Skip to main content

Improving the Nutritional Value of Potatoes by Conventional Breeding and Genetic Modification

  • Chapter
  • First Online:
Quality Breeding in Field Crops

Abstract

As the potato is a major food crop, improving the nutritional value of its tubers will contribute to the United Nations “2030 Agenda for Sustainable Development”, provided potato production is also increased. Realistic targets for conventional breeding are the following: ensuring tuber steroidal glycoalkaloids do not exceed 20 mg 100 g−1 fresh-weight; reducing acrylamide formation in crisps (chips) and French fries below benchmark levels of 750 and 500 μg kg−1, respectively; reducing glycaemic index by increasing the amount of resistant starch; increasing protein quantity and quality; and increasing the concentrations of the minerals iron and zinc and the vitamins B9 and C. Red-fleshed and purple-fleshed potatoes contain anthocyanins which are antioxidants and yellow-fleshed and orange-fleshed ones contain the carotenoids lutein and zeaxanthin which protect against macular eye degeneration. Genetic variation exists for all of these traits among modern cultivars and Andean landraces; but some traits lack rapid screens for use in breeding, and there are still issues over bioavailability of some nutrients. Genetic engineering can be used to control glycoalkaloid concentrations and acrylamide-forming potential; to increase dietary fibre through the introduction of inulins from globe artichoke; to increase protein quality and quantity by tuber-specific expression of a seed protein, Amaranth Albumin 1, from Amaranthus hypochondriacus; and to alter carotenoid biosynthesis to produce beta-carotene, the precursor of vitamin A (Golden Potatoes), or astaxanthin, a feed additive in aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akilen R, Deljoomanesh N, Hunschede S, Smith CE, Arshad MU, Kubant R, Anderson GH (2016) The effects of potatoes and other carbohydrate side dishes consumed with meat on food intake, glycemia and satiety response in children. Nutr Diabetes 6:e195. https://doi.org/10.1038/nutd.2016.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akyol H, Riciputi Y, Capanoglu E, Caboni MF, Verardo V (2016) Phenolic compounds in the potato and its byproducts: an overview. Int J Mol Sci 17:835. https://doi.org/10.3390/ijms17060835

    Article  CAS  PubMed Central  Google Scholar 

  • Ames M, Spooner DA (2008) DNA from herbarium specimens settles a controversy about origins of the European potato. Am J Bot 95:252–257

    Article  CAS  PubMed  Google Scholar 

  • Amrein TM, Bachmann S, Noti A, Biedermann M, Barbosa MF, Biedermann-Brem S, Grob K, Keiser A, Realini P, Escher F, Amadò R (2003) Potential of acrylamide formation, sugars, and free asparagine in potatoes: a comparison of cultivars and farming systems. J Agric Food Chem 51:5556–5560

    Article  CAS  PubMed  Google Scholar 

  • Andre CM, Legay S, Iammarino C, Ziebel J, Guignard C, Larondelle Y, Hausman J-F, Evers D, Miranda LM (2014) The potato in the human diet: a complex matrix with potential health benefits. Potato Res 57:201–214

    Article  CAS  Google Scholar 

  • Andre CM, Evers D, Ziebel J, Guignard C, Hausman J-F, Bonierbale M, zum Felde T, Burgos G (2015) In vitro bioaccessibility and bioavailability of iron from potatoes with varying vitamin C, carotenoid, and phenolic concentrations. J Agric Food Chem 63:9012–9021. https://doi.org/10.1021/acs.jafc.5b02904

    Article  CAS  PubMed  Google Scholar 

  • Bártová V, Bárta J, Brabcová A, Zdráhal Z, Horáčková V (2015) Amino acid composition and nutritional value of four cultivated South American potato species. J Food Compost Anal 40:78–85. https://doi.org/10.1016/j.jfca.2014.12.006

    Article  CAS  Google Scholar 

  • Birt DF, Boylston T, Hendrich S, Jane JL, Hollis J, Li L, McClelland J, Moore S, Phillips GJ, Rowling M, Schalinske K, Whitley EM (2013) Resistant starch: promise for improving human health. Adv Nutr 4:587–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonierbale MW, Plaisted RL, Tanksley SD (1988) RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonierbale M, Grüneberg W, Amoros W, Burgos G, Salas E, Porras E, zum Felde T (2009) Total and individual carotenoid profiles in Solanum phureja cultivated potatoes: II. Development and application of near-infrared reflectance spectroscopy (NIRS) calibrations for germplasm characterization. J Food Compost Anal 22:509–516

    Article  CAS  Google Scholar 

  • Borch D, Juul-Hindsgaul N, Veller M, Astrup A, Jaskolowski J, Raben A (2016) Potatoes and risk of obesity, type 2 diabetes, and cardiovascular disease in apparently healthy adults: a systematic review of clinical intervention and observational studies. Am J Clin Nutr 104:489–498. https://doi.org/10.3945/ajcn.116.132332

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw JE (2009) A genetic perspective on yield plateau in potato. Potato J 36:79–94

    Google Scholar 

  • Bradshaw JE (2016) Plant breeding: past, present and future. Springer, Cham

    Book  Google Scholar 

  • Bradshaw JE (2017) Review and analysis of limitations in ways to improve conventional potato breeding. Potato Res 60:171–193

    Article  Google Scholar 

  • Bradshaw JE, Bonierbale M (2010) Potatoes. In: Bradshaw JE (ed) Root and tuber crops, handbook of plant breeding 7. Springer, New York, NY, pp 1–52

