Skip to main content

Conventional and Molecular Breeding Approaches for Biofortification of Pearl Millet

  • Chapter
  • First Online:
Quality Breeding in Field Crops

Abstract

Pearl millet is an important nutri-rich cereal grown in Sub-Sahara Africa and Indian subcontinent. Shrinking of food basket to a few fine cereals like wheat and rice has contributed to inadequate intake of essential micronutrients such as iron (Fe) and Zinc (Zn). Pearl millet serves as a significant source of dietary energy and contributes to 19–63% of the Fe and 16–56% of the Zn intake from all food sources to a vast population in parts of the major pearl millet growing states of India. Genetic enhancement in pearl millet for increased micronutrients is a relatively new area and has focused so far on improving grain Fe and Zn contents since anemia and stunting are predominant across world. Significant progress has been achieved within short time. The area that have been addressed include (1) development of cost-effective screening protocol; (2) assessment of extent of genetic variation for grain Fe and Zn contents in available germplasm; (3) identification of elite genetic material with high Fe and Zn contents; (4) understanding nature of genotype × environment interaction and relationships between grain minerals and agronomic traits; and (5) genetic control of micronutrients. It has been established that iniadi germplasm from west and central Africa makes a valuable germplasm resource for genetic improvement of Fe and Zn contents in pearl millet and there also exists a large natural variation for grain Fe and Zn contents in elite breeding lines and commercial cultivars. Genetics of grain Fe and Zn contents have indicated a larger role of additive genetic variance in inheritance with little heterosis for higher Fe and Zn contents in hybrids. Simple selection has been shown to be effective in increasing the micronutrient contents in selected populations without any compromise in grain yield. Association studies between grain Fe and Zn contents showed highly positive and significant correlation between these two micronutrients indicating that improvement in Fe content may simultaneously improve the Zn content. On the other hand, variable results are available in association between grain yield and Fe and Zn contents. Nonetheless, commercial hybrids bred for higher yield and widely cultivated in India have been found to possess high Fe content showing the possibility of combining grain yield and micronutrient in cultivars. A high-yielding cultivar ‘Dhanashakti’ has been released for cultivation as a high-iron pearl millet variety for all India level in 2014 and has been adopted widely. A few other hybrids are in the process of testing and possible release. Efforts toward molecular breeding have only recently been initiated taking cognizance of development of molecular marker and availability of linkage maps. A few quantitative trait loci have been identified for higher Fe content and have been transferred in the genetic background of parental lines of commercial hybrid. The future prospects of biofortification breeding approaches in pearl millet are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajetomobi JO (2008) Total factor productivity of agricultural commodities in economic community of West African States (ECOWAS): 1961–2005. In: CSAE conference 2008. Economic development in Africa held 16th–18th Mar 2008 at St. Catherine’s College, Oxford

    Google Scholar 

  • Allouis S, Qi X, Lindup S, Gale MD, Devos KM (2001) Construction of a BAC library of pearl millet, Pennisetum glaucum. Theor Appl Genet 102:1200–1205

    Article  CAS  Google Scholar 

  • Andrews DJ, Kumar AK (1996) Use of the West African pearl millet landrace Iniadi in cultivar development. Plant Genet Resources Newsl 105:15–22

    Google Scholar 

  • Arulselvi S, Mohanasundram K, Selvi B, Malarvizhi P (2006) Heterosis for grain yield components and grain quality characters in pearl millet. ISMN 47:36–38

    Google Scholar 

  • Arulselvi S, Mohanasundaram K, Selvi B, Malarvizhi P (2007) Genetic variability studies and interrelationships among nutritional quality characters, phytate phosphorus and grain yield in the seeds of pearl millet (Pennisetum glaucum (L.) R. Br.). Indian J Genet Plant Breed 67:37–40

    Google Scholar 

  • Basavaraj G, Parthasarathy Rao P, Bhagavatula S, Ahmed W (2010) Availability and utilization of pearl millet in India. J SAT Agric Res 8:1–6

    Google Scholar 

  • Beavis WD (1998) QTL analyses: power, precision and accuracy. In: Paterson AH (ed) Molecular analysis of complex traits. CRC Press, Boca Raton, FL, pp 145–161

