Skip to main content

Impact of Emerging Metal-Based NPs on Plants and Their Influence on the Phytotoxicity of Other Pollutants

  • Chapter
  • First Online:
Emerging Contaminants and Plants

Abstract

Metal-based nanoparticles (NPs) are one of the most manufactured nanomaterials and deserve singular attention given their continuous input to the environment, lack of degradation, and accumulation risk. In agricultural soils, the use of organic amendments and wastewater and the application of nanotechnology are important NP inputs. Metal-based NPs have beneficial applications as fertilizers and increase plant resistance to pathogens and environmental abiotic stressors. Ag-, Zn-, Cu-, Ti-, and Ce-based NPs are the most widely used to improve crop production. NPs can also have negative impacts, including phytotoxicity, lower nutrient content in plants, and soil microorganism toxicity. The potential NP interaction with other soil contaminants, including metals and organic compounds, is a major concern because it can modify the bioconcentration or affect the intrinsic toxicity of both substances with the consequent biological impact on plants. Exposure to NP-contaminant mixtures may induce unexpected toxic effects via several different mechanisms that affect the availability, uptake, and metabolic processes involved in the detoxification and degradation of compounds. However, the mechanisms underlying the effects of the NP-contaminant interaction on joint toxicity are poorly understood. This chapter covers some of the most relevant issues concerning the effects of metal-based NPs on plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAT:

Catalase

DDE:

Dichlorodiphenyldichloroethylene

GPX:

Glutathione peroxidase

OTC:

Oxytetracycline

QD:

Quantum dot

QNC:

Quinclorac

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TC:

Tetracycline

ZVI:

Zero-valent iron

References

  • Abd-Alla, M. H., Nafady, N. A., & Khalaf, D. M. (2016). Assessment of silver nanoparticles contamination on faba bean-Rhizobium leguminosarum bv. viciae-Glomus aggregatum symbiosis: Implications for induction of autophagy process in root nodule. Agriculture, Ecosystems & Environment, 218, 163–177.

    Article  CAS  Google Scholar 

  • Adisa, I. O., Pullagurala, V. L. R., Peralta-Videa, J. R., Dimkpa, C. O., Elmer, W. H., Gardea-Torresdey, J. L., & White, J. C. (2019). Recent advances in nano-enabled fertilizers and pesticides: A critical review of mechanisms of action. Environmental Science: Nano, 6, 2002–2030.

    CAS  Google Scholar 

  • Adrees, M., Khan, Z. S., Ali, S., Hafeez, M., Khalid, S., ur Rehman, M. Z., Hussain, A., Hussain, K., Shahid Chatha, S. A., & Rizwan, M. (2020). Simultaneous mitigation of cadmium and drought stress in wheat by soil application of iron nanoparticles. Chemosphere, 238, 124681.

    Article  CAS  Google Scholar 

  • Agrawal, S., Kumar, V., Kumar, S., & Shahi, S. K. (2022). Plant development and crop protection using phytonanotechnology: A new window for sustainable agriculture. Chemosphere, 299, 134465.

    Article  CAS  Google Scholar 

  • Ahmed, B., Rizvi, A., Ali, K., Lee, J., Zaidi, A., Khan, M. S., & Musarrat, J. (2021). Nanoparticles in the soil–plant system: A review. Environmental Chemistry Letters, 19, 1545–1609.

    Article  CAS  Google Scholar 

  • Akanbi-Gada, M. A., Ogunkunle, C. O., Vishwakarma, V., Viswanathan, K., & Fatoba, P. O. (2019). Phytotoxicity of nano-zinc oxide to tomato plant (Solanum lycopersicum L.): Zn uptake, stress enzymes response and influence on non-enzymatic antioxidants in fruits. Environmental Technology & Innovation, 14, 100325.

    Article  Google Scholar 

  • Alabdallah, N. M., & Alzahrani, H. S. (2020). The potential mitigation effect of ZnO nanoparticles on [Abelmoschus esculentus L. Moench] metabolism under salt stress conditions. Saudi Journal of Biological Sciences, 27, 3132–3137.

    Article  CAS  Google Scholar 

  • Ali, S., Rizwan, M., Hussain, A., Zia ur Rehman, M., Ali, B., Yousaf, B., Wijaya, L., Alyemeni, M. N., & Ahmad, P. (2019). Silicon nanoparticles enhanced the growth and reduced the cadmium accumulation in grains of wheat (Triticum aestivum L.). Plant Physiology and Biochemistry, 140, 1–8.

    Article  CAS  Google Scholar 

  • Ali, S., Mehmood, A., & Khan, N. (2021). Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. Journal of Nanomaterials, 2021, 6677616.

    Article  Google Scholar 

  • Almendros, P., González, D., Fernández, M. D., García-Gomez, C., & Obrador, A. (2022). Both Zn biofortification and nutrient distribution pattern in cherry tomato plants are influenced by the application of ZnO nanofertilizer. Heliyon, 8, e09130.

    Article  CAS  Google Scholar 

  • Amde, M., Liu, J.-f., Tan, Z.-Q., & Bekana, D. (2017). Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A review. Environmental Pollution, 230, 250–267.

    Article  CAS  Google Scholar 

  • Ameen, F., Alsamhary, K., Alabdullatif, J. A., & Alnadhari, S. (2021). A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicology and Environmental Safety, 213, 112027.

    Article  CAS  Google Scholar 

  • Ananthi, V., Mohanrasu, K., Boobalan, T., Anand, K., Sudhakar, M., Chuturgoon, A., Balasubramanian, V., Yuvakkumar, R., & Arun, A. (2020). An overview of nanotoxicological effects towards plants, animals, microorganisms and environment. In A. Krishnan & A. Chuturgoon (Eds.), Integrative nanomedicine for new therapies (pp. 113–146). Springer International Publishing.

    Chapter  Google Scholar 

  • Andersen, C. P., King, G., Plocher, M., Storm, M., Pokhrel, L. R., Johnson, M. G., & Rygiewicz, P. T. (2016). Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles. Environmental Toxicology and Chemistry, 35, 2223–2229.