    Chapter  Google Scholar 

  • Bradshaw JE, Hackett CA, Pande B, Waugh R, Bryan GJ (2008) QTL mapping of yield, agronomic and quality traits in tetraploid potato (Solanum tuberosum subsp. tuberosum). Theor Appl Genet 116:193–211

    Article  PubMed  Google Scholar 

  • Breithaupt DE, Bamedi A (2002) Carotenoids and carotenoid esters in potatoes (Solanum tuberosum L.): new insights into an ancient vegetable. J Agric Food Chem 50:7175–7181

    Article  CAS  PubMed  Google Scholar 

  • Brown CR (1993) Outcrossing rate in cultivated autotetraploid potato. Am Potato J 70:725–734

    Article  Google Scholar 

  • Brown CR (2005) Antioxidants in potato. Am J Potato Res 82:163–172

    Article  CAS  Google Scholar 

  • Brown CR, Edwards CG, Yang CP, Dean BB (1993) Orange flesh trait in potato: inheritance and carotenoid content. J Am Soc Hortic Sci 118:145–150

    Article  CAS  Google Scholar 

  • Brown CR, Wrolstad R, Durst R, Yang CP, Clevidence B (2003) Breeding studies in potatoes containing high concentrations of anthocyanins. Am J Potato Res 80:241–250

    Article  CAS  Google Scholar 

  • Brown CR, Kim TS, Ganga Z, Haynes K, De Jong D, Jahn M, Paran I, De Jong W (2006) Segregation of total carotenoid in high level potato germplasm and its relationship to beta-carotene hydroxylase polymorphism. Am J Potato Res 83:365–372

    Article  CAS  Google Scholar 

  • Brown CR, Haynes KG, Moore M, Pavek MJ, Hane DC, Love SL, Novy RG, Miller JC (2010) Stability and broad-sense heritability of mineral content in potato. Iron. Am J Potato Res 87:390–396. https://doi.org/10.1007/s12230-010-9145-4

    Article  CAS  Google Scholar 

  • Brown CR, Haynes KG, Moore M, Pavek MJ, Hane DC, Love SL, Novy RG, Miller JC (2011) Stability and broad-sense heritability of mineral content in potato. Zinc. Am J Potato Res 88:238–244. https://doi.org/10.1007/s12230-011-9188-1

    Article  CAS  Google Scholar 

  • Brown CR, Vales I, Yilma S, James S, Charlton B, Culp D, Hane D, Shock C, Feibert E, Pavek M, Knowles R, Novy R, Whitworth J, Stark J, Miller JC, Holm D, Quick R, Navarre R (2012a) “AmaRosa,” a red skinned, red fleshed fingerling with high phytonutrient value. Am J Pot Res 89:249–254. https://doi.org/10.1007/s12230-012-9248-1

    Article  CAS  Google Scholar 

  • Brown CR, Haynes KG, Moore M, Pavek MJ, Hane DC, Love SL, Novy RG, Miller JC (2012b) Stability and broad-sense heritability of mineral content in potato: calcium and magnesium. Am J Potato Res 89:255–261. https://doi.org/10.1007/s12230-012-9240-9

    Article  CAS  Google Scholar 

  • Brown CR, Haynes KG, Moore M, Pavek MJ, Hane DC, Love SL, Novy RG (2013) Stability and broad-sense heritability of mineral content in potato: potassium and phosphorus. Am J Potato Res 90:516–523

    Article  CAS  Google Scholar 

  • Brown CR, Haynes KG, Moore M, Pavek MJ, Hane DC, Love SL, Novy RG, Miller JC (2014) Stability and broad-sense heritability of mineral content in potato: copper and sulfur. Am J Potato Res 91:618–624

    Article  CAS  Google Scholar 

  • Burgos G, Amoros W, Morote M, Stangoulis J, Bonierbale M (2007) Iron and zinc concentration of native Andean potato cultivars from a human nutrition perspective. J Sci Food Agric 87:668–675. https://doi.org/10.1002/jsfa.2765

    Article  CAS  Google Scholar 

  • Burgos G, Salas E, Amoros W, Auqui M, Muñoa L, Kimura M, Bonierbale M (2009a) Total and individual carotenoid profiles in Solanum phureja of cultivated potatoes: I. Concentrations and relationships as determined by spectrophotometry and HPLC. J Food Compost Anal 22:503–508

    Article  CAS  Google Scholar 

  • Burgos G, Auqui S, Amoros W, Salas E, Bonierbale M (2009b) Ascorbic acid concentration of native Andean potato varieties as affected by environment, cooking and storage. J Food Compost Anal 22:533–538

    Article  CAS  Google Scholar 

  • Burgos G, Amoros W, Salas E, Muñoa L, Sosa P, Díaz C, Bonierbale M (2012) Carotenoid concentrations of native Andean potatoes as affected by cooking. Food Chem 133:1131–1137

    Article  CAS  Google Scholar 

  • Burgos G, Muñoa L, Sosa P, Bonierbale M, zum Felde T, Díaz C (2013) In vitro bioaccessibility of lutein and zeaxanthin of yellow fleshed boiled potatoes. Plant Foods Hum Nutr 68:385–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton WG (1989) The potato, 3rd edn. Longman Scientific and Technical, Harlow

    Google Scholar 

  • Campbell R, Pont SD, Morris JA, McKenzie G, Sharma SK, Hedley PE, Ramsay G, Bryan GJ, Taylor MA (2014) Genome-wide QTL and bulked transcriptomic analysis reveals new candidate genes for the control of tuber carotenoid content in potato (Solanum tuberosum L.). Theor Appl Genet 127:1917–1933