    Google Scholar 

  • Bertin I, Zhu JH, Gale MD (2005) SSCP-SNP in pearl millet—a new marker system for comparative genetics. Theor Appl Genet 110:1467–1472

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee R, Bramel PJ, Hash CT, Kolesnikova-Allen M, Khaid IS (2002) Assessment of genetic diversity within and between pearl millet landraces. Theor Appl Genet 105:666–673

    Article  CAS  PubMed  Google Scholar 

  • Bidinger FR, Nepolean T, Hash CT, Yadav RS, Howarth CJ (2007) Identification of QTLs grain yield of pearl millet [Pennisetum glaucum (L.) R. Br.] in environments with variable moisture during grain filling. Crop Sci 47:969–980

    Article  Google Scholar 

  • Budak H, Pedraza F, Cregan PB, Baenziger PS, Dweikat I (2003) Development and utilization of SSRs to estimate the degree of genetic relationships in a collection of pearl millet germplasm. Crop Sci 43:2284–2290

    Article  CAS  Google Scholar 

  • Burr B, Burr FA, Thompson KH, Albertson MC, Stuber CW (1988) Gene mapping with recombinant inbreds in maize. Genetics 118:519–526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Devos KM, Pittaway TS, Reynolds A, Gale MD (2000) Comparative mapping reveals a complex relationship between the pearl millet genome and those of foxtail millet and rice. Theor Appl Genet 100:190–198

    Article  CAS  Google Scholar 

  • Govindaraj M (2011) Genetics of grain iron and zinc concentration in pearl millet (Pennisetum glaucum (L.) R. Br.). Ph.D. thesis, Tamil Nadu Agricultural University

    Google Scholar 

  • Govindaraj M, Rai KN (2016) Breeding biofortified pearl millet cultivars with high iron density. Indian Farm 65:53–55

    Google Scholar 

  • Govindaraj M, Rai KN, Shanmugasundaram P, Rao AS (2012) Efficiency of single plant selection for grain iron and zinc density in pearl millet. Eur J Plant Sci Biotechnol 6:114–117

    Google Scholar 

  • Govindaraj M, Rai KN, Shanmugasundaram P, Dwivedi SL, Sahrawat KL, Muthaiah AR, Rao AS (2013) Combining ability and heterosis for grain iron and zinc densities in pearl millet. Crop Sci 53:507–517

    Article  CAS  Google Scholar 

  • Govindaraj M, Rai KN, Pfeiffer WH, Kanatti A, Shivade H (2016a) Energy-dispersive X-ray fluorescence spectrometry for cost-effective and rapid screening of pearl millet germplasm and breeding lines for grain iron and zinc density. Commun Soil Sci Plant Anal 47:2126–2134

    Article  CAS  Google Scholar 

  • Govindaraj M, Rai KN, Shanmugasundaram P (2016b) Intra-population genetic variance for grain iron and zinc contents and agronomic traits in pearl millet. Crop J 4:48–54

    Article  Google Scholar 

  • Gregorio GB, Senadhira D, Htut H, Graham RD (2000) Breeding for trace mineral density in rice. Food Nutr Bull 21:383–386

    Article  Google Scholar 

  • Gulia SK (2004) QTL mapping for improvement of downy mildew [Sclerospora graminicola (Sacc.) J. Schroet.] resistance (DMR) in pearl millet [Pennisetum glaucum (L.) R. Br.] ICMB 89111. Ph.D thesis, Chaudhary Charan Singh Haryana Agricultural University, Hisar

    Google Scholar 

  • Gupta SK, Velu G, Rai KN, Sumalini K (2009) Association of grain iron and zinc content with grain yield and other traits in pearl millet (Pennisetum glaucum (L.) R. Br.). Crop Improv 36:4–7

    Google Scholar 

  • Hash CT, Witcombe JR (2001) Pearl millet molecular marker research. Int Sorghum Millets Newsl 42:8–15

    Google Scholar 

  • Hash CT, Witcombe JR (2002) Gene management and breeding for downy mildew resistance. In: Leslie JF (ed) Sorghum and millets diseases. Iowa State Press, Ames, IO, pp 27–36

    Google Scholar 

  • Hash CT, Schaffert RE, Peacock JM (2002) Prospects for using conventional techniques and molecular biological tools to enhance performance of ‘orphan’ crop plants on soils low in available phosphorus. Plant Soil 245:135–146