    Article  CAS  Google Scholar 

  • Apodaca, S. A., Tan, W., Dominguez, O. E., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2017). Physiological and biochemical effects of nanoparticulate copper, bulk copper, copper chloride, and kinetin in kidney bean (Phaseolus vulgaris) plants. Science of the Total Environment, 599–600, 2085–2094.

    Article  Google Scholar 

  • Bao, Y. Y., Ma, C. X., Hu, L., & Xing, B. S. (2019). Effect of individual and combined exposure of Fe2O3 nanoparticles and oxytetracycline on their bioaccumulation by rice (Oryza sativa L.). Journal of Soils and Sediments, 19, 2459–2471.

    Article  CAS  Google Scholar 

  • Baskar, V., Nayeem, S., Kuppuraj, S. P., Muthu, T., & Ramalingam, S. (2018). Assessment of the effects of metal oxide nanoparticles on the growth, physiology and metabolic responses in in vitro grown eggplant (Solanum melongena). 3 Biotech, 8, 362.

    Article  Google Scholar 

  • Beig, B., Niazi, M. B. K., Sher, F., Jahan, Z., Malik, U. S., Khan, M. D., Américo-Pinheiro, J. H. P., & Vo, D.-V. N. (2022). Nanotechnology-based controlled release of sustainable fertilizers. A review. Environmental Chemistry Letters, 20, 2709.

    Article  CAS  Google Scholar 

  • Bindraban, P. S., Dimkpa, C., Nagarajan, L., Roy, A., & Rabbinge, R. (2015). Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biology and Fertility of Soils, 51, 897–911.

    Article  CAS  Google Scholar 

  • Budhani, S., Egboluche, N. P., Arslan, Z., Yu, H., & Deng, H. (2019). Phytotoxic effect of silver nanoparticles on seed germination and growth of terrestrial plants. Journal of Environmental Science and Health, Part C, 37, 330–355.

    Article  CAS  Google Scholar 

  • Burachevskaya, M., Minkina, T., Mandzhieva, S., Bauer, T., Nevidomskaya, D., Shuvaeva, V., Sushkova, S., Kizilkaya, R., Gülser, C., & Rajput, V. (2021). Transformation of copper oxide and copper oxide nanoparticles in the soil and their accumulation by Hordeum sativum. Environmental Geochemistry and Health, 43, 1655–1672.

    Article  CAS  Google Scholar 

  • Cao, W. C., Gong, J. L., Zeng, G. M., Song, B., Zhang, P., Li, J., Fang, S. Y., Qin, L., Ye, J., & Cai, Z. (2020). Mutual effects of silver nanoparticles and antimony(iii)/(v) co-exposed to Glycine max (L.) Merr. in hydroponic systems: Uptake, translocation, physiochemical responses, and potential mechanisms. Environmental Science: Nano, 7, 2691–2707.

    CAS  Google Scholar 

  • Cedergreen, N. (2014). Quantifying synergy: A systematic review of mixture toxicity studies within environmental toxicology. PLoS One, 9, e96580.

    Article  Google Scholar 

  • Chichiriccò, G., & Poma, A. (2015). Penetration and toxicity of nanomaterials in higher plants. Nanomaterials (Basel), 5, 851–873.

    Article  Google Scholar 

  • Coman, V., Oprea, I., Leopold, L. F., Vodnar, D. C., Coman C. (2019). Soybean Interaction with Engineered Nanomaterials: A Literature Review of Recent Data. Nanomaterials 9(9),1248. https://doi.org/10.3390/nano9091248

  • Corral-Diaz, B., Peralta-Videa, J. R., Alvarez-Parrilla, E., Rodrigo-García, J., Morales, M. I., Osuna-Avila, P., Niu, G., Hernandez-Viezcas, J. A., & Gardea-Torresdey, J. L. (2014). Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanus sativus (L). Plant Physiology and Biochemistry, 84, 277–285.

    Article  CAS  Google Scholar 

  • De La Torre-Roche, R., Hawthorne, J., Musante, C., Xing, B., Newman, L. A., Ma, X., & White, J. C. (2013). Impact of Ag nanoparticle exposure on p,p′-DDE bioaccumulation by Cucurbita pepo (Zucchini) and Glycine max (Soybean). Environmental Science & Technology, 47, 718–725.

    Article  Google Scholar 

  • Delfani, M., Baradarn Firouzabadi, M., Farrokhi, N., & Makarian, H. (2014). Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Communications in Soil Science and Plant Analysis, 45, 530–540.

    Article  CAS  Google Scholar 

  • Deng, Y.-q., White, J. C., & Xing, B.-s. (2014). Interactions between engineered nanomaterials and agricultural crops: Implications for food safety. Journal of Zhejiang University Science A, 15, 552–572.

    Article  CAS  Google Scholar 

  • Deng, R., Lin, D., Zhu, L., Majumdar, S., White, J. C., Gardea-Torresdey, J. L., & Xing, B. (2017). Nanoparticle interactions with co-existing contaminants: Joint toxicity, bioaccumulation and risk. Nanotoxicology, 11, 591–612.

    Article  CAS  Google Scholar 

  • Dimkpa, C. O. (2018). Soil properties influence the response of terrestrial plants to metallic nanoparticles exposure. Current Opinion in Environmental Science & Health, 6, 1–8.

    Article  Google Scholar 

  • Dimkpa, C. O., McLean, J. E., Martineau, N., Britt, D. W., Haverkamp, R., & Anderson, A. J. (2013). Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environmental Science & Technology, 47, 1082–1090.

    Article  CAS  Google Scholar 

  • Dimkpa, C. O., McLean, J. E., Britt, D. W., & Anderson, A. J. (2015). Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicology, 24, 119–129.

    Article  CAS  Google Scholar 

  • Du, W., Gardea-Torresdey, J. L., Ji, R., Yin, Y., Zhu, J., Peralta-Videa, J. R., & Guo, H. (2015). Physiological and biochemical changes imposed by CeO2 nanoparticles on wheat: A life cycle field study. Environmental Science & Technology, 49, 11884–11893.

    Article  CAS  Google Scholar 

  • Du, W., Tan, W., Yin, Y., Ji, R., Peralta-Videa, J. R., Guo, H., & Gardea-Torresdey, J. L. (2018). Differential effects of copper nanoparticles/microparticles in agronomic and physiological parameters of oregano (Origanum vulgare). Science of the Total Environment, 618, 306–312.