    Article  CAS  PubMed  Google Scholar 

  • Campbell R, Morris WL, Mortimer CL, Misawa N, Ducreux LJ, Morris JA, Hedley PE, Fraser PD, Taylor MA (2015) Optimising ketocarotenoid production in potato tubers: effect of genetic background, transgene combinations and environment. Plant Sci 234:27–37

    Article  CAS  PubMed  Google Scholar 

  • Carroll CP (1982) A mass-selection method for the acclimatization and improvement of edible diploid potatoes in the United Kingdom. J Agric Sci Camb 99:631–640

    Article  Google Scholar 

  • Carroll CP, De Maine MJ (1989) The agronomic value of tetraploid F1 hybrids between potatoes of group Tuberosum and group Phureja/Stenotomum. Potato Res 32:447–456

    Article  Google Scholar 

  • Chakraborty S, Chakraborty N, Agrawal L, Ghosh S, Narula K, Shekhar S, Naik PS, Pande PC, Chakrborti SK, Datta A (2010) Next-generation protein-rich potato expressing the seed protein gene AmA1 is a result of proteome rebalancing in transgenic tuber. Proc Natl Acad Sci U S A 107:17533–17538. https://doi.org/10.1073/pnas.1006265107

    Article  PubMed  PubMed Central  Google Scholar 

  • Chawla R, Shakya R, Rommens CM (2012) Tuber-specific silencing of asparagine synthetase-1 reduces the acrylamide-forming potential of potatoes grown in the field without affecting tuber shape and yield. Plant Biotechnol J 10:913–924

    Article  CAS  PubMed  Google Scholar 

  • Chitchumroonchokchai C, Diretto G, Parisi B, Giuliano G, Failla ML (2017) Potential of golden potatoes to improve vitamin A and vitamin E status in developing countries. PLoS One 12(11):e0187102. https://doi.org/10.1371/journal.pone.0187102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho K-S, Jeong H-J, Cho J-H, Park Y-E, Hong S-Y, Won H-S, Kim H-J (2013) Vitamin C content of potato clones from Korean breeding lines and compositional changes during growth and after storage. Hortic Environ Biotechnol 54:70–75

    Article  CAS  Google Scholar 

  • Chung YS, Palta P, Bamberg J, Jansky S (2016) Potential molecular markers associated with tuber calcium content in wild potato germplasm. Crop Sci 56:576–584

    Article  CAS  Google Scholar 

  • Colditz GA, Branch LG, Lipnick RJ, Willett WC, Rosner B, Posner BM, Hennekens CH (1985) Increased green and yellow vegetable intake and lowered cancer deaths in an elderly population. Am J Clin Nutr 41:32–36

    Article  CAS  PubMed  Google Scholar 

  • Dale MFB, Mackay GR (1994) Inheritance of table and processing quality. In: Bradshaw JE, Mackay GR (eds) Potato genetics. CAB International, Wallingford, pp 285–315

    Google Scholar 

  • Davies HV (2002) Commercial developments with transgenic potato. In: Valpuesta V (ed) Fruit and vegetable biotechnology. Woodhead Publishing Limited, Cambridge, pp 222–249

    Chapter  Google Scholar 

  • De Jong WS, De Jong DM, Bodis M (2003) A fluorogenic 5′ nuclease (TaqMan) assay to assess dosage of a marker tightly linked to red skin color in autotetraploid potato. Theor Appl Genet 107:1384–1390. https://doi.org/10.1007/s00122-003-1420-z

    Article  CAS  PubMed  Google Scholar 

  • De Jong WS, Eannetta NT, De Jong DM, Bodis M (2004) Candidate gene analysis of anthocyanin pigmentation loci in the Solanaceae. Theor Appl Genet 108:423–432. https://doi.org/10.1007/s00122-003-1455-1

    Article  CAS  PubMed  Google Scholar 

  • Diretto G, Tavazza R, Welsch R, Pizzichini D, Mourgues F, Papacchioli V, Beyer P, Giuliano G (2006) Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biol 6:13. https://doi.org/10.1186/1471-2229-6-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diretto G, Al-Babili S, Tavazza R, Papacchioli V, Beyer P, Giuliano G (2007a) Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS One 2(4):e350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diretto G, Welsch R, Tavazza R, Mourgues F, Pizzichini D, Beyer P, Giuliano G (2007b) Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers. BMC Plant Biol 7:11. https://doi.org/10.1186/1471-2229-7-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodds KS (1962) Classification of cultivated potatoes. In: Correll DS (ed) The potato and its wild relatives. Texas Research Foundation, Renner, TX, pp 517–539

    Google Scholar 

  • Ducreux LJ, Morris WL, Hedley PE, Shepherd T, Davies HV, Millam S, Taylor MA (2005) Metabolic engineering of high carotenoid potato tubers containing enhanced levels of β-carotene and lutein. J Exp Bot 56:81–89

    CAS  PubMed  Google Scholar 

  • Ek KL, Wang S, Copeland L, Brand-Miller JC (2014a) Discovery of a low-glycaemic index potato and relationship with starch digestion in vitro. Br J Nutr 111:699–705

    Article  CAS  PubMed  Google Scholar 

  • Ek KL, Wang S, Brand-Miller JC, Copeland L (2014b) Properties of starch from potatoes differing in glycemic index. Food Funct 10:2509–2515

    Google Scholar 

  • Englyst HN, Kingman SM, Cummings JH (1992) Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 46:S33–S50

