Skip to main content

Metamorphic Processes in Rocks

  • Chapter
  • First Online:
The Nature and Models of Metamorphism

Part of the book series: Springer Geology ((SPRINGERGEOL))

  • 1060 Accesses

Abstract

This chapter presents a generalized P-T-t diagram of the evolution of metamorphic complexes of different geodynamic nature that are characteristic of different types of metamorphism. This diagram was built using the most recent natural observations, which are characterized by the simultaneous presence of prograde and retrograde segments of a P-T path. This chapter discusses some of the ambiguous interpretations of P-T-t paths in areas with simultaneous manifestation of different metamorphic processes. Quantitative models for the analysis of different types of interaction of rocks undergoing metamorphism are exemplified using the following processes involved in the formation of distinctly expressed zoned reaction textures (coronites, kelyphites, symplectites, nodules, and segregations) and mineral transformations in texturally homogeneous rocks between matrix minerals and porphyroblasts. It was shown that mass transfer during metamorphic reactions occurs with the preservation of the material balance within very small local volumes of the rock, which increase from a few hundredths of a mm3 to a few cm3, depending on the duration of metamorphism, P-T parameters, strain intensity and a degree of fluid saturation of rocks. We also consider different kinetic parameters of diffusion-controlled metamorphic reactions, such as mineral reaction mechanisms and rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abu-Alam TS, Stuwe K (2009) Exhumation during oblique transpression: the Feiran-Solaf region, Egypt. J Metamorph Geol 27:439–459

    Article  Google Scholar 

  • Ague JJ, Carlson WD (2013) Metamorphism as garnet sees it: the kinetics of nucleation and growth, equilibration, and diffusional relaxation. Elements 9:439–445

    Article  Google Scholar 

  • Artoni A, Meckel LD (1998) History and deformation rates of a thrust sheet top basin: the Barreme basin, western Alps, SE France. Geol Soc Spec Publ 134:213–237 (Blackwell, London)

    Article  Google Scholar 

  • Ashworth JR (1993) Fluid-absent diffusion kinetics of Al inferred from retrograde meta- morphic coronas. Am Mineral 78:331–337

    Google Scholar 

  • Ashworth JR, Birdi JJ (1990) Diffusion modeling of coronas around olivine in an open system. Geochim Cosmochim Acta 54:2389–2401

    Article  Google Scholar 

  • Ashworth JR, Sheplev VS (1997) Diffusion modelling of metamorphic layered coronas with stability criterion and consideration of affinity. Geochim Cosmochim Acta 61:3671–3689

    Article  Google Scholar 

  • Ashworth JR, Sheplev VS, Bryxina NA et al (1998) Diffusion-controlled corona reaction and overstepping of equilibrium in a garnet granulite, Yenisei ridge, Siberia. J Metamorph Geol 16:231–246

    Article  Google Scholar 

  • Baker AJ (1987) Models for the tectonothermal evolution of the eastern Dalradian of Scotland. J Metamorph Geol 5:101–118

    Article  Google Scholar 

  • Balashov VN, Zaraisky GP, Tikhomirova VI et al (1983) Diffusion of rock-forming components in pore solutions at T = 250 °C and P = 100 MPa. Geochem Int 20(1):28–40

    Google Scholar 

  • Balen D, Massonne H-J, Petrinec Z (2015) Collision-related Early Paleozoic evolution of a crustal fragment from the northern Gondwana margin (Slavonian Mountains, Tisia Mega Unit, Croatia): reconstruction of the P-T path, timing and paleotectonic implications. Lithos 232:211–228

    Article  Google Scholar 

  • Barrow G (1893) On an intrusion of muscovite-biotite gneiss in the south-eastern Highlands of Scotland, and its accompanying metamorphism. Q J Geol Soc Lond 49:330–388

    Article  Google Scholar 

  • Barrow G (1912) On the geology of the Lower Deeside and the southern Highland border. Proc Geol Assoc 23:268–284

    Article  Google Scholar 

  • Baxter EF (2003) Natural constraints on metamorphic reaction rates. In: Vance D, Muller W, Villa IM (eds) Geochronology: linking the isotopic record with petrology and textures. Geological Society Special Publication, vol 220. Blackwell, London, pp 183–202

    Article  Google Scholar 

  • Beaumont C, Jamieson RA, Nguyen MH et al (2001) Hymalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414:738–742