    Article  CAS  Google Scholar 

  • ICMR (2002) Nutrient requirements and recommended dietary allowances for Indians. Indian Council of Medical Research, New Delhi, p 83

    Google Scholar 

  • IFAD (1999) Farmer participatory testing of technologies to increase sorghum and pearl millet production in the Sahel. www.ifad.org/grants

    Google Scholar 

  • Jambunathan R, Subramanian V (1988) Grain quality and utilization in sorghum and pearl millet. In: Proceedings of the workshop on biotechnology for tropical crop improvement. ICRISAT, Patancheru, pp 1330–1339

    Google Scholar 

  • Jones ES, Liu CJ, Gale MD, Hash CT, Witcombe JR (1995) Mapping quantitative trait loci for downy mildew resistance in pearl millet. Theor Appl Genet 91:448–456

    Article  CAS  PubMed  Google Scholar 

  • Jones ES, Breese WA, Liu CJ, Singh SD, Shaw DS, Witcombe JR (2002) Mapping quantitative trait loci for resistance to downy mildew in pearl millet: Field and glasshouse screens detect the same QTL. Crop Sci 42:1316–1323

    Article  CAS  Google Scholar 

  • Kanatti A, Rai KN, Radhika K, Govindaraj M, Sahrawat KL, Rao AS (2014a) Grain iron and zinc density in pearl millet: combining ability, heterosis and association with grain yield and grain size. Springerplus 3:763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanatti A, Rai KN, Radhika K, Govindaraj M, Sahrawat KL, Srinivasu K, Shivade H (2014b) Relationship of grain iron and zinc content with grain yield in pearl millet hybrids. Crop Improv 41:91–96

    Google Scholar 

  • Kanatti A, Rai KN, Radhika K, Govindaraj M (2016) Tester effect on combining ability and its relationship with line performance per se for grain iron and zinc densities in pearl millet. Crop Sci 56:1–8

    Article  CAS  Google Scholar 

  • Kanatti A, Govindaraj M, Rai KN, Rao AS (2018) Maternal effect on grain iron and zinc densities in pearl millet. In: 1st National Genetic Congress on Genetics for Sustainable Food, Health and Nutrition Security December 14–16, IARI, New Delhi (Accepted)

    Google Scholar 

  • Kholová J, Nepolean T, Hash CT, Supriya A, Rajaram V, Senthilvel S, Kakkera A, Yadav RS, Vadez V (2012) Water saving traits co-map with a major terminal drought tolerance quantitative trait locus in pearl millet (Pennisetum glaucum (L.) R. Br.). Mol Breed 30:1337–1353

    Article  Google Scholar 

  • Kumar S, Hash CT, Thirunavukkarasu N, Singh G, Rajaram V, Rathore A, Senapathy S, Mahendrakar MD, Yadav RS, Srivastava RK (2016) Mapping quantitative trait loci controlling high iron and zinc content in self and open pollinated grains of pearl millet [Pennisetum glaucum (L.) R. Br.]. Front Plant Sci 7:1636

    PubMed  PubMed Central  Google Scholar 

  • Kumar S, Hash CT, Nepolean T, Satyavathi TS, Singh G, Mahendrakar MD, Yadav RS, Srivastava RK (2017) Mapping QTLs controlling flowering time and important agronomic traits in pearl millet [Pennisetum glaucum (L.) R. Br.]. Front Plant Sci 8:1731

    Article  PubMed  PubMed Central  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits by using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lander E, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Liu CJ, Witcombe JR, Pittaway TS, Nash M, Hash CT, Busso CS, Gale MD (1994) An RFLP-based genetic map of pearl millet (Pennisetum glaucum). Theor Appl Genet 89:481–487

    Article  CAS  PubMed  Google Scholar 

  • Mal B., Padulosi S. and Ravi S.B. 2010. Minor millets in South Asia: learnings from IFAD-NUS Project in India and Nepal, Rome: Bioversity International

    Google Scholar 

  • Mani UV, Prabhu BM, Damle SS, Mani I (1993) Glycemic index of some commonly consumed foods in Western India. Asia Pac J Clin Nutr 2:111–114

    CAS  PubMed  Google Scholar 

  • Manly KF, Elliott RW (1991) RI manager, a microcomputer program for analysis of data from recombinant inbred strains. Mamm Genome 1:123–127

