Skip to main content

Impacts of Metal and Metal Oxide Nanoparticles on Plant Growth and Productivity

  • Chapter
  • First Online:
Nanomaterials and Plant Potential

Abstract

Synthetic nanoparticles (NPs) have more characteristic properties like high surface area, tunable pore size, and high reactivity, as compared to natural NPs. Therefore, this technology has opened a new epoch of application-based research in plant physiology. With an increase in the use of metal and metal oxide nanoparticles (MNPs/MONPs), they will gradually enter the environment. Regulation of their optimum levels within the soil as nutrients/facilitator/pollutant for sustainable agriculture and crop production is a very challenging and tedious task. Plant development is regulated by diverse environmental factors like nutrient availability, temperature, soil morphology, and light intensity. Therefore, plant-MNP relations concerning the uptake and toxicity of MNPs/MONPs under natural environment have attracted the attention of many researchers. The unrestrained application of MNPs poses a challenge concerning their fate and transport in the natural environment and their hazardous effect on the biotic community. Knowledge about the phytotoxicity of many MNPs/MONPs on plant performance is still meager, and hence it is too early to predict their impacts on plants and on the respective ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abou-Zeid HM, Moustafa Y (2014) Physiological and cytogenetic responses of wheat and barley to silver nanopriming treatment. Int J Appl Biol PharmTechnol 5:265–278

    CAS  Google Scholar 

  • Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Rao AS (2012) Effect of copper oxide nanoparticle on seed germination of selected crops. J Agric Sci Technol 2:815–823

    CAS  Google Scholar 

  • Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, Farid M, Rehman MZ, Irshad MK, Bharwana SA (2015) The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res 22:8148–8162

    Article  CAS  Google Scholar 

  • Antisari LV, Carbone S, Gatti A, Vianello G, Nannipieri P (2015) Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co Ni) engineered nanoparticles. Environ Sci Pollut Res 22(3):1841–1853

    Article  CAS  Google Scholar 

  • Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303–310

    Article  CAS  Google Scholar 

  • Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584

    Article  CAS  PubMed  Google Scholar 

  • Banerjee J,Kole C (2016) Plant nanotechnology: an overview on concepts strategies and tools. Chittaranjan, Kole, D. Sakthi Kumar and Mariya V. Khodakovskaya, Plant Nanotechnology- principals and practices, Springer International Publishing Switzerland, pp 1–14

    Google Scholar 

  • Barrena R, Casals E, Colon J, Font X, Sanchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt ES, Colman BP, Hochella JMF, Cardinale BJ, Nisbet RM, Richardson CJ, Yin L (2010) An ecological perspective on nanomaterial impacts in the environment. J Environ Qual 39:1954–1965

    Article  CAS  PubMed  Google Scholar 

  • Burklew CE, Ashlock J, Winfrey WB, Zhang B (2012) Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS One 7:e34783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:Mr17–Mr71

    Article  PubMed  Google Scholar 

  • Chand N, Siddiqui N (2012) Improvement in thermo mechanical and optical properties of in situ synthesized PMMA/TiO2 nanocomposite. Compos Interfaces 19:51–58

    Article  CAS  Google Scholar 

  • Cossins D (2014) Next generation: nanoparticles augment plant functions. The incorporation of synthetic nanoparticles into plants can enhance photosynthesis and transform leaves into biochemical sensors. The Scientist, News & Opinion. http://www.the-scientist.com/?articles.view/articleNo/39440/title/Next-Generation–Nanoparticles-Augment-Plant-Functions/

  • Das S, Wolfson BP, Tetard L, Tharkur J, Bazata J, Santra S (2015) Effect of N-acetyl cysteine coated CdS:Mn/ZnS quantum dots on seed germination and seedling growth of snow pea (Pisum sativum L.): imaging and spectroscopic studies. Environ Sci Nano 2(2):203–212

    Article  CAS  Google Scholar 

  • De Rosa G, Lopez-Moreno ML, De Haro D, Botez CE, Peralta-Videa JR, Gardea-Torresdey J (2013) Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl Chem 85(12):2161–2174