    Article  Google Scholar 

  • Beddoe-Stephens B (1990) Pressures and temperatures of Dalradian metamorphism and the andalusite-kyanite transformation in the northeast Grampians. Scott J Geol 26:3–14

    Article  Google Scholar 

  • Berman RG (1991) Thermobarometry using multi-equilibrium calculations: a new technique, with petrological applications. Can Mineral 29:833–856

    Google Scholar 

  • Bilham R, Larson K, Freymueller J et al (1997) GPS measurements of present-day convergence across the Nepal Himalaya. Nature 386:61–64

    Article  Google Scholar 

  • Biot MA (1961) Theory of folding of stratified viscoelastic media and its implications in tectonics and orogenesis. Geol Soc Am Bull 72:1595–1620

    Article  Google Scholar 

  • Bohlen SR (1991) On the formation of granulites. J Metamorph Geol 9:223–229

    Article  Google Scholar 

  • Boltaks BI (1961) Diffuziya v poluprovodnikakh (Diffusion in semiconductors). Fizmathgis, Moscow

    Google Scholar 

  • Bolton EW, Lasaga AC, Rye DM (1999) Long-term flow/chemistry feedback in a porous medium with heterogeneous permeability: kinetic control of dissolution and precipitation. Am J Sci 299:1–68

    Article  Google Scholar 

  • Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Chapter  Google Scholar 

  • Brewer ID, Burbank DW (2006) Thermal and kinematic modeling of bedrock and detrital cooling ages in the central Himalaya. J Geophys Res 111:B09409

    Article  Google Scholar 

  • Bronshtein IN, Semendyayev KA (1979) Handbook of mathematics. Verlag Harri Deutsch, Berlin

    Book  Google Scholar 

  • Brown EH (1996) High-pressure metamorphism caused by magma loading in Fiordland, New Zealand. J Metamorph Geol 14:441–452

    Article  Google Scholar 

  • Brown M (2001) From microscope to mountain belt: 150 years of petrology and its contribution to understanding geodynamics, particularly the tectonics of orogens. J Geodynamics 32:115–164

    Article  Google Scholar 

  • Brown M (2007) Metamorphic conditions in orogenic belts: a record of secular change. Int Geol Rev 49:193–234

    Article  Google Scholar 

  • Brown EH, Walker NW (1993) A magma-loading model for Barrovian metamorphism in the Southeast Coast Plutonic Complex, British Columbia and Washington. Geol Soc Am Bull 105:479–500

    Article  Google Scholar 

  • Bucher K, Grapes R (2011) Petrogenesis of metamorphic rocks, 8th edn. Springer-Verlag, Berlin-Heidelberg

    Book  Google Scholar 

  • Burtman VS (2013) The geodynamics of the Pamir-Punjab syntaxis. Geotectonics 47(1):31–51

    Article  Google Scholar 

  • Cagnard F, Barbey P, Gapais D (2011) Transition between “Archaean-type” and “modern-type” tectonics: insights from the Finnish Lapland Granulite Belt. Precambr Res 187:127–142

    Article  Google Scholar 

  • Cai J, Liu F, Liu P et al (2014) Metamorphic P-T path and tectonic implications of pelitic granulites from the Daqingshan Complex of the Khondalite Belt, North China Craton. Precambr Res 241:161–184

    Article  Google Scholar 

  • Carlson WD (2012) Rates and mechanism of Y, REE, and Cr diffusion in garnet. Am Mineral 97:1598–1618

    Article  Google Scholar 

  • Carmichael DM (1969) On the mechanism of prograde metamorphic reactions in quartz-bearing pelitic rocks. Contr Mineral Petrol 20:244–267

    Article  Google Scholar 

  • Carmichael DM (1970) Intersecting isograds in the Whetstone Lake Area, Ontario. J Petrol 11:147–181

    Article  Google Scholar 

  • Chinner GA (1980) Kyanite isograds of Grampian metamorphism. J Geol Soc Lond 137:35–39

    Article  Google Scholar 

  • Clayton JL, Bostick NH (1986) Temperature effect on kerogen and on molecular and isotopic composition of organic matter in Pierre Shale near an igneous dike. Org Geochem 10:135–143

    Article  Google Scholar 

  • Cloos M (1982) Flow melanges: numerical modelling and geological constraints on their origin in the Franciscan subduction complex. Geol Soc Am Bull 93:330–345