    PubMed  Google Scholar 

  • Ezekiel R, Singh N, Sharma S, Kaur A (2013) Beneficial phytochemicals in potato – a review. Food Res Int 50:487–496

    Article  CAS  Google Scholar 

  • Fairweather-Tait S (1983) Studies on the availability of iron in potatoes. Br J Nutr 50:15–23

    Article  CAS  PubMed  Google Scholar 

  • Foster-Powell K, Holt SHA, Brand-Miller JC (2002) International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr 76:5–56

    Article  CAS  PubMed  Google Scholar 

  • Friedman M (1996) Nutritional value of proteins from different food sources. A review. J Agric Food Chem 44:6–29

    Article  CAS  Google Scholar 

  • Friedman M, Levin CE (2016) Glycoalkaloids and calystegine alkaloids in potatoes. In: Singh J, Kaur L (eds) Advances in potato chemistry and technology, 2nd edn. Elsevier, Amsterdam, pp 167–194

    Chapter  Google Scholar 

  • Friedman M, McDonald GM (1997) Potato glycoalkaloids: chemistry, analysis, safety, and plant physiology. Crit Rev Plant Sci 16:55–132

    Article  CAS  Google Scholar 

  • Galdón BR, Mesa DR, Rodríguez EMR, Romero CD (2010) Amino acid content in traditional potato cultivars from the Canary Islands. J Food Compost Anal 23:148–153. https://doi.org/10.1016/j.jfca.2009.08.009

    Article  CAS  Google Scholar 

  • Gaziano GM, Manson JE, Branch LG, Colditz GA, Willett WC, Buring JE (1995) A prospective study of consumption of carotenoids in fruits and vegetables and decreased cardiovascular mortality in the elderly. Ann Epidemiol 5:255–260

    Article  CAS  PubMed  Google Scholar 

  • Goodrich CE (1863) The origination and test culture of seedling potatoes. Trans NY State Agric Soc 23:89–134

    Google Scholar 

  • Goyer A, Navarre DA (2007) Determination of folate concentrations in diverse potato germplasm using a trienzyme extraction and a microbiological assay. J Agric Food Chem 55:3523–3528

    Article  CAS  PubMed  Google Scholar 

  • Goyer A, Navarre DA (2009) Folate is higher in developmentally younger potato tubers. J Sci Food Agric 89:579–583

    Article  CAS  Google Scholar 

  • Goyer A, Sweek K (2011) Genetic diversity of thiamin and folate in primitive cultivated and wild potato (Solanum) species. J Agric Food Chem 59:13072–13080. https://doi.org/10.1021/jf203736e

    Article  CAS  PubMed  Google Scholar 

  • Hammond BR, Johnson EJ, Russell RM, Krinsky NI, Yeum KJ, Edwards RB, Snodderly DM (1997) Dietary modification of human macular pigment density. Invest Ophthalmol Vis Sci 38:1795–1801

    PubMed  Google Scholar 

  • Hawkes JG (1990) The potato: evolution, biodiversity & genetic resources. Belhaven Press, London

    Google Scholar 

  • Haynes KG (2000) Inheritance of yellow-flesh intensity in diploid potatoes. J Am Soc Hortic Sci 125:63–65

    Article  Google Scholar 

  • Haynes KG, Potts WE, Chittams JL, Fleck DL (1994) Determining yellow-flesh intensity in potatoes. J Am Soc Hortic Sci 119:1057–1059

    Article  Google Scholar 

  • Haynes KG, Sieczka JB, Henninger MR, Fleck DL (1996) Clone × environment interactions for yellow-flesh intensity in tetraploid potatoes. J Am Soc Hortic Sci 121:175–177

    Article  Google Scholar 

  • Haynes KG, Clevidence BA, Rao D, Vinyard BT (2011) Inheritance of carotenoid content in tetraploid × diploid potato crosses. J Am Soc Hortic Sci 136:265–272

    Article  Google Scholar 

  • Haynes K, Yencho G, Clough M, Henninger M, Sterrett S (2012) Genetic variation for potato tuber micronutrient content and implications for biofortification of potatoes to reduce micronutrient malnutrition. Am J Potato Res 89:192–198

    Article  CAS  Google Scholar 

  • Hellwege EM, Czapla S, Jahnke A, Willmitzer L, Heyer AG (2000) Transgenic potato (Solanum tuberosum) tubers synthesise the full spectrum of inulin molecules naturally occurring in globe artichoke (Cynara scolymus). Proc Natl Acad Sci U S A 97:8699–8704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry CJK, Lightowler H, Strik C, Storey M (2005) Glycaemic index values for commercially available potatoes in Great Britain. Br J Nutr 94:917–921

    Article  CAS  PubMed  Google Scholar 

  • Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosaka K (2004) Evolutionary pathway of T-type chloroplast DNA in potato. Am J Potato Res 81:153–158

    Article  Google Scholar 

  • Hougas RW, Peloquin SJ, Ross RW (1958) Haploids of the common potato. J Hered 49:103–107

    Article  Google Scholar 

  • Huaman Z, Golmirzaie A, Amoros W (1997.) The potato) In: Fuccillo D, Sears L, Stapleton P (eds) Biodiversity in trust: conservation and use of plant genetic resources in CGIAR centres. Cambridge University Press, Cambridge, UK, pp 21–28

    Chapter  Google Scholar 

  • Huaman Z, Hoekstra R, Bamberg JB (2000a) The inter-genebank potato database and the dimensions of available wild potato germplasm. Am J Potato Res 77:353–362

    Article  Google Scholar 

  • Huaman Z, Ortiz R, Gomez R (2000b) Selecting a Solanum tuberosum subsp. andigena core collection using morphological, geographical, disease and pest descriptors. Am J Potato Res 77:183–190