    Article  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangon E, Britt DW, Johnson WP et al (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1–15

    Article  CAS  Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49

    Article  CAS  PubMed  Google Scholar 

  • Feizi H, Kamali M, Jafari L, Rezvani MP (2013) Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere 91:506–511

    Article  CAS  PubMed  Google Scholar 

  • Fedlheim DL, Foss CA (2001) Metal Nanoparticles: Synthesis, Characterization, and Applications. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Gao FQ, Hong FH, Liu C, Zheng L, Su MY, Wu X, Yang F, Wu Yang P (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach–including complex of Rubisco-Rubisco activase. Biol Trace Elem Res 111:239–253

    Article  CAS  PubMed  Google Scholar 

  • Gardea-Torresdey JL, Rico CM, White JC (2014) Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48:2526–2540

    Article  CAS  PubMed  Google Scholar 

  • Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li K, Huang Y, Chen Y, Kolmakov A, Ma X (2013) Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 7:323–337

    Article  CAS  PubMed  Google Scholar 

  • Geisler-Lee J, Brooks M, Gerfen J, Wang Q, Fotis C, Sparer A, Ma X, Berg R, Geisler M (2014) Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nano 4:301–318

    Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792

    Article  CAS  PubMed  Google Scholar 

  • Gopinath K, Karthika V, Gowri S, Senthil Kumar V, Kumaresan S, Arumugam A (2014) Antibacterial activity of ruthenium nanoparticles synthesized using Gloriosa superba L. leaf extract. J Nanostruct Chem 4:83

    Article  Google Scholar 

  • Gorczyca A, Pociecha E, Kasprowicz M, Niemiec M (2015) Effect of nanosilver in wheat seedlings and Fusarium culmorum culture systems. Eur J Plant Pathol 142(2):251–261

    Article  CAS  Google Scholar 

  • Gruyer N, Dorais M, Bastien C, Dassylva N, Triffault-Bouchet G (2013) Interaction between silver nanoparticles and plant growth. In: International symposium on new technologies for environment control, energy-saving and crop production in green house and Plant 1037:795–800

    Google Scholar 

  • Hong J, Rico CM, Zhao L, Adeleye AS, Keller AA, Videa JRP, Gardea-Torresdey JL (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Processes Impacts 17:177–185

    Article  CAS  Google Scholar 

  • Huang YC, Fan R, Grusak MA, Sherrier JD, Huang CP (2014) Effects of nano-ZnO on the agronomically relevant Rhizobium-legume symbiosis. Sci Total Environ 466-467:503–512

    Article  PubMed  CAS  Google Scholar 

  • Husen A, Siddiqi KS (2014a) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12:16

    Article  CAS  Google Scholar 

  • Husen A, Siddiqi KS (2014b) Phytosynthesis of nanoparticles: concept, controversy and application. Nano Res Lett 9:229

    Article  CAS  Google Scholar 

  • Husen A (2017) Gold nanoparticles from plant system: synthesis, characterization and application. In: Ghorbanpourn M, Manika K, Varma A (eds) Nanoscience and plant–soil systems, vol 48. Springer International Publishing AG, Cham, Switzerland, pp 455–479

    Chapter  Google Scholar 

  • Jaberzadeh A, Moaveni P, Moghadam HRT, Zahedi H (2013) Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Notulae Bot Hort Agrobo 41:201–207

    Article  CAS  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li ZR, Watanabe F, Biris AS (2012) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth (retraction of vol 3, pg 3221, 2009). ACS Nano 6:7541–7541

    Article  CAS  Google Scholar 

  • Kirschbaum MUF (2011) Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiol 155:117–124

    Article  CAS  PubMed  Google Scholar 

  • Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC, Rao AM, Marcus RK (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Le VN, Rui Y, Gui X, Li X, Liu S, Han Y (2014) Uptake, transport, distribution and bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnol 12:50

    Article  CAS  Google Scholar 

  • Li X, Gui X, Rui Y, Ji W, Yu Z, Peng S (2014) Bt-transgenic cotton is more sensitive to CeO2 nanoparticles than its parental non-transgenic cotton. J Hazard Mater 274:173–180