    Article  Google Scholar 

  • Collins WJ, Vernon RH (1991) Orogeny associated with anticlockwise P-T-t paths: Evidence from low-P, high-T metamorphic terranes in the Arunta inlier, Central Australia. Geology 19:835–838

    Article  Google Scholar 

  • Crawford ML (1966) Composition of plagioclase and associated minerals in some schists of Vermont, USA and South Westland, New Zealand. Contrib Mineral Petrol 13:269–294

    Article  Google Scholar 

  • Cruciani G, Franceschelli M, Groppo C (2011) P-T evolution of eclogite-facies metabasite from NE Sardinia, Italy: Insights into the prograde evolution of Variscan eclogites. Lithos 121:135–150

    Article  Google Scholar 

  • Cutts KA, Kinny PD, Strachan RA et al (2010) Three metamorphic events recorded in a single garnet: Integrated phase modelling, in situ LA-ICPMS and SIMS geochronology from the Moine Supergroup, NW Scotland. J Metamorph Geol 28:249–267

    Article  Google Scholar 

  • De Groot SR, Mazur P (1962) Nonequilibrium thermodynamics. North Holland Publishing Co., Amsterdam

    Google Scholar 

  • Denbig K (1966) The principles of chemical equilibrium. Cambridge University Press, Cambridge

    Google Scholar 

  • Dipple GM, Wintsch RP, Andrews MS (1990) Identification of the scales of different mobility in a ductile fault zone. J Metamorph Geol 8:645–661

    Article  Google Scholar 

  • Droop GTR, Bucher-Nurminen K (1984) Reaction textures and metamorphic evolution of sapphirine-bearing granulites from the Gruf Complex, Italian central Alps. J Petrol 25:766–803

    Article  Google Scholar 

  • Dujon SC, Lagache M (1984) Echanges entre plagioclases et solutions aqueuses de chlorures sodi-calciques á différentes pressions et temperature (400 á 800 °C, 1 a 3 kilobars). Bull Mineral 197:553–569

    Google Scholar 

  • Engi M, Lanari P, Kohn MJ (2017) Significant ages—an Introduction to Petrochronology. Rev Mineral Geochem 83:1–12

    Article  Google Scholar 

  • England P, Molnar P (1993) The interpretation of inverted metamorphic isograds using simple physical calculation. Tectonics 12:145–157

    Article  Google Scholar 

  • England PC, Thompson AB (1984) Pressure-temperature-time paths of regional metamorphism: heat transfer during the evolution of regions of thickened continental crust. J Petrol 25:894–928

    Article  Google Scholar 

  • Ernst WG (1988) Tectonic history of subduction zones inferred from retrograde blueschist P-T paths. Geology 16:1081–1084

    Article  Google Scholar 

  • Ernst RE, Wingate MTD, Buchan KL et al (2008) Global record of 1600–700 Ma Large Igneous Provinces (LIPs): implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambr Res 160:159–178

    Article  Google Scholar 

  • Escuder-Viruete J, Pérez-Estaún A (2013) Contrasting exhumation P-T paths followed by high-P rocks in the northern Caribbean subduction–accretionary complex: insights from the structural geology, microtextures and equilibrium assemblage diagrams. Lithos 160–161:117–144

    Article  Google Scholar 

  • Faryad SW, Chakraborty S (2005) Duration of Eo-Alpine metamorphic events obtained from multicomponent diffusion modeling of garnet: a case study from the Eastern Alps. Contrib Mineral Petrol 150:306–318

    Article  Google Scholar 

  • Fein JB, Walther JV (1987) Calcite solubility in supercritical CO2–H2O fluids. Geochim Cosmochim Acta 51:1665–1673

    Article  Google Scholar 

  • Fein JB, Walther JV (1989) Calcite solubility and speciation in supercritical NaCl–HCl aqueous fluids. Contrib Mineral Petrol 103:317–324

    Article  Google Scholar 

  • Ferry JM (1983) Applications of the reaction progress variable in Metamorphic Petrology. J Petrol 24:343–376

    Article  Google Scholar 

  • Fisher GW (1973) Nonequilibrium thermodynamics as a model for diffusion-controlled metamorphic processes. Am J Sci 273:897–924

    Article  Google Scholar 

  • Fisher GW (1977) Nonequilibrium thermodynamics in metamorphism. In: Fraser DG (ed) Thermodynamics in geology. NATO advanced study institutes series—C, vol 30. Reidel Publishing Co., Dordrecht, pp 381–403