    Article  Google Scholar 

  • Huaman Z, Ortiz R, Zhang D, Rodriguez F (2000c) Isozyme analysis of entire and core collections of Solanum tuberosum subsp. andigena potato cultivars. Crop Sci 40:273–276

    Article  CAS  Google Scholar 

  • Itkin M, Heinig U, Tzfadia O, Bhide AJ, Shinde B, Cardenas PD, Bocobza SE, Unger T, Malitsky S, Finkers R, Tikunov Y (2013) Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science 341:175–179

    Article  CAS  PubMed  Google Scholar 

  • Jansky S (2009) Breeding, genetics and cultivar development. In: Singh J, Kaur L (eds) Advances in potato chemistry and technology. Academic, Burlington, pp 27–62

    Chapter  Google Scholar 

  • Johns T, Alonso JG (1990) Glycoalkaloid change during the domestication of the potato, Solanum Section Petota. Euphytica 50:203–210

    Article  CAS  Google Scholar 

  • Juhaszi Z, Dancs G, Marincs F, Vossen M, Allefs S, Banfalvi Z (2014) Vitamin C, B5, and B6 contents of segregating potato populations detected by GC-MS: a method facilitating breeding potatoes with improved vitamin content. Plant Breed 133:515–520. https://doi.org/10.1111/pbr.12169

    Article  CAS  Google Scholar 

  • Jung CS, Griffiths HM, De Jong DM, Cheng S, Bodis M, De Jong WS (2005) The potato P locus codes for flavonoid 3′,5′–hydroxylase. Theor Appl Genet 110:269–275

    Article  CAS  PubMed  Google Scholar 

  • Jung CS, Griffiths HM, De Jong DM, Cheng S, Bodis M, Kim TS, De Jong WS (2009) The potato developer (D) locus encodes an R2R3 MYB transcription factor that regulates expression of multiple anthocyanin structural genes in tuber skin. Theor Appl Genet 120:45–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaminski KP, Kørup K, Andersen MN, Sønderkær M, Andersen MS, Kirk HG, Nielsen KL (2016) Next generation sequencing bulk segregant analysis of potato support that differential flux into the cholesterol and stigmasterol metabolite pools is important for steroidal glycoalkaloid content. Potato Res 59:81–97. https://doi.org/10.1007/s11540-015-9314-4

    Article  CAS  Google Scholar 

  • Kaspar KL, Park JS, Brown CR, Mathison BD, Navarre DA, Chew BP (2011) Pigmented potato consumption alters oxidative stress and inflammatory damage in men. J Nutr 141:108–111

    Article  CAS  PubMed  Google Scholar 

  • Kirkman MA (2007) Global markets for processed potato products. In: Vreugdenhil D (ed) Potato biology and biotechnology advances and perspectives. Elsevier, Oxford, pp 27–44

    Chapter  Google Scholar 

  • Knight TA (1807) On raising of new and early varieties of the potato (Solanum tuberosum). Trans Hort Soc Lond 1:57–59

    Google Scholar 

  • Kobayashi A, Ohara-Takada A, Tsuda S, Matsuura-Endo C, Takada N, Umemura Y, Nakao T, Yoshida T, Hayashi K, Mori M (2008) Breeding of potato variety “Inca-no-hitomi” with a very high carotenoid content. Breed Sci 58:77–82

    Article  Google Scholar 

  • Kromann P, Valverde F, Alvarado S, Vélez R, Pisuña J, Potosí B, Taipe A, Caballero D, Cabezas A, Devaux A (2017) Can Andean potatoes be agronomically biofortified with iron and zinc fertilizers? Plant Soil 411:121–138. https://doi.org/10.1007/s11104-016-3065-0

    Article  CAS  Google Scholar 

  • Lachman J, Hamouz K, Orsák M, Kotíková Z (2016) Carotenoids in potatoes—a short overview. Plant Soil Environ 62:474–481

    Article  CAS  Google Scholar 

  • Lewis CE, Walker JRL, Lancaster JE, Sutton KH (1998a) Determination of anthocyanins, flavonoids and phenolic acids in potatoes. I: coloured cultivars of Solanum tuberosum L. J Sci Food Agric 77:45–57

    Article  CAS  Google Scholar 

  • Lewis CE, Walker JRL, Lancaster JE, Sutton KH (1998b) Determination of anthocyanins, flavonoids and phenolic acids in potatoes. II: wild, tuberous Solanum species. J Sci Food Agric 77:58–63

    Article  CAS  Google Scholar 

  • Li X-Q, Scanlon MG, Liu Q, Coleman WK (2006.) Processing and value addition) In: Gopal J, Khurana SMP (eds) Handbook of potato production, improvement, and postharvest management. Food Products Press, New York, pp 523–555

    Google Scholar 

  • Lindhout P, Meijer D, Schotte T, Hutten RCB, Visser RGF, van Eck HJ (2011) Towards F1 hybrid seed potato breeding. Potato Res 54:301–312

    Article  Google Scholar 

  • Lockyer S, Nugent AP (2017) Health effects of resistant starch. Nutr Bull 42:10–41

    Article  Google Scholar 

  • Louderback LA, Pavlik BM (2017) Starch granule evidence for the earliest potato use in North America. Proc Natl Acad Sci U S A 114:7606–7610. https://doi.org/10.1073/pnas.1705540114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Love SL, Pavek JJ (2008) Positioning the potato as a primary food source of vitamin C. Am J Potato Res 85:277–285