    Article  CAS  Google Scholar 

  • Du, W., Yang, J., Peng, Q., Liang, X., & Mao, H. (2019). Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification. Chemosphere, 227, 109–116.

    Article  CAS  Google Scholar 

  • Fan, R., Huang, Y. C., Grusak, M. A., Huang, C. P., & Sherrier, D. J. (2014). Effects of nano-TiO2 on the agronomically-relevant Rhizobium–legume symbiosis. Science of the Total Environment, 466–467, 503–512.

    Article  Google Scholar 

  • Fernández, M. D., Obrador, A., & García-Gómez, C. (2021). Zn concentration decline and apical endpoints recovery of earthworms (E. andrei) after removal from an acidic soil spiked with coated ZnO nanoparticles. Ecotoxicology and Environmental Safety, 211, 111916.

    Article  Google Scholar 

  • Frazier, T. P., Burklew, C. E., & Zhang, B. (2014). Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Functional & Integrative Genomics, 14, 75–83.

    Article  CAS  Google Scholar 

  • Gao, X., Avellan, A., Laughton, S., Vaidya, R., Rodrigues, S. M., Casman, E. A., & Lowry, G. V. (2018). CuO nanoparticle dissolution and toxicity to wheat (Triticum aestivum) in rhizosphere soil. Environmental Science & Technology, 52, 2888–2897.

    Article  CAS  Google Scholar 

  • Gao, X., Rodrigues, S. M., Spielman-Sun, E., Lopes, S., Rodrigues, S., Zhang, Y., Avellan, A., Duarte, R. M. B. O., Duarte, A., Casman, E. A., & Lowry, G. V. (2019). Effect of soil organic matter, soil pH, and moisture content on solubility and dissolution rate of CuO NPs in soil. Environmental Science & Technology, 53, 4959–4967.

    Article  CAS  Google Scholar 

  • García-Gómez, C., & Fernández, M. D. (2019). Impacts of metal oxide nanoparticles on seed germination, plant growth and development. In S. K. Verma & A. K. Das (Eds.), Comprehensive analytical chemistry (pp. 75–124). Elsevier.

    Google Scholar 

  • García-Gómez, C., Babin, M., Obrador, A., Álvarez, J. M., & Fernández, M. D. (2015). Integrating ecotoxicity and chemical approaches to compare the effects of ZnO nanoparticles, ZnO bulk, and ZnCl2 on plants and microorganisms in a natural soil. Environmental Science and Pollution Research, 22, 16803–16813.

    Article  Google Scholar 

  • García-Gómez, C., Obrador, A., González, D., Babín, M., & Fernández, M. D. (2017). Comparative effect of ZnO NPs, ZnO bulk and ZnSO4 in the antioxidant defences of two plant species growing in two agricultural soils under greenhouse conditions. Science of the Total Environment, 589, 11–24.

    Article  Google Scholar 

  • García-Gómez, C., Fernández, M. D., García, S., Obrador, A. F., Letón, M., & Babín, M. (2018a). Soil pH effects on the toxicity of zinc oxide nanoparticles to soil microbial community. Environmental Science and Pollution Research, 25, 28140–28152.

    Article  Google Scholar 

  • García-Gómez, C., García, S., Obrador, A. F., González, D., Babín, M., & Fernández, M. D. (2018b). Effects of aged ZnO NPs and soil type on Zn availability, accumulation and toxicity to pea and beet in a greenhouse experiment. Ecotoxicology and Environmental Safety, 160, 222–230.

    Article  Google Scholar 

  • García-Gómez, C., Obrador, A., González, D., Babín, M., & Fernández, M. D. (2018c). Comparative study of the phytotoxicity of ZnO nanoparticles and Zn accumulation in nine crops grown in a calcareous soil and an acidic soil. Science of the Total Environment, 644, 770–780.

    Article  Google Scholar 

  • García-Gómez, C., García-Gutiérrez, S., Obrador, A., Almendros, P., González, D., & Fernández, M. D. (2020). Effect of ageing of bare and coated nanoparticles of zinc oxide applied to soil on the Zn behaviour and toxicity to fish cells due to transfer from soil to water bodies. Science of the Total Environment, 706, 135713.

    Article  Google Scholar 

  • Gonzalez-Moscoso, M., Juarez-Maldonado, A., Cadenas-Pliego, G., Meza-Figueroa, D., SenGupta, B., & Martinez-Villegas, N. (2022). Silicon nanoparticles decrease arsenic translocation and mitigate phytotoxicity in tomato plants. Environmental Science and Pollution Research, 29, 34147–34163.

    Article  CAS  Google Scholar 

  • Haisel, D., Cyrusova, T., Vanek, T., & Podlipna, R. (2019). The effect of nanoparticles on the photosynthetic pigments in cadmium-zinc interactions. Environmental Science and Pollution Research, 26, 4147–4151.

    Article  CAS  Google Scholar 

  • Helaly, M. N., El-Metwally, M. E. A., El-Hoseiny, H., Omar, S. A., & Elsheery, N. I. (2014). Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Australian Journal of Crop Science, 8, 612–624.

    CAS  Google Scholar 

  • Huang, Y., Zhao, L., & Keller, A. A. (2017). Interactions, transformations, and bioavailability of nano-copper exposed to root exudates. Environmental Science & Technology, 51, 9774–9783.

    Article  CAS  Google Scholar 

  • Hussain, A., Ali, S., Rizwan, M., ur Rehman, M. Z., Javed, M. R., Imran, M., Chatha, S. A. S., & Nazir, R. (2018). Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environmental Pollution, 242, 1518–1526.

    Article  CAS  Google Scholar 

  • Hussain, A., Ali, S., Rizwan, M., Rehman, M. Z. U., Qayyum, M. F., Wang, H., & Rinklebe, J. (2019). Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles. Ecotoxicology and Environmental Safety, 173, 156–164.