    Chapter  Google Scholar 

  • Fisher GW (1978) Rate laws in metamorphism. Geochim Cosmochim Acta 42:1035–1050

    Article  Google Scholar 

  • Fisher GW, Elliott D (1974) Criteria for quasisteady diffusion and local equilibrium in metamorphism. In: Hofmann et al (eds) Geochemical transport and kinetics. Carnegie Institution of Washington, Publ 634, pp 231–241

    Google Scholar 

  • Fisher GW, Lasaga AC (1981) Irreversible thermodynamics in petrology. In: Lasaga AC, Kirkpatrick RJ (eds) Kinetics of geochemical processes. Reviews in mineralogy, vol 8. Mineral Society of America, Book Crafter Inc., Chelsea, Michigan, pp 171–209

    Google Scholar 

  • Fitts DD (1962) Nonequilibrium thermodynamics: a phenomenological theory of irreversible processes in fluid system. McGraw-Hill, New York

    Google Scholar 

  • Foster CT Jr (1977) Mass transfer in sullimanite-bearing pelitic schists near Rangeley, Maine. Am Mineral 62:727–746

    Google Scholar 

  • Foster CT Jr (1981) A thermodynamic model of mineral segregations in the lower sillimanite zone near Rangeley, Maine. Am Miner 66:260–277

    Google Scholar 

  • Foster CT Jr (1986) Thermodynamic models of reactions involving garnet in a sillimanite/staurolite schists. Mineral Mag 50:427–439

    Article  Google Scholar 

  • Franceschelli M, Memmi I, Ottolini L et al (2002) Trace- and major-element zoning in garnet: a case study in the pelitic schists of NE Sardinia (Italy). Neues Jahrb Mineral Monatsh 8:337–351

    Article  Google Scholar 

  • Frantz JD, Mao HK (1979) Bimetasomatism resulting from intergranular diffusion: II. Prediction of multimineralic zone sequences. Am J Sci 279:302–323

    Article  Google Scholar 

  • Freer R (1981) Diffusion in silicate minerals and glasses: a data digest and guide to the literature. Contrib Mineral Petrol 76:440–454

    Article  Google Scholar 

  • Frei D, Liebscher A, Franz G et al (2004) Trace element geochemistry of epidote minerals. Rev Mineral Geochem 56:553–605

    Article  Google Scholar 

  • Gao J, Klemdt R (2003) Formation of HP-LT rocks and their tectonic implications in the western Tianshan Orogen, NW China: geochemical and age constraints. Lithos 66:1–22

    Article  Google Scholar 

  • Gerya TV (2002) P-T-trendy i model’ formirovaniya granulitovykh kompleksov dokembriya (P-T trends and model of formation of Precambrian granulite complexes). Doctor of Science Dissertation, Moscow State University, Moscow

    Google Scholar 

  • Gerya TV (2010) Introduction to numerical geodynamic modelling. Cambridge University Press, Cambridge

    Google Scholar 

  • Gerya TV (2014) Precambrian geodynamics: concepts and models. Gondwana Res 25:442–463

    Article  Google Scholar 

  • Gerya TV, Maresch WV (2004) Metapelites of the Kanskiy granulite complex: kinked P-T path and geodynamic model. J Petrol 45:1393–1412

    Article  Google Scholar 

  • Ghent ED, Stout MZ (1981) Geobarometry and geothermometry of plagioclase-biotite- garnet-muscovite assemblages. Contrib Mineral Petrol 76:92–97

    Article  Google Scholar 

  • Gladkochub DP, Pisarevsky SA, Donskaya TV et al (2010) Proterozoic mafic magmatism in Siberian craton: an overview and implications for paleocontinental reconstruction. Precambr Res 183:660–668

    Article  Google Scholar 

  • Goes S, Capitanio FA, Morra G (2008) Evidence of lower-mantle slab penetration phases in plate motions. Nature 451:981–984

    Article  Google Scholar 

  • Griffen DT, Ribbe PH (1973) The crystal chemistry of staurolite. Am J Sci 273A:479–495

    Google Scholar 

  • Groppo C, Rolfo F (2008) Counterclockwise P-T evolution of the Aghil Range: metamorphic record of an accretionary melange between Kunlun and Karakorum (SW Sinkiang, China). Lithos 105:365–378