    Article  CAS  PubMed  Google Scholar 

  • Manwaring HR, Bligh HFJ, Yadav R (2016) The challenges and opportunities associated with biofortification of pearl millet (Pennisetum glaucum) with elevated levels of grain iron and zinc. Front Plant Sci 7:1944

    Article  PubMed  PubMed Central  Google Scholar 

  • Melchinger AE, Utz HF, Schön CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monasterio I, Graham RD (2000) Breeding for trace minerals in wheat. Food Nutr Bull 21:392–396

    Article  Google Scholar 

  • Morgan RN, Wilson JP, Hanna WW, Ozias-Akin P (1998) Molecular markers for rust and Pyricularia leaf spot disease resistance in pearl millet. Theor Appl Genet 96:413–420

    Article  CAS  PubMed  Google Scholar 

  • NFHS (National Family Health Survey) (2016) NFHS-4-fact sheets for key indicators. International Institute for Population Sciences, Mumbai

    Google Scholar 

  • NIN (2003) Nutritive value of Indian foods. In: Gopalan C, Deosthale YG (eds) Nutritive value of Indian foods. National Institute of Nutrition, Hyderabad

    Google Scholar 

  • Ozkan H, Brandolini A, Torun A, AltIntas S, Eker S, Kilian B, Braun HJ, Salamini F, Cakmak I (2007) Natural variation and identification of microelements content in seeds of Einkorn wheat (Triticum monococcum). Dev Plant Breed 12:455–462

    Google Scholar 

  • Paltridge NG, Palmer LJ, Milham PJ, Guild GE, Stangoulis JCR (2012) Energy-dispersive X-ray fluorescence analysis of zinc and iron concentration in rice and pearl millet grain. Plant Soil 361:251–260

    Article  CAS  Google Scholar 

  • Parthasarathy Rao P, Birthal PS, Reddy BVS, Rai KN, Ramesh S (2006) Diagnostics of sorghum and pearl millet grains-based nutrition in India. ISMN 46:93–96

    Google Scholar 

  • Pedraza-Garcia F, Specht JE, Dweikat I (2010) A new PCR-based linkage map in pearl millet. Crop Sci 50:1754–1760

    Article  CAS  Google Scholar 

  • Poncet V, Lamy F, Devos KM, Gale MD, Sarr A, Robert T (2000) Genetic control of domestication traits in pearl millet (Pennisetum glaucum L., Poaceae). Theor Appl Genet 100:147–159

    Article  CAS  Google Scholar 

  • Poncet V, Martel E, Allouis S, Devos M, Lamy F, Sarr A (2002) Comparative analysis of QTLs affecting domestication traits between two domesticated × wild pearl millet (Pennisetum glaucum L., Poaceae) crosses. Theor Appl Genet 104:965–975

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Lindup S, Pittaway TS, Allouis S, Gale MD, Devos KM (2001) Development of simple sequence repeat markers from bacterial artificial chromosomes without sub cloning. BioTechniques 31(2):355–358

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Pittaway TS, Lindup S, Liu H, Waterman E, Padi FK, Devos KM (2004) An integrated genetic map and a new set of simple sequence repeat markers for pearl millet, Pennisetum glaucum. Theor Appl Genet 109:1485–1493

    Article  CAS  PubMed  Google Scholar 

  • Rai KN, Govindaraj M, Rao AS (2012) Genetic enhancement of grain iron and zinc content in pearl millet. Quality assurance and safety of crops and food 4:119–125

    Article  CAS  Google Scholar 

  • Rai KN, Patil HT, Yadav OP, Govindaraj M, Khairwal IS, Cherian B, Rajpurohit BS, Rao AS, Kulkarni MP (2014) Dhanashakti: a high-iron pearl millet variety. Indian Farm 64:32–34

    Google Scholar 

  • Rai KN, Govindaraj M, Pfeiffer WH, Rao AS (2015a) Seed set and xenia effects on grain iron and zinc density in pearl millet. Crop Sci 55:821–827

    Article  CAS  Google Scholar 

  • Rai KN, Velu G, Govindaraj M, Upadhyaya HD, Rao AS, Shivade H, Reddy KN (2015b) Iniadi pearl millet germplasm as a valuable genetic resource for high grain iron and zinc densities. Plant Genet Resour 13:75–82