    Article  CAS  Google Scholar 

  • Hussain, S., Shafiq, I., Skalicky, M., Brestic, M., Rastogi, A., Mumtaz, M., Hussain, M., Iqbal, N., Raza, M. A., Manzoor, S., Liu, W., & Yang, W. (2021). Titanium application increases phosphorus uptake through changes in auxin content and root architecture in soybean (Glycine Max L.). Frontiers in Plant Science, 12, 743618.

    Article  Google Scholar 

  • Jan, N., Majeed, N., Ahmad, M., Ahmad Lone, W., & John, R. (2022). Nano-pollution: Why it should worry us. Chemosphere, 302, 134746.

    Article  CAS  Google Scholar 

  • Ji, Y., Zhou, Y., Ma, C., Feng, Y., Hao, Y., Rui, Y., Wu, W., Gui, X., Le, V. N., Han, Y., Wang, Y., Xing, B., Liu, L., & Cao, W. (2017). Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake. Plant Physiology and Biochemistry, 110, 82–93.

    Article  CAS  Google Scholar 

  • Jośko, I., Oleszczuk, P., & Skwarek, E. (2017). Toxicity of combined mixtures of nanoparticles to plants. Journal of Hazardous Materials, 331, 200–209.

    Article  Google Scholar 

  • Jośko, I., Dobrzyńska, J., Dobrowolski, R., Kusiak, M., & Terpiłowski, K. (2020). The effect of pH and ageing on the fate of CuO and ZnO nanoparticles in soils. Science of the Total Environment, 721, 137771.

    Article  Google Scholar 

  • Jośko, I., Kusiak, M., Oleszczuk, P., Swieca, M., Konczak, M., & Sikora, M. (2021a). Transcriptional and biochemical response of barley to co-exposure of metal-based nanoparticles. Science of the Total Environment, 782, 146883.

    Article  Google Scholar 

  • Jośko, I., Kusiak, M., Xing, B., & Oleszczuk, P. (2021b). Combined effect of nano-CuO and nano-ZnO in plant-related system: From bioavailability in soil to transcriptional regulation of metal homeostasis in barley. Journal of Hazardous Materials, 416, 126230.

    Article  Google Scholar 

  • Ju-Nam, Y., & Lead, J. (2016). Properties, sources, pathways, and fate of nanoparticles in the environment. In B. Xing, C. D. Vecitis, & N. Senesi (Eds.), Engineered nanoparticles and the environment: Biophysicochemical processes and toxicity (pp. 93–117). John Wiley & Sons, Inc..

    Chapter  Google Scholar 

  • Kalwani, M., Chakdar, H., Srivastava, A., Pabbi, S., & Shukla, P. (2022). Effects of nanofertilizers on soil and plant-associated microbial communities: Emerging trends and perspectives. Chemosphere, 287, 132107.

    Article  CAS  Google Scholar 

  • Kamali-Andani, N., Fallah, S., Peralta-Videa, J. R., & Golkar, P. (2022). A comprehensive study of selenium and cerium oxide nanoparticles on mung bean: Individual and synergistic effect on photosynthesis pigments, antioxidants, and dry matter accumulation. Science of the Total Environment, 830, 154837.

    Article  CAS  Google Scholar 

  • Katarína, K., Masarovičová, E., & Jampílek, J. (2021). Risks and benefits of metal-based nanoparticles for vascular plants. In M. Pessarakli (Ed.), Handbook of plant and crop physiology (pp. 923–963). Taylor & Francis Group.

    Google Scholar 

  • Khan, M. R., Ahamad, F., & Rizvi, T. F. (2019a). Effect of nanoparticles on plant pathogens. In M. Ghorbanpour & S. H. Wani (Eds.), Advances in phytonanotechnology (pp. 215–240). Academic Press.

    Chapter  Google Scholar 

  • Khan, Z. S., Rizwan, M., Hafeez, M., Ali, S., Javed, M. R., & Adrees, M. (2019b). The accumulation of cadmium in wheat (Triticum aestivum) as influenced by zinc oxide nanoparticles and soil moisture conditions. Environmental Science and Pollution Research, 26, 19859–19870.

    Article  CAS  Google Scholar 

  • Khan, I., Raza, M. A., Awan, S. A., Shah, G. A., Rizwan, M., Ali, B., Tariq, R., Hassan, M. J., Alyemeni, M. N., Brestic, M., Zhang, X., Ali, S., & Huang, L. (2020). Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): The oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiology and Biochemistry, 156, 221–232.

    Article  CAS  Google Scholar 

  • Kolenčík, M., Ernst, D., Urík, M., Ďurišová, Ľ., Bujdoš, M., Šebesta, M., Dobročka, E., Kšiňan, S., Illa, R., Qian, Y., Feng, H., Černý, I., Holišová, V., & Kratošová, G. (2020). Foliar application of low concentrations of titanium dioxide and zinc oxide nanoparticles to the common sunflower under field conditions. Nanomaterials, 10, 1619.

    Article  Google Scholar 

  • Kornarzyński, K., Sujak, A., Czernel, G., & Wiącek, D. (2020). Effect of Fe3O4 nanoparticles on germination of seeds and concentration of elements in Helianthus annuus L. under constant magnetic field. Scientific Reports, 10, 8068.

    Article  Google Scholar 

  • Labeeb, M., Badr, A., Haroun, S. A., Mattar, M. Z., El-Kholy, A. S., & El-Mehasseb, I. M. (2020). Ecofriendly synthesis of silver nanoparticles and their effects on early growth and cell division in roots of green pea (Pisum sativum L.). Gesunde Pflanzen, 72, 113–127.

    Article  CAS  Google Scholar 

  • Lian, J., Zhao, L., Wu, J., Xiong, H., Bao, Y., Zeb, A., Tang, J., & Liu, W. (2020). Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.). Chemosphere, 239, 124794.

    Article  CAS  Google Scholar 

  • Liu, Y., Pan, B., Li, H., Lang, D., Zhao, Q., Zhang, D., Wu, M., Steinberg, C. E. W., & Xing, B. (2020). Can the properties of engineered nanoparticles be indicative of their functions and effects in plants? Ecotoxicology and Environmental Safety, 205, 111128.

    Article  CAS  Google Scholar 

  • Liu, Y., Xiao, Z., Chen, F., Yue, L., Zou, H., Lyu, J., & Wang, Z. (2021). Metallic oxide nanomaterials act as antioxidant nanozymes in higher plants: Trends, meta-analysis, and prospect. Science of the Total Environment, 780, 146578.