    Article  Google Scholar 

  • Guidotti CV (1970) The mineralogy and petrology of the transition from the lower to upper sillimanite zone in the Oquossoc area, Maine. J Petrol 11:277–336

    Article  Google Scholar 

  • Guidotti CV (1974) Transition from staurolite to sillimanite zone, Rangeley quadrangle, Maine. Geol Soc Am Bull 85:475–490

    Article  Google Scholar 

  • Gutscher M-A, Westbrook GK (2009) Great earthquakes in slow-subduction, low-taper margins. In: Lallemand S, Funiciello F (eds) Subduction zone geodynamics. Springer, Berlin, pp 119–133

    Chapter  Google Scholar 

  • Hand M, Dirks PHGM, Powell R et al (1992) How well established is isobaric cooling in Proterozoic orogenic belts? An example from the Arunta inlier, central Australia. Geology 20:649–652

    Article  Google Scholar 

  • Harley SL (1989) The origin of granulites: metamorphic perspective. Geol Mag 126:215–247

    Article  Google Scholar 

  • He Z, Zhang Z, Zong K (2014) Metamorphic P-T-t evolution of mafic HP granulites in the northeastern segment of the Tarim Craton (Dunhuang block): evidence for early Paleozoic continental subduction. Lithos 196–197:1–13

    Article  Google Scholar 

  • Helgeson HC (1968) Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions. I. Thermodynamic relations. Geochim Cosmochim Acta 32:853–877

    Article  Google Scholar 

  • Holland TJB, Powell R (1990) An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O–Na2O–CaO–MgO–MnO–FeO–Fe2O3–Al2O3–TiO2–SiO2–C–H2–O2. J Metamorph Geol 8:89–124

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343

    Article  Google Scholar 

  • Hollister LS (1969) Metastable paragenetic sequence of andalusite, kyanite, and sillimanite, Kwoeik area, British Columbia. Am J Sci 267:352–370

    Article  Google Scholar 

  • Huerta AD, Royden LH, Hodges KV (1999) The effects of accretion, erosion and radiogenic heat on the metamorphic evolution of collisional orogens. J Metamorph Geol 17:349–366

    Article  Google Scholar 

  • Jamieson RA, Beaumont C, Nguyen MH et al (2002) Interaction of metamorphism, deformation and exhumation in large convergent orogens. J Metamorph Geol 20:9–24

    Article  Google Scholar 

  • Janots E, Engi M, Berger A (2008) Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite-monazite-xenotime phase relations from 250 to 610 °C. J Metamorph Geol 26:509–526

    Article  Google Scholar 

  • Joesten R (1977) Evolution of mineral assemblage zoning in diffusion metasomatism. Geochim Cosmochim Acta 41:649–670

    Article  Google Scholar 

  • Joesten R (1991) Grain-boundary diffusion kinetics in silicate and oxide minerals. In: Ganguly J (ed) Diffusion, atomic ordering and mass transport. Advances in physical geochemistry, vol 8. Springer, New York, pp 345–395

    Google Scholar 

  • Joesten R, Fisher G (1988) Kinetics of diffusion controlled mineral growth in the Christmas Mountains (Texas) contact aureole. Geol Soc Am Bull 100:714–732

    Article  Google Scholar 

  • Johannes W (1989) Melting of plagioclase-quartz assemblages at 2 kbar water pressure. Contrib Mineral Petrol 103:270–276

    Article  Google Scholar 

  • Johnson MRW, Harley SL (2012) Orogenesis: the making of mountains. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Johnson SE, Vernon RH (1995) Stepping stones and pitfalls in the determination of an anti-clockwise P-T-t deformation path: the low-P, high-T Cooma Complex, Australia. J Metamorph Geol 13:165–183

    Article  Google Scholar 

  • Johnson SE, Brown M, Solar GS (2003) Low-pressure subsolidus and suprasolidus phase equilibria in the MnNCKFMASH system: constraints on conditions of regional metamorphism in western Maine, northern Appalachians. Am Mineral 88:624–638

    Article  Google Scholar 

  • Jolivet L, Faccenna C, Goffe B et al (2003) Subduction tectonics and exhumation of high-pressure metamorphic rocks in the Mediterranean orogens. Am J Sci 303:353–409

    Article  Google Scholar 

  • Katchalsky A, Curran PF (1965) Nonequilibrium thermodynamics in biophysics. Harvard University Press, Cambridge, MA