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250

    Article  CAS  PubMed  Google Scholar 

  • Lin MT, Occhialini A, Andralojc PJ, Parry MAJ, Hanson MR (2014) A faster Rubisco with potential to increase photosynthesis in crops. Nature 513:547–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX (2002) Research on the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21:68–172

    Google Scholar 

  • Mahmoodzadeh H, Aghili R, Nabavi M (2013) Physiological effects of TiO2 nanoparticles on wheat (Triticum aestivum). Tech J Eng Appl Sci 3:1365–1370

    Google Scholar 

  • Mazumdar H, Ahmed GU (2011) Phytotoxicity effect of silver nanoparticles on Oryza sativa. Int J Chem Technol Res 3:1494–1500

    CAS  Google Scholar 

  • Medina-Velo IA, Zuverza-Mena N, Tan W, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2016) Biophysical methods of detection and quantification of uptake, translocation, and accumulation of nanoparticles. In: Chittaranjan K, Sakthi Kumar D, Khodakovskaya MV (eds) Plant nanotechnology- principals and practices. Springer International Publishing, Switzerland, pp 29–64. https://doi.org/10.1007/978-3-319-42154-4

    Chapter  Google Scholar 

  • Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54

    Article  CAS  PubMed  Google Scholar 

  • Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia Int J Cytol Cytosyst Cytogenet 62(2):161–165

    Google Scholar 

  • Mukherjee A, Pokhrel S, Bandyopadhyay S, Mädler L, Peralta-Videa JR, Gardea-Torresdey JL (2014) A soil mediated phyto-toxicological study of iron doped zinc oxide nanoparticles (Fe@ ZnO) in green peas (Pisum sativum L.). Chem Eng J 258:394–401

    Article  CAS  Google Scholar 

  • Nair PMG, Chung IM (2014) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification, and molecular level changes. Environ Sci Pollut Res 21(22):12709–12722

    Article  CAS  Google Scholar 

  • Nair PMG, Kim SH, Chung IM (2014) Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants. Acta Physiol Plant 36:2947–2958

    Article  CAS  Google Scholar 

  • Nair R (2016) Effects of nanoparticles on plant growth and development. In: Chittaranjan K, Sakthi Kumar D, Khodakovskaya MV (eds) Plant Nanotechnology- principals and practices. Springer International Publishing, Switzerland, pp 95–118

    Chapter  Google Scholar 

  • Nair R, Poulose AC, Nagaoka Y, Yoshida Y, Maekawa T, Kumar DS (2011) Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. J Fluoresc 21:2057–2068

    Article  CAS  PubMed  Google Scholar 

  • Nhan LV, Ma C, Shang J, Rui Y, Liu S, Xing B (2016) Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 144:661–670

    Article  CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    Article  CAS  PubMed  Google Scholar 

  • Picó Y, Blasco C (2012) Nanomaterials in food, which way forward? Analys Risk Nanomater Environ Food Samp 59:305

    Article  CAS  Google Scholar 

  • Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452:321–332

    Article  PubMed  CAS  Google Scholar 

  • Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Goswami A (2013) Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular biochemical, and biophysical study. Environ Sci Technol 47:13122–13131

    Article  CAS  PubMed  Google Scholar 

  • Prasad TNVK, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927

    Article  CAS  Google Scholar 

  • Raliya R, Nair R, Chavalmane S, Wang W-N, Biswas P (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7:1584–1594

    Article  CAS  PubMed  Google Scholar 

  • Raliya R, Tarafdar J (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Cluster bean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57

    Article  CAS  Google Scholar 

  • Ramesh M, Palanisamy K, Babu K, Sharma NK (2014) Effects of bulk and nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum L. J Glob Biosci 3:415

    Google Scholar 

  • Rao S, Shekhawat GS (2014) Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, metabolism and tissue specific accumulation in Brassica juncea. J Environ Chem Eng 2:105–114

    Article  CAS  Google Scholar 

  • Raskar SV, Laware SL (2014) Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int J Curr Microbiol App Sci 3:467–473