    Article  CAS  Google Scholar 

  • Lizzi, D., Mattiello, A., Piani, B., Gava, E., Fellet, G., & Marchiol, L. (2021). Single and repeated applications of cerium oxide nanoparticles differently affect the growth and biomass accumulation of silene flos-cuculi L. (Caryophyllaceae). Nanomaterials, 11, 229.

    Article  CAS  Google Scholar 

  • Lv, J., Christie, P., & Zhang, S. (2019). Uptake, translocation, and transformation of metal-based nanoparticles in plants: Recent advances and methodological challenges. Environmental Science: Nano, 6, 41–59.

    CAS  Google Scholar 

  • Ma, C., Liu, H., Chen, G., Zhao, Q., Eitzer, B., Wang, Z., Cai, W., Newman, L. A., White, J. C., Dhankher, O. P., & Xing, B. (2017). Effects of titanium oxide nanoparticles on tetracycline accumulation and toxicity in Oryza sativa (L.). Environmental Science: Nano, 4, 1827–1839.

    CAS  Google Scholar 

  • Ma, Y., Xie, C., He, X., Zhang, B., Yang, J., Sun, M., Luo, W., Feng, S., Zhang, J., Wang, G., & Zhang, Z. (2020). Effects of ceria nanoparticles and CeCl3 on plant growth, biological and physiological parameters, and nutritional value of soil grown common bean (Phaseolus vulgaris). Small, 16, 1907435.

    Article  CAS  Google Scholar 

  • Madzokere, T. C., Murombo, L. T., & Chiririwa, H. (2021). Nano-based slow releasing fertilizers for enhanced agricultural productivity. Materials Today: Proceedings, 45, 3709–3715.

    CAS  Google Scholar 

  • Mirzajani, F., Askari, H., Hamzelou, S., Farzaneh, M., & Ghassempour, A. (2013). Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicology and Environmental Safety, 88, 48–54.

    Article  CAS  Google Scholar 

  • Molina, L., Wittich, R.-M., van Dillewijn, P., & Segura, A. (2021). Plant-bacteria interactions for the elimination of atmospheric contaminants in cities. Agronomy, 11, 493.

    Article  CAS  Google Scholar 

  • Morales, M. I., Rico, C. M., Hernandez-Viezcas, J. A., Nunez, J. E., Barrios, A. C., Flores-Marges, J. P., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2013). Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. Journal of Agricultural and Food Chemistry, 61, 6224–6230.

    Article  CAS  Google Scholar 

  • Naasz, S., Altenburger, R., & Kuehnel, D. (2018). Environmental mixtures of nanomaterials and chemicals: The Trojan-horse phenomenon and its relevance for ecotoxicity. Science of the Total Environment, 635, 1170–1181.

    Article  CAS  Google Scholar 

  • Nhan, L. V., Yukui, R., Weidong, C., Jianying, S., Shutong, L., Trung, N. Q., & Liming, L. (2016). Toxicity and bio-effects of CuO nanoparticles on transgenic Ipt-cotton. Journal of Plant Interactions, 11, 108–116.

    Article  Google Scholar 

  • Obrador, A., González, D., Almendros, P., García-Gómez, C., & Fernández, M. D. (2022). Assessment of phytotoxicity and behavior of 1-year-aged Zn in soil from ZnO nanoparticles, bulk ZnO, and Zn sulfate in different soil-plant cropping systems: From biofortification to toxicity. Journal of Soil Science and Plant Nutrition, 22, 150–164.

    Article  CAS  Google Scholar 

  • Osbourn, A. E. (2000). Plant secondary metabolites – A primary resource: Biochemistry of plant secondary metabolism and functions of plant secondary metabolites and their exploitation in biotechnology, edited by M. Wink. Trends in Biotechnology, 18, 321–322.

    Article  CAS  Google Scholar 

  • Pagano, L., Pasquali, F., Majumdar, S., De la Torre-Roche, R., Zuverza-Mena, N., Villani, M., Zappettini, A., Marra, R. E., Isch, S. M., Marmiroli, M., Maestri, E., Dhankher, O. P., White, J. C., & Marmiroli, N. (2017). Exposure of Cucurbita pepo to binary combinations of engineered nanomaterials: Physiological and molecular response. Environmental Science: Nano, 4, 1579–1590.

    CAS  Google Scholar 

  • Pallavi, C., Mehta, M., Srivastava, R., Arora, S., & Sharma, A. K. (2016). Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech, 6, 254.

    Article  CAS  Google Scholar 

  • Palmqvist, N. G. M., Seisenbaeva, G. A., Svedlindh, P., & Kessler, V. G. (2017). Maghemite nanoparticles acts as nanozymes, improving growth and abiotic stress tolerance in Brassica napus. Nanoscale Research Letters, 12, 631.

    Article  Google Scholar 

  • Peng, C., Tong, H., Yuan, P., Sun, L. J., Jiang, L., & Shi, J. Y. (2019). Aggregation, sedimentation, and dissolution of copper oxide nanoparticles: Influence of low-molecular-weight organic acids from root exudates. Nanomaterials, 9, 841.

    Article  CAS  Google Scholar 

  • Pérez-de-Luque, A. (2017). Interaction of nanomaterials with plants: What do we need for real applications in agriculture? Frontiers in Environmental Science, 5, 12.

    Article  Google Scholar 

  • Predoi, D., Ghita, R. V., Liliana Iconaru, S., Laura Cimpeanu, C., & Mariana Raita, S. (2020). Application of nanotechnology solutions in plants fertilization. In Urban horticulture – Necessity of the future. IntechOpen.

    Google Scholar 

  • Priester, J. H., Moritz, S. C., Espinosa, K., Ge, Y., Wang, Y., Nisbet, R. M., Schimel, J. P., Susana Goggi, A., Gardea-Torresdey, J. L., & Holden, P. A. (2017). Damage assessment for soybean cultivated in soil with either CeO2 or ZnO manufactured nanomaterials. Science of the Total Environment, 579, 1756–1768.