    Book  Google Scholar 

  • Kerrick DM (1990) The Al2SiO5 polymorphs. Mineralogical Society of America, Washington DC

    Book  Google Scholar 

  • Khain VE, Lomize MG (1995) Geotektonika s osnovami geodinamiki (Geotectonics with the basics of geodynamics). Moscow State University, Moscow

    Google Scholar 

  • Kohn MJ, Malloy MA (2004) Formation of monazite via prograde metamorphic reactions among common silicates: Implications for age determinations. Geochim Cosmochim Acta 68:101–113

    Article  Google Scholar 

  • Korobeinikov SN, Polyansky OP, Likhanov II et al (2006) Mathematical modeling of overthrusting fault as a cause of andalusite–kyanite metamorphic zoning in the Yenisei Ridge. Dokl Earth Sci 408(4):652–656

    Article  Google Scholar 

  • Korzhinskii DS (1955) Ocherk metasomaticheskikh protsessov (An overview of metasomatic processes). In: Betekhtin AG (ed) Key problems in the theory of magmatic mineral deposits, 2nd edn. Izd Acad Nauk SSSR, Moscow, pp 335–456

    Google Scholar 

  • Korzhinskii DS (1957) Fiziko-khimicheskiye osnovy analiza paragenezisov mineralov (Physico-chemical basis for the analysis of mineral parageneses). Izd Acad Nauk SSSR, Moscow

    Google Scholar 

  • Korzhinskii DS (1962) Teoriya protsessov mineraloobrazovaniya (The theory of mineral formation processes). Izd Acad Nauk SSSR, Moscow

    Google Scholar 

  • Korzhinskii DS (1973) Teoreticheskiye osnovy analiza paragenezisov mineralov (Theoretical bases of the analysis of mineral parageneses). Nauka, Moscow

    Google Scholar 

  • Korzhinskii DS (1982) Teoriya metasomaticheskoy zonal’nosti (The theory of metasomatic zoning). Nauka, Moscow

    Google Scholar 

  • Kotelnikov AR, Schekina TI (1986) Eksperimental’noye izucheniye kinetiki vzaimo-deystviya plagioklazov s vodno-solevym flyuidom pri 500 °C i P = 1 kbar (Experimental investigation of kinetic interaction of plagioclases with water-salt fluid at 500 °C and P = 1 kbar). Geokhimiya 9:1233–1244

    Google Scholar 

  • Krebs M, Maresch WV, Schertl H-P et al (2008) The dynamics of intra-oceanic subduction zones: a direct comparison between fossil petrological evidence (Rio San Juan Complex, Dominican Republic) and numerical simulation. Lithos 103:106–137

    Article  Google Scholar 

  • Kuznetsova RP, Sheplev VS, Kolobov VY (1992) Analiz rosta zonal’nykh mineral’nykh segregatsiy i polucheniye kharakteristik massoperenosa pri metamorfizme. 4. Issledovaniye sistemy SiO2–MgO–CaO (Analysis of growth of zoned mineral segregation and characteristics of mass transfer under metamorphism. 4. The SiO2–MgO–CaO system). Geol Geofiz 33(9):42–50

    Google Scholar 

  • Kuznetsova RP, Kolobov VY, Sheplev VS (1994) Analiz rosta zonal’nykh mineral’nykh segregatsiy i polucheniye kharakteristik massoperenosa pri metamorfizme. 5. Issledovaniye sistemy SiO2–Al2O3–FeO–MgO–K2O–(Na2O) (Analysis of growth of zoned mineral segregation and characteristics of mass transfer during metamorphism. 5. The SiO2–Al2O3–FeO–MgO–K2O–(Na2O) system). Geol Geofiz 35(10):87–96

    Google Scholar 

  • Lanari P, Engi M (2017) Local bulk compositional effect on mineral assemblages. Rev Mineral Geochem 83:55–102

    Article  Google Scholar 

  • Lasaga AC (1981) Rate laws of chemical reactions. In: Lasaga AC, Kirkpatrick RJ (eds) Kinetics of geochemical processes. Reviews in mineralogy, vol 8. Book Crfter Inc, Chelsea, Michigan, pp 1–68

    Google Scholar 

  • Lazaro C, Garcia-Casco A, Rojas Agramonte Y et al (2009) Fifty-five-million-year history of oceanic subduction and exhumation at the northern edge of the Caribbean plate (Sierra del Convento mélange, Cuba). J Metamorph Geol 27:19–40