    Article  CAS  Google Scholar 

  • Rai KN, Yadav OP, Govindaraj M, Pfeiffer WH, Yadav HP, Rajpurohit BS, Patil HT, Kanatti A, Rathore A, Rao AS, Shivade H (2016) Grain iron and zinc densities in released and commercial cultivars of pearl millet (Pennisetum glaucum). Indian J Agric Sci 86:11–16

    Google Scholar 

  • Rai KN, Govindaraj M, Kanatti A, Rao AS, Shivade H (2017) Inbreeding effects on grain iron and zinc concentrations in pearl millet. Crop Sci 57:1–8

    Article  CAS  Google Scholar 

  • Rajaram V, Nepolean T, Senthilvel S, Varshney RK, Vadez V, Srivastava RK, Shah TM, Supriya A, Kumar S, Kumari BR, Bhanuprakash A, Narasu ML, Riera-Lizarazu O, Hash CT (2013) Pearl millet [Pennisetum glaucum (L.) R. Br.] consensus linkage map constructed using four RIL mapping populations and newly developed EST-SSRs. BMC Genomics 14(159):1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds MP, Pellegrineschi A, Skovmand B (2005) Sink-limitation to yield and biomass: a summary of some investigations in spring wheat. Ann Appl Biol 146:39–49

    Article  Google Scholar 

  • Saïdou AA, Mariac C, Luong V, Pham JL, Bezançon G, Vigouroux Y (2009) Association studies identify natural variation at PHYC linked to flowering time and morphological variation in pearl millet. Genetics 182:899–910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Satyavathi CT, Sankar SM, Singh SP, Bhowmick P, Bhat J, Singh O, Anuradha N (2015) Stability analysis of grain iron and zinc content in pearl millet (Pennisetum glaucum (L.) R. Br). Int J Trop Agric 33:1387–1394

    Google Scholar 

  • Senthilvel S, Jayashree B, Mahalakshmi V, Kumar PS, Nakka S, Nepolean T, Hash CT (2008) Development and mapping of simple sequence repeat markers for pearl millet from data mining of expressed sequence tags. BMC Plant Biol 8:119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serraj R, Hash CT, Rizvi SMH, Sharma A, Yadav RS, Bidinger FR (2005) Recent advances in marker-assisted selection for drought tolerance in pearl millet. Plant Prod Sci 8:334–337

    Article  Google Scholar 

  • Singh KP, Mishra A, Mishra HN (2012) Fuzzy analysis of sensory attributes of bread prepared from millet-based composite flours. LWT Food Sci Technol 48:276–282

    Article  CAS  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Supriya A, Senthilvel S, Nepolean T, Eshwar K, Rajaram V, Shaw R, Narasu ML (2011) Development of a molecular linkage map of pearl millet integrating DArT and SSR markers. Theor Appl Genet 123:239–250

    Article  CAS  PubMed  Google Scholar 

  • Utz HF, Melchinger AE, Schön CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154:1839–1849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Shi C, Thudi M, Mariac C, Wallace J, Qi P, Zhang H, Zhao Y, Wang X, Rathore A, Srivastava RK, Chitikineni A, Fan G, Bajaj P, Punnuri S, Gupta SK, Wang H, Jiang Y, Couderc M, Katta MAVSK, Paudel DR, Mungra KD, Chen W, Harris-Shultz KR, Garg V, Desai N, Doddamani D, Kane N, Conner JA, Ghatak A, Chaturvedi P, Subramaniam S, Yadav OP, Berthouly-Salazar C, Hamiduo F, Wang J, Liang X, Clotault J, Upadhyaya HD, Cubry P, Rhoné B, Gueye MC, Sunkar R, Dupuy C, Sparvoli F, Cheng S, Mahala RS, Singh B, Yadav RS, Lyons E, Datta SK, Hash CT, Devos KM, Buckler E, Bennetzen JL, Paterson AH, Ozias-Akins P, Grando S, Wang J, Mohapatra T, Weckwerth W, Reif JC, Xi L, Vigouroux Y, Xu X (2017. Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments) Nat Biotechnol 35:969–974. https://doi.org/10.1038/nbt.3943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velu G (2006) Genetic variability, stability and inheritance of grain iron and zinc content in pearl millet (Pennisetum glaucum (L.) R. Br.). Ph.D., thesis, Tamil Nadu Agricultural University, Coimbatore, India