    Article  CAS  Google Scholar 

  • Qiu, H., & Smolders, E. (2017). Nanospecific phytotoxicity of CuO nanoparticles in soils disappeared when bioavailability factors were considered. Environmental Science & Technology, 51, 11976–11985.

    Article  CAS  Google Scholar 

  • Rafique, R., Zahra, Z., Virk, N., Shahid, M., Pinelli, E., Kallerhoff, J., Park, T. J., & Arshad, M. (2018). Data on rhizosphere pH, phosphorus uptake and wheat growth responses upon TiO2 nanoparticles application. Data in Brief, 17, 890–896.

    Article  Google Scholar 

  • Raghib, F., Naikoo, M. I., Khan, F. A., Alyemeni, M. N., & Ahmad, P. (2020). Interaction of ZnO nanoparticle and AM fungi mitigates Pb toxicity in wheat by upregulating antioxidants and restricted uptake of Pb. Journal of Biotechnology, 323, 254–263.

    Article  CAS  Google Scholar 

  • Rajput, V. D., Minkina, T., Kumari, A., Harish, V., Singh, K., Verma, K. K., Mandzhieva, S., Sushkova, S., Srivastava, S., & Keswani, C. (2021). Coping with the challenges of abiotic stress in plants: New dimensions in the field application of nanoparticles. Plants, 10, 1221.

    Article  CAS  Google Scholar 

  • Ramadan, T., Sayed, S. A., Abd-Elaal, A. K. A., & Amro, A. (2022). The combined effect of water deficit stress and TiO2 nanoparticles on cell membrane and antioxidant enzymes in Helianthus annuus L. Physiology and Molecular Biology of Plants, 28, 391–409.

    Article  CAS  Google Scholar 

  • Rana, R. A., Siddiqui, M. N., Skalicky, M., Brestic, M., Hossain, A., Kayesh, E., Popov, M., Hejnak, V., Gupta, D. R., Mahmud, N. U., & Islam, T. (2021). Prospects of nanotechnology in improving the productivity and quality of horticultural crops. Horticulturae, 7, 332.

    Article  Google Scholar 

  • Rawat, S., Pullagurala, V. L. R., Adisa, I. O., Wang, Y., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2018). Factors affecting fate and transport of engineered nanomaterials in terrestrial environments. Current Opinion in Environmental Science & Health, 6, 47–53.

    Article  Google Scholar 

  • Rizwan, M., Ali, S., Ali, B., Adrees, M., Arshad, M., Hussain, A., ur Rehman, M. Z., & Waris, A. A. (2019a). Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere, 214, 269–277.

    Article  CAS  Google Scholar 

  • Rizwan, M., Ali, S., Rehman, M. Z. U., Adrees, M., Arshad, M., Qayyum, M. F., Ali, L., Hussain, A., Chatha, S. A. S., & Imran, M. (2019b). Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environmental Pollution, 248, 358–367.

    Article  CAS  Google Scholar 

  • Romero-Freire, A., Lofts, S., Martín Peinado, F. J., & van Gestel, C. A. (2017). Effects of aging and soil properties on zinc oxide nanoparticle availability and its ecotoxicological effects to the earthworm Eisenia andrei. Environmental Toxicology and Chemistry, 36, 137–146.

    Article  CAS  Google Scholar 

  • Rui, M., Ma, C., Hao, Y., Guo, J., Rui, Y., Tang, X., Zhao, Q., Fan, X., Zhang, Z., Hou, T., & Zhu, S. (2016). Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Frontiers in Plant Science, 7, 815.

    Article  Google Scholar 

  • Rui, M., Ma, C., White Jason, C., Hao, Y., Wang, Y., Tang, X., Yang, J., Jiang, F., Ali, A., Rui, Y., & Cao, W. (2018). Metal oxide nanoparticles alter peanut (Arachis hypogaea L.) physiological response and reduce nutritional quality: A life cycle study. Environmental Science: Nano, 5, 20188–22102.

    Google Scholar 

  • Ruttkay-Nedecky, B., Krystofova, O., Nejdl, L., & Adam, V. (2017). Nanoparticles based on essential metals and their phytotoxicity. Journal of Nanobiotechnology, 15, 33.

    Article  Google Scholar 

  • Sarraf, M., Vishwakarma, K., Kumar, V., Arif, N., Das, S., Johnson, R., Janeeshma, E., Puthur, J. T., Aliniaeifard, S., Chauhan, D. K., Fujita, M., & Hasanuzzaman, M. (2022). Metal/metalloid-based nanomaterials for plant abiotic stress tolerance: An overview of the mechanisms. Plants, 11, 316.

    Article  CAS  Google Scholar 

  • Seleiman, M. F., Almutairi, K. F., Alotaibi, M., Shami, A., Alhammad, B. A., & Battaglia, M. L. (2020). Nano-fertilization as an emerging fertilization technique: Why can modern agriculture benefit from its use? Plants, 10, 2.

    Article  Google Scholar 

  • Servin, A. D., De la Torre-Roche, R., Castillo-Michel, H., Pagano, L., Hawthorne, J., Musante, C., Pignatello, J., Uchimiya, M., & White, J. C. (2017a). Exposure of agricultural crops to nanoparticle CeO2 in biochar-amended soil. Plant Physiology and Biochemistry, 110, 147–157.

    Article  CAS  Google Scholar 

  • Servin, A. D., Pagano, L., Castillo-Michel, H., De la Torre-Roche, R., Hawthorne, J., Hernandez-Viezcas, J. A., Loredo-Portales, R., Majumdar, S., Gardea-Torresday, J., Dhankher, O. P., & White, J. C. (2017b). Weathering in soil increases nanoparticle CuO bioaccumulation within a terrestrial food chain. Nanotoxicology, 11, 98–111.

    Article  CAS  Google Scholar 

  • Shah, V., Collins, D., Walker, V. K., & Shah, S. (2014). The impact of engineered cobalt, iron, nickel and silver nanoparticles on soil bacterial diversity under field conditions. Environmental Research Letters, 9, 024001.

    Article  CAS  Google Scholar 

  • Shah, T., Latif, S., Saeed, F., Ali, I., Ullah, S., Abdullah Alsahli, A., Jan, S., & Ahmad, P. (2021). Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. Journal of King Saud University – Science, 33, 101207.