    Article  CAS  Google Scholar 

  • Lu W, Haynes K, Wiley E, Clevidence B (2001) Carotenoid content and color in diploid potatoes. J Am Soc Hortic Sci 126:722–726

    Article  CAS  Google Scholar 

  • Lu S, Van Eck J, Zhou X, Lopez AB, O’Halloran DM, Cosman KM, Li L (2006) The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation. Plant Cell 18:3594–3605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macdonald-Clarke CJ, Martin BR, McCabe LD, McCabe GP, Lachcik PJ, Wastney M, Weaver CM (2016) Bioavailability of potassium from potatoes and potassium gluconate: a randomized dose response trial. Am J Clin Nutr 104:346–353. https://doi.org/10.3945/ajcn.115.127225

    Article  CAS  PubMed  Google Scholar 

  • Mahfouz MM, Cardi T, Stewart CN (2016) Next-generation precision genome engineering and plant biotechnology. Plant Cell Rep 35:1397–1399. https://doi.org/10.1007/s00299-016-2009-8

    Article  CAS  PubMed  Google Scholar 

  • Monro J, Mishra S (2009) Nutritional value of potatoes: digestibility, glycemic index, and glycemic impact. In: Singh J, Kaur L (eds) Advances in potato chemistry and technology. Academic, Burlington, pp 371–394

    Chapter  Google Scholar 

  • Monro J, Mishra S, Blandford E, Anderson J, Genet R (2009) Potato genotype differences in nutritionally distinct starch fractions after cooking, and cooking plus storing cool. J Food Compost Anal 22:539–545

    Article  CAS  Google Scholar 

  • Morris WL, Ducreux L, Griffiths DW, Stewart D, Davies HV, Taylor MA (2004) Carotenogenesis during tuber development and storage in potato. J Exp Bot 55:975–982. https://doi.org/10.1093/jxb/erh121

    Article  CAS  PubMed  Google Scholar 

  • Morris WL, Ducreux LJM, Fraser PD, Millam S, Taylor MA (2006) Engineering ketocarotenoid biosynthesis in potato tubers. Metab Eng 8:253–263

    Article  CAS  PubMed  Google Scholar 

  • Moseley ME (2001) The incas and their ancestors: the archaeology of Peru, 2nd edn. Thames and Hudson, London

    Google Scholar 

  • Muttucumaru N, Powers SJ, Elmore JS, Mottram DS, Halford NG (2013) Effects of nitrogen and sulfur fertilization on free amino acids, sugars, and acrylamide-forming potential in potato. J Agric Food Chem 61:6734–6742. https://doi.org/10.1021/jf401570x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muttucumaru N, Powers SJ, Elmore JS, Dodson A, Briddon A, Mottram DS, Halford NG (2017) Acrylamide-forming potential of potatoes grown at different locations, and the ratio of free asparagine to reducing sugars at which free asparagine becomes a limiting factor for acrylamide formation. Food Chem 220:76–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nassar AMK, Sabally K, Kubow S, Leclerc YN, Donnelly DJ (2012) Some Canadian-grown potato cultivars contribute to a substantial content of essential dietary minerals. J Agric Food Chem 60:4688–4696

    Article  CAS  PubMed  Google Scholar 

  • Navarre DA, Shakya R, Hellman H (2016) Vitamins, phytonutrients, and minerals in potato. In: Singh J, Kaur L (eds) Advances in potato chemistry and technology, 2nd edn. Elsevier, Amsterdam, pp 117–166

    Chapter  Google Scholar 

  • Nayak B, Berrios JDJ, Tang J (2014) Impact of food processing on the glycemic index (GI) of potato products. Food Res Int 56:35–46

    Article  CAS  Google Scholar 

  • Novy RG, Whitworth JL, Stark JC, Schneider BL, Knowles NR, Pavek MJ, Knowles LO, Charlton BA, Sathuvalli V, Yilma S, Brown CR, Thornton M, Brandt TL, Olsen N (2017) Payette Russet: a dual-purpose potato cultivar with cold-sweetening resistance, low acrylamide formation, and resistance to late blight and potato virus Y. Am J Potato Res 94:38–53

    Article  CAS  Google Scholar 

  • Orozco RF, Gallardo-Guerrero L, Hornero-Mendez D (2013) Carotenoid profiling in tubers of different potato (Solanum sp) cultivars: accumulation of carotenoids mediated by xanthophyll esterification. Food Chem 141:2864–2872. https://doi.org/10.1016/j.foodchem.2013.05.016

    Article  CAS  Google Scholar 

  • Ortiz R (2001) The state of the use of potato genetic diversity. In: Cooper HD, Spillane C, Hodgkin T (eds) Broadening the genetic base of crop production. CAB International, Wallingford, pp 181–200

    Chapter  Google Scholar 

  • Paget M, Amoros W, Salas E, Eyzaguirre R, Alspach P, Apiolaza L, Noble A, Bonierbale M (2014) Genetic evaluation of micronutrient traits in diploid potato from a base population of Andean Landrace Cultivars. Crop Sci 54:1949–1959

    Article  Google Scholar 

  • Pedreschi F (2009) Fried and dehydrated potato products. In: Singh J, Kaur L (eds) Adavances in potato chemistry and technology. Academic, Burlington, pp 319–337

    Chapter  Google Scholar 

  • Pęksa A, Kita A, Kułakowska K, Aniołowska M, Hamouz K, Nemś A (2013) The quality of protein of coloured fleshed potatoes. Food Chem 141:2960–2966. https://doi.org/10.1016/j.foodchem.2013.05.125