    CAS  Google Scholar 

  • Rico CM, Barrios AC, Tan W, Rubenecia R, Lee SC, Ramirez AV (2015) Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environ Sci Pollut Res 22(1):10551–10558

    Article  CAS  Google Scholar 

  • Rico CM, Morales MI, Barrios AC, McCreary R, Hong J, Lee WY, Nunez J, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J Agric Food Chem 67:11278–11285

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Adrees M, Rizvi H, Rehman MZ, Hannan F, Qayyum MF, Hafeez F, Ok YS (2016) Cadmium stress in rice: toxic effects, tolerance mechanisms and management: a critical review. Environ Sci Pollut Res 23(18):17859–17879

    Article  CAS  Google Scholar 

  • Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata – an endemic and endangered medicinal tree taxon. Nano Vis 2:61–68

    Google Scholar 

  • Sedghi M, Hadi M, Toluie SG (2013) Effect of nano zinc oxide on the germination of soybean seeds under drought stress. Ann West Univ Timisoara 16(2):73–78

    Google Scholar 

  • Servin AD, Michel HC, Viezcas JAH, Diaz BC, Videa JRP, Torresdey JLG (2012) Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO(2) nanoparticles in cucumber (Cucumis sativus) plants. Environ Sci Technol 46:7637–7643

    Article  CAS  PubMed  Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148

    Article  CAS  Google Scholar 

  • Shams G, Ranjbar M, Amiri AA, Khodarahmpour Z (2013) The effect of 35 nm silver nanoparticles on antagonistic and synergistic mineral elements in leaves and fruit of tomato (Lycopersicon esculentum Mill.). Int J Agric Crop Sci 5:439–500

    Google Scholar 

  • Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, Hossain Z (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environ Exp Bot 102:37–47

    Article  CAS  Google Scholar 

  • Sheikh Mohamed M, Sakthi Kumar D (2016) Methods of using nanoparticles. In: Chittaranjan K, Sakthi Kumar D, Khodakovskaya MV (eds) Plant Nanotechnology: Principles and Practices. Springer International Publishing, Cham

    Google Scholar 

  • Sheykhbaglou R, Sedghi M, Shishevan MT, Sharifi RS (2010) Effects of nano-iron oxide particles on agronomic traits of soybean. Notulae Scientia Biologicae 2:112–113

    Article  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum Mill.) seeds. Saud J Biol Sci 21:13–17

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33:2429–2437

    Article  CAS  PubMed  Google Scholar 

  • Siddiqi KS, Husen A (2016) Engineered gold nanoparticles and plant adaptation potential. Nano Res Lett 11:400

    Article  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2017a) Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J Trace Elem Med Biol 40:10–23

    Article  CAS  PubMed  Google Scholar 

  • Siddiqi KS, Husen A (2017b) Plant response to engineered metal oxide nanoparticles. Nano Res Lett 12:92

    Google Scholar 

  • Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Lee EJ (2013) Functional analysis of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67

    Article  CAS  PubMed  Google Scholar 

  • Subbenaik SC (2016) Physical and chemical nature of nanoparticles. In: Chittaranjan K, Sakthi Kumar D, Khodakovskaya MV (eds) Plant nanotechnology- principals and practices. Springer International Publishing, Switzerland, pp 15–28

    Chapter  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2012) Silica nanoparticles for increased silica availability in maize (Zea mays L.) seeds under hydroponic conditions. Curr Nanosci 8:902–908

    Article  CAS  Google Scholar 

  • Tan W, Du W, Barrios AC, Jr AR, Zuverzamena N, Ji Z, Chang CH, Zink JI, Hernandezviezcas JA, Peraltavidea JR (2017) Surface coating changes the physiological and biochemical impacts of nano-TiO2 in basil (Ocimum basilicum) plants. Environ Pollut 222:64–72

    Article  CAS  PubMed  Google Scholar 

  • Thiruvengadam M, Gurunathan S, Chung IM (2014) Physiological, metabolic, and transcriptional effects of biologically-synthesized silver nanoparticles in turnip (Brassica rapa ssp. rapa L.). Protoplasma 252(4):1031–1046

