrus species, interspecific hybrids, and seedling progenies. Euphytica 23:295–304

    Article  Google Scholar 

  • van der Zwet T, Zook WR, Blake RC (1977) The USDA pear breeding program I. Emasculation and pollination. Fruit Var J Agr Food Chem 31:78–82

    Google Scholar 

  • Van der Zwet T, Orolaza-Halbrendt N, Zeller W (2012) Fire blight history, biology, and management. APS Press, St. Paul. https://doi.org/10.1094/9780890544839.fm

    Book  Google Scholar 

  • van Nocker S, Gardiner SE (2014) Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Hort Res 1:14022. https://doi.org/10.1038/hortres.2014.22

    Article  Google Scholar 

  • Viera W, Alspach P, Brewer L, Jhonston J, Winefield C (2013) Genetic parameters for sugar content in an interspecific pear polulation. Euro J Hort Sci 78:56–66

    Google Scholar 

  • Visser T, Oost EH (1981) Pollen and pollination experiments. III. The viability of apple and pear pollen as affected by irradiation and storage. Euphytica 30(1):65–70

    Article  Google Scholar 

  • Volz RK, White AG, Brewer LR (2008) Breeding for red skin colour in interspecific pears. Acta Hortic 800:469–474

    Article  Google Scholar 

  • Vondracek J (1982) Pear cultivars resistant to pear scab. In: van der Zwet T, Childers NF (eds) The Pear: cultivars to marketing. Horticultural Publ., Gainsville, pp 420–424

    Google Scholar 

  • Wang D, Korban SS, Zhao Y (2010) Molecular signature of differential virulence in natural isolates of Erwinia amylovora. Phytopathology 100(2):192–198

    Article  CAS  PubMed  Google Scholar 

  • Wang Y-Z, Dai M-S, Zhang S-J, Shi Z-B (2014) Exploring candidate genes for pericarp russet pigmentation of Sand pear (Pyrus pyrifolia) via RNA-Seq data in two genotypes contrasting for pericarp color. PLoS ONE 9(1):e83675. https://doi.org/10.1371/journal.pone.0083675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G-M, Gu C, Qiao X, Zhao B-Y, Ke Y-Q, Guo B-B, Hao P-P, Qi K-J, Zhang S-L (2017) Characteristic of pollen tube that grew into self style in pear cultivar and parent assignment for cross-pollination. Sci Hort 216:226–233

    Article  CAS  Google Scholar 

  • Warner G (2015) Promising pear rootstocks. Good Fruit Grower, Apr 16. New Developments//Pears//Research//Varieties

    Google Scholar 

  • Webster AD, Tobutt KR, Evans KM (2000) Breeding and evaluation of new rootstocks for apple, pear and sweet cherry. Comp Fruit Tree 33(4):100–104

    Google Scholar 

  • Westigard PH, Westwood MN, Lombard PB (1970) Host preference and resistance and resistance of Pyrus species to the pear psylla, Pyslla pyricola Foester. J Am Soc Hort Sci 95:34–36

    Google Scholar 

  • White AG, Alspach PA (1996) Variation in fruit shape in three pear hybrid progenies. NZ J Crop Hort Sci 24(4):409–413

    Article  Google Scholar 

  • White AG, Brewer LR (2002) The New Zealand pear breeding project. Acta Hortic 596:239–242

    Article  Google Scholar 

  • White AG, Alspach PA, Weskett RH, Brewer LR (2000a) Heritability of fruit shape in pears. Euphytica 112(1):1–7. https://doi.org/10.1023/a:1003761118890

    Article  Google Scholar 

  • White AG, Brewer LR, Alspach PA (2000b) Heritability of fruit characteristics in pears. Acta Hortic 538:331–337

    Article  Google Scholar 

  • Won K, Kim Y, Kang S, Song J, Hwang H (2011) Introduction of Korean pear cultivars with high resistance to the scab for organic pear orchard. In: Organic is life—knowledge for tomorrow, vol 1—organic crop production proceedings of the third scientific conference of the International Society of Organic Agriculture Research (ISOFAR), held at the 17th IFOAM Organic World Congress in cooperation with the International Federation of Organic Agriculture Movements (IFOAM) and the Korean Organizing Committee (KOC), 28 September–1 October 2011 in Namyangju, Korea Republic

    Google Scholar 

  • Won K, Bastiaanse H, Kim YK, Song JH, Kang SS, Lee HC, Cho KH, Brewer L, Singla G, Gardiner SE, Chagné D, Bus VGM (2014) Genetic mapping of polygenic scab (Venturia pirina) resistance in an interspecific pear family. Mol Breed 34(4):2179–2189