    Google Scholar 

  • Velu G, Rai KN, Muralidharan V, Kulkarni VN, Longvah T, Raveendran TS (2007) Prospects of breeding biofortified pearl millet with high grain iron and zinc content. Plant Breed 126:182–185

    Article  CAS  Google Scholar 

  • Velu G, Rai KN, Sahrawat KL (2008a) Variability for grain iron and zinc content in a diverse range of pearl millet populations. Crop Improv 35:186–191

    Google Scholar 

  • Velu G, Rai KN, Sahrawat KL, Sumalini K (2008b) Variability for grain iron and zinc contents in pearl millet hybrids. J SAT Agric Res 6:1–5

    Google Scholar 

  • Velu G, Rai KN, Muralidharan V, Longvah T, Crossa J (2011) Gene effects and heterosis for grain iron and zinc density in pearl millet (Pennisetum glaucum (L.) R. Br). Euphytica 180:251–259

    Article  CAS  Google Scholar 

  • Vengadessan V, Rai KN, Kannan Bapu JR, Hash CT, Bhattacharjee R, Senthilvel S, Vinayan MT, Nepolean T (2013) Construction of genetic linkage map and QTL analysis of sink-size traits in pearl millet (Pennisetum glaucum). ISRN Genetics 52:724–728

    Google Scholar 

  • Wessells KR, Brown KH (2012) Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS One 7:e50568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • WHO (2008) Worldwide prevalence of anaemia 1993–2005: WHO global database. WHO, Geneva

    Google Scholar 

  • Yadav OP, Rai KN (2013) Genetic improvement of pearl millet in India. Agric Res 2:75–92

    Google Scholar 

  • Yadav OP, Mitchell SE, Zamora A, Fulton TM, Kresovich S (2007) Development of new simple sequence repeat markers for pearl millet. J Semi-Arid Trop Agric Res 3:34–37

    Google Scholar 

  • Yadav RS, Hash CT, Bidinger FR, Cavan GP, Howarth CJ (2002) Quantitative trait loci associated with traits determining grain and stover yield in pearl millet under terminal drought-stress conditions. Theor Appl Genet 104:67–83

    Article  CAS  PubMed  Google Scholar 

  • Yadav RS, Bidinger FR, Hash CT, Yadav YP, Yadav OP, Bhatnagar SK, Howarth CJ (2003) Mapping and characterization of QTL3E interactions for traits determining grain and stover yield in pearl millet. Theor Appl Genet 106:512–520

    Article  CAS  PubMed  Google Scholar 

  • Yadav RS, Hash CT, Bidinger FR, Devos KM, Howarth CJ (2004) Genomic regions associated with grain yield and aspects of post-flowering drought tolerance in pearl millet across stress environments and tester background. Euphytica 136:265–277

    Article  CAS  Google Scholar 

  • Yadav OP, Mitchell SE, Fulton TM, Kresovich S (2008) Transferring molecular markers from sorghum, rice and other cereals to pearl millet and identifying polymorphic markers. J Semi-Arid Trop Agric Res 6:1–4

    Google Scholar 

  • Yadav OP, Rai KN, Bidinger FR, Gupta SK, Rajpurohit BS, Bhatnagar SK (2012) Pearl millet (Pennisetum glaucum) restorer lines for breeding dual-purpose hybrids adapted to arid environments. Indian J Agric Sci 82:922–927

    Google Scholar 

  • Yadav OP, Rai KN, Yadav HP, Rajpurohit BS, Gupta SK, Rathore A, Karjagi CG (2016) Assessment of diversity in commercial hybrids of pearl millet in India. Indian J Plant Genet Resour 29:130–136

    Article  Google Scholar 

  • Yadava DK, Choudhury PR, Hossain F, Kumar D (2017) Biofortified varieties: sustainable way to alleviate malnutrition. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Govindaraj, M., Yadav, O.P., Srivastava, R.K., Gupta, S.K. (2019). Conventional and Molecular Breeding Approaches for Biofortification of Pearl Millet. In: Qureshi, A., Dar, Z., Wani, S. (eds) Quality Breeding in Field Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-04609-5_4

Download citation

Publish with us

Policies and ethics