    Article  Google Scholar 

  • Shang, Y., Hasan, M. K., Ahammed, G. J., Li, M., Yin, H., & Zhou, J. (2019). Applications of nanotechnology in plant growth and crop protection: A review. Molecules, 24, 2558.

    Article  CAS  Google Scholar 

  • Sharifan, H., Moore, J., & Ma, X. (2020). Zinc oxide (ZnO) nanoparticles elevated iron and copper contents and mitigated the bioavailability of lead and cadmium in different leafy greens. Ecotoxicology and Environmental Safety, 191, 110177.

    Article  CAS  Google Scholar 

  • Skiba, E., Michlewska, S., Pietrzak, M., & Wolf, W. M. (2020). Additive interactions of nanoparticulate ZnO with copper, manganese and iron in Pisum sativum L., a hydroponic study. Scientific Reports, 10, 13574.

    Article  CAS  Google Scholar 

  • Sturikova, H., Krystofova, O., Húska, D., & Adam, V. (2018). Zinc, zinc nanoparticles and plants. Journal of Hazardous Materials, 349, 101–110.

    Article  CAS  Google Scholar 

  • Sun, L., Song, F., Guo, J., Zhu, X., Liu, S., Liu, F., & Li, X. (2020). Nano-ZnO-induced drought tolerance is associated with melatonin synthesis and metabolism in maize. International Journal of Molecular Sciences, 21, 782.

    Article  CAS  Google Scholar 

  • Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Rajendran, V., & Kannan, N. (2012). Silica nanoparticles for increased silica availability in maize (Zea mays L.) seeds under hydroponic conditions. Current Nanoscience, 8, 902–908.

    Article  CAS  Google Scholar 

  • Sweet, M. J., & Singleton, I. (2015). Soil contamination with silver nanoparticles reduces Bishop pine growth and ectomycorrhizal diversity on pine roots. Journal of Nanoparticle Research, 17, 448.

    Article  CAS  Google Scholar 

  • Thakur, S., Asthir, B., Kaur, G., Kalia, A., & Sharma, A. (2021). Zinc oxide and titanium dioxide nanoparticles influence heat stress tolerance mediated by antioxidant defense system in wheat. Cereal Research Communications, 50, 385–396.

    Article  Google Scholar 

  • Thiruvengadam, M., Gurunathan, S., & Chung, I.-M. (2015). Physiological, metabolic, and transcriptional effects of biologically-synthesized silver nanoparticles in turnip (Brassica rapa ssp. rapa L.). Protoplasma, 252, 1031–1046.

    Article  CAS  Google Scholar 

  • Tripathi, D. K., Shweta, S., Singh, S., Singh, R., Pandey, V., Singh, P., Sharma, N. C., Prasad, S. M., Dubey, N. K., & Chauhan, D. K. (2017a). An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant Physiology and Biochemistry, 110, 2–12.

    Article  CAS  Google Scholar 

  • Tripathi, D. K., Singh, S., Singh, S., Srivastava, P. K., Singh, V. P., Singh, S., Prasad, S. M., Singh, P. K., Dubey, N. K., Pandey, A. C., & Chauhan, D. K. (2017b). Nitric oxide alleviates silver nanoparticles (AgNPs)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiology and Biochemistry, 110, 167–177.

    Article  CAS  Google Scholar 

  • Uwizeyimana, H., Wang, M., Chen, W., & Khan, K. (2017). The eco-toxic effects of pesticide and heavy metal mixtures towards earthworms in soil. Environmental Toxicology and Pharmacology, 55, 20–29.

    Article  CAS  Google Scholar 

  • Vannini, C., Domingo, G., Onelli, E., De Mattia, F., Bruni, I., Marsoni, M., & Bracale, M. (2014). Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. Journal of Plant Physiology, 171, 1142–1148.

    Article  CAS  Google Scholar 

  • Venkatachalam, P., Jayaraj, M., Manikandan, R., Geetha, N., Rene, E. R., Sharma, N. C., & Sahi, S. V. (2017). Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: A physiochemical analysis. Plant Physiology and Biochemistry, 110, 59–69.

    Article  CAS  Google Scholar 

  • Verma, A., & Khanam, Z. (2020). Phyto-nanotechnology and agriculture. In Phytonanotechnology (pp. 289–301). Elsevier.

    Chapter  Google Scholar 

  • Wang, F., Adams, C. A., Shi, Z., & Sun, Y. (2018a). Combined effects of ZnO NPs and Cd on sweet sorghum as influenced by an arbuscular mycorrhizal fungus. Chemosphere, 209, 421–429.

    Article  CAS  Google Scholar 

  • Wang, X. P., Li, Q. Q., Pei, Z. M., & Wang, S. C. (2018b). Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biologia Plantarum, 62, 801–808.

    Article  CAS  Google Scholar 

  • Wang, X., Sun, W., Zhang, S., Sharifan, H., & Ma, X. (2018c). Elucidating the effects of cerium oxide nanoparticles and zinc oxide nanoparticles on arsenic uptake and speciation in rice (Oryza sativa) in a hydroponic system. Environmental Science & Technology, 52, 10040–10047.

    Article  CAS  Google Scholar 

  • Watson, J.-L., Fang, T., Dimkpa, C. O., Britt, D. W., McLean, J. E., Jacobson, A., & Anderson, A. J. (2015). The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals, 28, 101–112.

    Article  CAS  Google Scholar 

  • Wei, X., Cao, P., Wang, G., Liu, Y., Song, J., & Han, J. (2021). CuO, ZnO, and γ-Fe2O3 nanoparticles modified the underground biomass and rhizosphere microbial community of Salvia miltiorrhiza (Bge.) after 165-day exposure. Ecotoxicology and Environmental Safety, 217, 112232.

    Article  CAS  Google Scholar 

  • Worrall, E. A., Hamid, A., Mody, K. T., Mitter, N., & Pappu, H. R. (2018). Nanotechnology for plant disease management. Agronomy, 8, 285.