    Article  Google Scholar 

  • Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23(2):396–408

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Li L-T, Li M, Khan MA, Li X-G, Chen H, Yin H, Zhang S-L (2014) High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers. J Exp Bot 65(20):5771–5781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue H, Shi T, Wang F, Zhou H, Yang J, Wang L, Wang S, Su Y, Zhang Z, Qiao Y, Li X (2017a) Interval mapping for red/green skin color in Asian pears using a modified QTL-seq method. Hort Res 4:17053. https://doi.org/10.1038/hortres.2017.53

    Article  CAS  Google Scholar 

  • Xue L, Liu Q, Qin M, Zhang M, Wu X, Wu J (2017b) Genetic variation and population structure of “Zangli” pear landraces in Tibet revealed by SSR markers. Tree Genet Genomes 13(1):26. https://doi.org/10.1007/s11295-017-1110-7

    Article  Google Scholar 

  • Yamamoto T, Terakami S (2016) Genomics of pear and other Rosaceae fruit trees. Breed Sci 66(1):148–159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamamoto T, Terakami S, Kimura T, Sawamura Y, Takada N, Hirabayashi T, Imai T, Nishitani C (2009) Reference genetic linkage maps of European and Japanese pears. Acta Hortic 814:599–602. https://doi.org/10.17660/ActaHortic.2009.814.101

    Article  Google Scholar 

  • Yamamoto RR, Sekozawa Y, Sugaya S, Gemma H (2010) Influence of chilling accumulation time on “Flower Bud Abortion” occurrence in Japanese pear grown under mild winter conditions. Acta Hortic 872(6):69–76

    Article  Google Scholar 

  • Yamamoto T, Terakami S, Takada N, Nishio S, Onoue N, Nishitani C, Kunihisa M, Inoue E, Iwata H, Hayashi T, Itai A, Saito T (2014) Identification of QTLs controlling harvest time and fruit skin color in Japanese pear (Pyrus pyrifolia Nakai). Breed Sci 64(4):351–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamane M, Abe D, Yasui S, Yokotani N, Kimata W, Ushijima K, Nakano R, Kubo Y, Inaba A (2007) Differential expression of ethylene biosynthetic genes in climacteric and non-climacteric Chinese pear fruit. Postharv Biol Tech 44(3):220–227

    Article  CAS  Google Scholar 

  • Yao G, Ming M, Allan AC, Gu C, Li L, Wu X, Wang R, Chang Y, Qi K, Zhang S, Wu J (2017) Map-based cloning of the pear gene MYB114 identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis. Plant J 92(3):437–451. https://doi.org/10.1111/tpj.13666

    Article  CAS  PubMed  Google Scholar 

  • Yim SH, Nam SH (2015) Antioxidant and whitening activities of five unripe pear cultivars. J Appl Bot Food Quality 88. https://doi.org/10.5073/jabfq.2015.088.026

  • Yu-Lin W (1996) Chinese pears. China Agricultural Scientech Press, China

    Google Scholar 

  • Zhang D (2012) Molecular physiological mechanism of coloration induced and regulation of red Chinese sand pears (Pyrus pyrifolia Nakai). Zhejiang University, China

    Google Scholar 

  • Zhang HE, Yue WQ, Wu YQ, Yi W, Han ZH, Zhang XZ (2012) Selection and evaluation of interspecific hybrids of pear highly resistant to Venturia nashicola. J Phytopathol 160(7–8):346–352. https://doi.org/10.1111/j.1439-0434.2012.01912.x

    Article  Google Scholar 

  • Zhao P, Kakishima M, Uzuhashi S, Ishii H (2012) Multigene phylogenetic analysis of inter- and intraspecific relationships in Venturia nashicola and V. pirina. Eur J Plant Pathol 132(2):245–258

    Article  Google Scholar 

  • Zielinski QB, Thompson MM (1967) Speciation in Pyrus: chromosome number and meiotic behavior. Bot Gazette 128(2):109–112. https://doi.org/10.1086/336386

    Article  Google Scholar 

  • Zielinski QB, Reimer FC, Quackenbush VL (1965) Breeding behavior of fruit characteristics in pears, Pyrus communis L. Proc Am Soc Hort Sci 86(81):87

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lester Brewer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Crown

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brewer, L., Volz, R. (2019). Genetics and Breeding of Pear. In: Korban, S. (eds) The Pear Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-11048-2_4

Download citation

Publish with us

Policies and ethics