    Article  PubMed  CAS  Google Scholar 

  • Thuesombat P, Hannongbua S, Akasit S, Chadchawan S (2014) Effect of silver nanoparticles on rice (Oryza sativa L cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf 104:302–309

    Article  CAS  PubMed  Google Scholar 

  • Tiwari DK, Dasgupta-Schubert N, Cendejas LMV, Villegas J, Montoya LC, Garcia SEB (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 4:577–591

    Article  CAS  Google Scholar 

  • Tripathi S, Sonkar SK, Sarkar S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3:1176–1181

    Article  CAS  PubMed  Google Scholar 

  • Trujillo-Reyes J, Majumdar S, Botez CE, Videa JRP, Gardea-Torresdey JL (2014) Exposure studies of core–shell Fe/Fe3O4 and Cu/CuO NPs to lettuce (Lactuca sativa) plants: are they a potential physiological and nutritional hazard. J Hazard Mater 267:255–263

    Article  CAS  PubMed  Google Scholar 

  • Vannini C, Domingo G, Onelli E, De Mattia F, Bruni I, Marsoni M, Bracale M (2014) Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J Plant Physiol 171:1142–1148

    Article  CAS  PubMed  Google Scholar 

  • Verma SK, Das AK, Patel MK, Shah A, Kumar V, Gantait S (2018) Engineered nanomaterials for plant growth and development: a perspective analysis. Sci Total Environ 630:1413–1435

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Menzies NW, Lombi E, McKenna BA, Johannessen B, Glover CJ et al (2013a) Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata). Environ Sci Technol 47:13822–13830

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Ebbs SD, Chen Y, Ma X (2013b) Trans-generational impact of cerium oxide nanoparticles on tomato plants. Metallomics 5:753–759

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Ma X, Zhang W, Pei H, Chen Y (2012) The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 4:1105–1112

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Xu L, Zhao J, Wang X, White JC, Xing B (2016) CuO nanoparticle interaction with Arabidopsis thaliana: toxicity, parent-progeny transfer, and gene expression. Environ Sci Technol 50:6008

    Article  CAS  PubMed  Google Scholar 

  • Wu SG, Huang L, Head J, Ball M, Tang YJ, Chen DR (2014) Electrospray facilitates the germination of plant seeds. Aerosol Air Qual Res 14:632–641

    Article  CAS  Google Scholar 

  • Xie Y, Li B, Zhang Q, Zhang C (2012) Effects of nano-silicon dioxide on photosynthetic fluorescence characteristics of Indocalamus barbatus McClure. J Nanjing For Univ (Natl Sci Ed) 2:59

    Google Scholar 

  • Yuan J, Chen Y, Li H, Lu J, Zhao H, Liu M, Nechitaylo GS, Glushchenko NN (2018) New insights into the cellular responses to iron nanoparticles in Capsicum annuum. Sci Rep 8:3228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zaheer IE, Ali S, Rizwan M, Farid M, Shakoor MB, Gill RA, Najeeb U, Iqbal N, Ahmad R (2015) Citric acid assisted phytoremediation of copper by Brassica napus L. Ecotoxicol Environ Saf 120:310–317

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Hernandez-Viezcas JA, Videa JRP, Bandyopadhyay S, Peng B, Munoz B (2013) ZnO nanoparticle fate in soil and zinc bioaccumulation in corn plants (Zea mays) influenced by alginate. Environ Sci Processes Impacts 15:260–266

    Article  CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62(13):2752–2759

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Sun Y, Viezcas JRP, Hong J, Majumdar S (2015) Monitoring the environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn (Zea mays) plants and in situ -XRF mapping of nutrients in kernels. Environ Sci Technol 49(5):2921–2928

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanwar, M.K., Sun, S., Chu, X., Zhou, J. (2019). Impacts of Metal and Metal Oxide Nanoparticles on Plant Growth and Productivity. In: Husen, A., Iqbal, M. (eds) Nanomaterials and Plant Potential. Springer, Cham. https://doi.org/10.1007/978-3-030-05569-1_15

Download citation

Publish with us

Policies and ethics