    Article  CAS  PubMed  Google Scholar 

  • Pieterse L, Hils U (2009) World catalogue of potato varieties 2009/10. Agrimedia GmbH, Clenze

    Google Scholar 

  • Pinhero RG, Coffin R, Yada RY (2009) Post-harvest storage of potatoes. In: Singh J, Kaur L (eds) Adavances in potato chemistry and technology. Academic, Burlington, pp 339–370

    Chapter  Google Scholar 

  • Pinhero RG, Waduge RN, Liu Q, Sullivan JA, Tsao R, Bizimungu B, Yada RY (2016) Evaluation of nutritional profiles of starch and dry matter from early potato varieties and its estimated glycemic impact. Food Chem 203:356–366

    Article  CAS  PubMed  Google Scholar 

  • Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Article  CAS  Google Scholar 

  • Raatz SK, Idso L, Johnson LK, Jackson MI, Combs GF Jr (2016) Resistant starch analysis of commonly consumed potatoes: content varies by cooking method and service temperature but not by variety. Food Chem 208:297–300

    Article  CAS  PubMed  Google Scholar 

  • Raker CM, Spooner DM (2002) Chilean tetraploid cultivated potato, Solanum tuberosum, is distinct from the Andean populations: microsatellite data. Crop Sci 42:1451–1458

    Article  Google Scholar 

  • Ramdath DD, Padhi E, Hawke A, Sivaramalingam T, Tsao R (2014) The glycemic index of pigmented potatoes is related to their polyphenol content. Food Funct 5:909–915

    Article  CAS  PubMed  Google Scholar 

  • Reader J (2008) Propitious esculent. William Heinemann, London

    Google Scholar 

  • Reyes LF, Miller JC, Cisneros-Zevallos L (2005) Antioxidant capacity, anthocyanins and total phenolics in purple-and red-fleshed potato (Solanum tuberosum L.) genotypes. Am J Potato Res 82:271–277

    Article  CAS  Google Scholar 

  • Robinson BR, Sathuvalli V, Bamberg J, Goyer A (2015) Exploring folate diversity in wild and primitive potatoes for modern crop improvement. Genes 6:1300–1314. https://doi.org/10.3390/genes6041300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Römer S, Lübeck J, Kauder F, Steiger S, Adomat C, Sandmann G (2002) Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metab Eng 4:263–272. https://doi.org/10.1006/mben.2002.0234

    Article  CAS  PubMed  Google Scholar 

  • Rommens CM, Ye J, Richael C, Swords K (2006) Improving potato storage and processing characteristics through all-native DNA transformation. J Agric Food Chem 54:9882–9887

    Article  CAS  PubMed  Google Scholar 

  • Rommens CM, Yan H, Swords K, Richael C, Ye J (2008) Low-acrylamide French fries and potato chips. Plant Biotechnol J 6:843–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto Y, Mori K, Matsuo Y, Mukojima N, Watanabe W, Sobaru N, Tamiya S, Nakao T, Hayashi K, Watanuki H, Nara K, Yamazaki K, Chaya M (2017) Breeding of a new potato variety ‘Nagasaki Kogane’ with high eating quality, high carotenoid content, and resistance to diseases and pests. Breed Sci. https://doi.org/10.1270/jsbbs.16168

    Article  PubMed  PubMed Central  Google Scholar 

  • Salaman RN (1910) The inheritance of colour and other characters in the potato. J Genet 1:7–46

    Article  Google Scholar 

  • Sandmann G (2001) Genetic manipulation of carotenoid biosynthesis: strategies, problems and achievements. Trends Plant Sci 6:14–17

    Article  CAS  PubMed  Google Scholar 

  • Sawai S, Ohyama K, Yasumoto S, Seki H, Sakuma T, Yamamoto T, Takebayashi Y, Kojima M, Sakakibara H, Aoki T, Muranaka T, Saito K, Umemoto N (2014) Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell 26:3763–3774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shepherd LVT, Bradshaw JE, Dale MFB, McNicol JW, Pont SDA, Mottram DS, Davies HV (2010) Variation in acrylamide producing potential in potato: segregation of the trait in a breeding population. Food Chem 123:568–573

    Article  CAS  Google Scholar 

  • Shepherd LVT, Hackett CA, Alexander CJ, McNicol JW, Sungurtas JA, Stewart D, McCue KF, Belknap WR, Davies HV (2015) Modifying glycoalkaloid content in transgenic potato—metabolome impacts. Food Chem 187:437–443

    Article  CAS  PubMed  Google Scholar 

  • Simmonds NW (1995) Potatoes. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman Scientific & Technical, Harlow, pp 466–471

    Google Scholar 

  • Sinden SL, Sanford LL, Webb RE (1984) Genetic and environmental control of potato glycoalkaloids. Am Potato J 61:141–156

    Article  CAS  Google Scholar 

  • Singh J, Kaur L (2016) Advances in potato chemistry and technology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Snodderly DM (1995) Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am J Clin Nutr 62(Suppl):1448–1461

    Article  Google Scholar 

  • Spooner DM (2016) Species delimitations in plants: lessons learned from potato taxonomy by a practicing taxonomist. J Syst Evol 54:191–203

    Article  Google Scholar 

  • Spooner DM, Hijmans RJ (2001) Potato systematics and germplasm collecting, 1989–2000. Am J Potato Res 78:237–268