    Article  CAS  Google Scholar 

  • Xiao, Y., Du, Y., Xiao, Y., Zhang, X., Wu, J., Yang, G., He, Y., Zhou, Y., Peijnenburg, W. J. G. M., & Luo, L. (2021). Elucidating the effects of TiO2 nanoparticles on the toxicity and accumulation of Cu in soybean plants (Glycine max L.). Ecotoxicology and Environmental Safety, 219, 112312.

    Article  CAS  Google Scholar 

  • Xiao, Y. M., Li, Y., Shi, Y., Li, Z. Q., Zhang, X. Y., Liu, T., Farooq, T. H., Pan, Y. L., Chen, X. Y., & Yan, W. D. (2022). Combined toxicity of zinc oxide nanoparticles and cadmium inducing root damage in Phytolacca americana L. Science of the Total Environment, 806, 151211.

    Article  CAS  Google Scholar 

  • Yang, J., Cao, W., & Rui, Y. (2017). Interactions between nanoparticles and plants: Phytotoxicity and defense mechanisms. Journal of Plant Interactions, 12, 158–169.

    Article  CAS  Google Scholar 

  • Yang, L., Luo, X.-B., & Luo, S.-L. (2019). Assessment on toxicity of nanomaterials. In X. Luo & F. Deng (Eds.), Nanomaterials for the removal of pollutants and resource reutilization (pp. 273–292). Elsevier.

    Chapter  Google Scholar 

  • Yasmeen, F., Raja, N. I., Razzaq, A., & Komatsu, S. (2017). Proteomic and physiological analyses of wheat seeds exposed to copper and iron nanoparticles. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics, 1865, 28–42.

    Article  CAS  Google Scholar 

  • Yuan, P., Peng, C., Shi, J. Y., Liu, J. S., Cai, D. Q., Wang, D. F., & Shen, Y. H. (2021). Ferrous ions inhibit Cu uptake and accumulation via inducing iron plaque and regulating the metabolism of rice plants exposed to CuO nanoparticles. Environmental Science: Nano, 8, 1456–1468.

    CAS  Google Scholar 

  • Yusefi-Tanha, E., Fallah, S., Rostamnejadi, A., & Pokhrel, L. R. (2020a). Particle size and concentration dependent toxicity of copper oxide nanoparticles (CuONPs) on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Science of the Total Environment, 715, 136994.

    Article  CAS  Google Scholar 

  • Yusefi-Tanha, E., Fallah, S., Rostamnejadi, A., & Pokhrel, L. R. (2020b). Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer: Influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Science of the Total Environment, 738, 140240.

    Article  CAS  Google Scholar 

  • Zahra, Z., Arshad, M., Rafique, R., Mahmood, A., Habib, A., Qazi, I. A., & Khan, S. A. (2015). Metallic nanoparticle (TiO2 and Fe3O4) application modifies rhizosphere phosphorus availability and uptake by Lactuca sativa. Journal of Agricultural and Food Chemistry, 63, 6876–6882.

    Article  CAS  Google Scholar 

  • Zeng, W., Nyapete, C., Benziger, A., Jelliss, P., & Buckner, S. (2019). Encapsulation of reactive nanoparticles of aluminum, magnesium, zinc, titanium, or boron within polymers for energetic applications. Current Applied Polymer Science, 3, 3–13.

    Article  Google Scholar 

  • Zhang, H., & Zhang, Y. (2020). Effects of iron oxide nanoparticles on Fe and heavy metal accumulation in castor (Ricinus communis L.) plants and the soil aggregate. Ecotoxicology and Environmental Safety, 200, 110728.

    Article  CAS  Google Scholar 

  • Zhang, W., Dan, Y., Shi, H., & Ma, X. (2017). Elucidating the mechanisms for plant uptake and in-planta speciation of cerium in radish (Raphanus sativus L.) treated with cerium oxide nanoparticles. Journal of Environmental Chemical Engineering, 5, 572–577.

    Article  CAS  Google Scholar 

  • Zhang, W., Long, J., Li, J., Zhang, M., Xiao, G., Ye, X., Chang, W., & Zeng, H. (2019). Impact of ZnO nanoparticles on Cd toxicity and bioaccumulation in rice (Oryza sativa L.). Environmental Science and Pollution Research, 26, 23119–23128.

    Article  CAS  Google Scholar 

  • Zhang, R., Bai, X., Shao, J., Chen, A., Wu, H., & Luo, S. (2020). Effects of zero-valent iron nanoparticles and quinclorac coexposure on the growth and antioxidant system of rice (Oryza sativa L.). Ecotoxicology and Environmental Safety, 203, 111054.

    Article  CAS  Google Scholar 

  • Zhang, Y., Qi, G., Yao, L., Huang, L., Wang, J., & Gao, W. (2022). Effects of metal nanoparticles and other preparative materials in the environment on plants: From the perspective of improving secondary metabolites. Journal of Agricultural and Food Chemistry, 70, 916–933.

    Article  CAS  Google Scholar 

  • Zhao, L., Lu, L., Wang, A., Zhang, H., Huang, M., Wu, H., Xing, B., Wang, Z., & Ji, R. (2020). Nano-biotechnology in agriculture: Use of nanomaterials to promote plant growth and stress tolerance. Journal of Agricultural and Food Chemistry, 68, 1935–1947.

    Article  CAS  Google Scholar 

  • Zhu, J. H., Zou, Z. H., Shen, Y., Li, J. F., Shi, S. N., Han, S. W., & Zhan, X. H. (2019). Increased ZnO nanoparticle toxicity to wheat upon co-exposure to phenanthrene. Environmental Pollution, 247, 108–117.

    Article  CAS  Google Scholar 

  • Zuverza-Mena, N., Medina-Velo, I. A., Barrios, A. C., Tan, W., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2015). Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Environmental Science: Processes & Impacts, 17, 1783–1793.

    CAS  Google Scholar 

Download references

Funding

This chapter was supported by the Community of Madrid, project AGRISOST-S2018/BAA-4330.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Concepción García-Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernández, M.D., García-Gómez, C. (2023). Impact of Emerging Metal-Based NPs on Plants and Their Influence on the Phytotoxicity of Other Pollutants. In: Aftab, T. (eds) Emerging Contaminants and Plants. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-031-22269-6_2

Download citation

Publish with us

Policies and ethics