    Article  Google Scholar 

  • Spooner DM, McLean K, Ramsay G, Waugh R, Bryan GJ (2005) A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proc Natl Acad Sci U S A 102:14694–14699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spooner DM, Nunez J, Trujillo G, Herrera M, Guzman F, Ghislain M (2007) Extensive simple sequence repeat genotyping of potato landraces supports a major reevaluation of their gene pool structure and classification. Proc Natl Acad Sci U S A 104:19398–19404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spooner DM, Ghislain M, Simon R, Jansky SH, Gavrilenko T (2014) Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Bot Rev 80:283–383

    Article  Google Scholar 

  • Storey M, Anderson P (2014) Income and race/ethnicity influence dietary fiber intake and vegetable consumption. Nutr Res 34:844–850

    Article  CAS  PubMed  Google Scholar 

  • Subramanian NK, White PJ, Broadly MR, Ramsay G (2017) Variation in tuber mineral concentrations among accessions of Solanum species held in the Commonwealth potato collection. Genet Resour Crop Evol 64:1927–1935

    Article  CAS  Google Scholar 

  • Sulli M, Mandolino G, Sturaro M, Onofri C, Diretto G, Parisi B, Giuliano G (2017) Molecular and biochemical characterization of a potato collection with contrasting tuber carotenoid content. PLoS One 12(9):e0184143. https://doi.org/10.1371/journal.pone.0184143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian J, Chen J, Ye X, Chen S (2016) Health benefits of the potato affected by domestic cooking: a review. Food Chem 202:165–175

    Article  CAS  PubMed  Google Scholar 

  • Tierno R, Hornero-Méndez D, Gallardo-Guerrero L, López-Pardo R, Ruiz de Gallareta JI (2015) Effect of boiling on the total phenolic, anthocyanin and carotenoid concentrations of potato tubers from selected cultivars and introgressed breeding lines from native potato species. J Food Compost Anal 41:58–65

    Article  CAS  Google Scholar 

  • Ugent D, Dillehay T, Ramirez C (1987) Potato remains from a late Pleistocene settlement in south central Chile. Econ Bot 4:17–27

    Article  Google Scholar 

  • Umemoto N, Nakayasu M, Ohyama K, Yotsu-Yamashita M, Mizutani M, Seki H, Saito K, Muranaka T (2016) Two cytochrome P450 monooxygenases catalyze early hydroxylation steps in the potato steroid glycoalkaloid biosynthetic pathway. Plant Physiol 171:2458–2467

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Eck HJ (2007) Genetics of morphological and tuber traits. In: Vreugdenhil D (ed) Potato biology and biotechnology advances and perspectives. Elsevier, Oxford, pp 91–115

    Google Scholar 

  • Van Gelder WMJ, Vinket JH, Scheffer JJC (1988) Steroidal glycoalkaloids in tubers and leaves of Solanum species used in potato breeding. Euphytica 39:147–158

    Article  Google Scholar 

  • Vales MI, Brown CR, Yilma S, Hane DC, James SR, Shock CC, Charlton BA, Karaagac E, Mosley AR, Culp D, Feibert E, Stark JC, Pavek MJ, Knowles NR, Novy RG, Whitworth JL (2012) Purple Pelisse: a specialty ‘fingerling’ potato with purple skin and flesh and medium specific gravity. Am J Potato Res 89:306–314

    Article  Google Scholar 

  • Wheeler RM (2009) Potatoes for human life support in space. In: Singh J, Kaur L (eds) Adavances in potato chemistry and technology. Academic, Burlington, pp 465–495

    Chapter  Google Scholar 

  • White PJ, Bradshaw JE, Dale MFB, Ramsay G, Hammond JP, Broadley MR (2009) Relationships between yield and mineral concentrations in potato tubers. Hort Sci 44:6–11

    Google Scholar 

  • White PJ, Broadley MR, Hammond JP, Ramsay G, Subramanian NK, Thompson J, Wright G (2012) Bio-fortifcation of potato tubers using foliar zinc-fertiliser. J Hortic Sci Biotechnol 87:123–129

    Article  CAS  Google Scholar 

  • White PJ, Thompson JA, Wright G, Rasmussen SK (2017) Biofortifying Scottish potatoes with zinc. Plant Soil 411:151–165. https://doi.org/10.1007/s11104-016-2903-4

    Article  CAS  Google Scholar 

  • Wolters AMA, Uitdewilligen JGAML, Kloosterman BA, Hutten RCB, Visser RGF, van Eck HJ (2010) Identification of alleles of carotenoid pathway genes important for zeaxanthin accumulation in potato tubers. Plant Mol Biol 73:659–671. https://doi.org/10.1007/s11103-010-9647-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Cheng S, De Jong D, Griffiths H, Halitschke R, De Jong W (2009a) The potato R locus codes for dihydroflavonol 4-reductase. Theor Appl Genet 119:931–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Jung CS, De Jong WS (2009b) Genetic analysis of pigmented tuber flesh in potato. Theor Appl Genet 119:143–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zitnak A, Johnston GR (1970) Glycoalkaloid content of B5141-6 potatoes. Am Potato J 47:256–260

    Article  CAS  Google Scholar 

  • Zorrilla C, Navarro F, Vega S, Bamberg J, Palta J (2014) Identification and selection for tuber calcium, internal quality and pitted scab in segregating ‘Atlantic’ × ‘Superior’ reciprocal tetraploid populations. Am J Potato Res 91:673–687

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bradshaw, J.E. (2019). Improving the Nutritional Value of Potatoes by Conventional Breeding and Genetic Modification. In: Qureshi, A., Dar, Z., Wani, S. (eds) Quality Breeding in Field Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-04609-5_3

Download citation

Publish with us

Policies and ethics