    Article  Google Scholar 

  • Lepezin GG (2015) Material transfer through the interface between peraluminous metapelite and gedrite-bearing gneiss at high temperatures and moderate pressures. Geochem Int 53(1):39–59

    Article  Google Scholar 

  • Lepezin GG, Khlestov VV (2009) Mass transfer at the contact of high-Al metapelites: an example of the high-temperature Sharyzhalgai Complex, eastern Sayan. Geochem Int 47(3):244–259

    Article  Google Scholar 

  • Lepezin GG, Seroglazov VV, Usova LV (1990) Masshtaby massoperenosa na kontakte metapelitov i metabazitov (The scale of mass transfer at the contact of metapelites and metabasites). Dokl Akad Nauk 314:1218–1222

    Google Scholar 

  • Li J, Klemd R, Gao J et al (2016) Polycyclic metamorphic evolution of eclogite: Evidence for multistage burial–exhumation cycling in a subduction channel. J Petrol 57:119–146

    Article  Google Scholar 

  • Lichtner PC (1988) The quasi-stationary state approximation to coupled mass transport and fluid-rock interaction in a porous medium. Geochim Cosmochim Acta 52:143–165

    Article  Google Scholar 

  • Likhanov II (1989) Nizkotemperaturnaya biotitovaya izograda v kontaktovom oreole Kharlovskogo gabbrovogo massiva (Severo-Zapadnyy Altay) (Low-grade biotite isograde within the contact aureole of Kharlovo gabbro massif). Geol Geofis 30(7):46–54

    Google Scholar 

  • Likhanov II (1990) Razlozheniye epidota pri nizkotemperaturnom kontaktovom meta-morfizme metapelitov (Epidote consuming reaction in low-temperature contact metamorphism of metapelites). In: Zapiski (Proceedings) of VMO, vol 119, pp 40–48

    Google Scholar 

  • Likhanov II (2003) Mineral’nyye reaktsii i massoperenos pri metamorfizme nizkikh i umerennykh davleniy (Mineral reactions and mass-transfer during low- and medium-pressure metamorphism). Doctor of Sciences Dissertation. GEO Press, Novosibirsk

    Google Scholar 

  • Likhanov II (2018) Mass-transfer and differential element mobility in metapelites during multistage metamorphism of Yenisei Ridge, Siberia. In: Ferrero S, Labari P, Gonsalses P, Grosch EG (eds) Metamorphic geology: microscale to mountain belts, vol 478. Geological Society Special Publication, Blackwell, London. https://doi.org/10.1144/sp478.11

  • Likhanov II, Reverdatto VV (1991) Arfvedsonite formed as a diabase-metapelite reaction product in contact metamorphism. Trans (Dokl) USSR Acad Sci Earth Sci Sect 317A(3):154–158

    Google Scholar 

  • Likhanov II, Reverdatto VV (2002) Mass transfer during andalusite replacement by kyanite in Al- and Fe-rich metapelites in the Yenisei Range. Petrology 10(5):479–494

    Google Scholar 

  • Likhanov II, Reverdatto VV (2007) Provenance of Precambrian Fe- and Al-rich metapelites in the Yenisei Ridge and Kuznetsk Alatau, Siberia: geochemical signatures. Acta Geol Sini Engl Edn 81(3):409–423

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV (2008) Precambrian Fe- and Al-rich pelites from the Yenisey Ridge, Siberia: geochemical signatures for protolith origin and evolution during metamorphism. Int Geol Rev 50:597–623

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV (2011a) Lower Proterozoic metapelites in the northern Yenisei Range: nature and age of protolith and the behaviour of material during collisional metamorphism. Geochem Int 49(3):224–252

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV (2011b) Neoproterozoic collisional metamorphism in overthrust terranes of the Transangarian Yenisei Ridge, Siberia. Int Geol Rev 53:802–845

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV (2014a) Geochemistry, age and petrogenesis of rocks from the Garevka metamorphic complex, Yenisei Ridge. Geochem Int 52(1):1–21

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV (2014b) P-T-t constraints on the metamorphic evolution of the Transangarian Yenisei Ridge: geodynamic and petrological implications. Russ Geol Geophys 55(3):299–322

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV (2016a) Geochemistry, petrogenesis and age of metamorphic rocks of the Angara complex at the junction of South and North Yenisei Ridge. Geochem Int 54(2):127–148

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV (2016b) Quantitative analysis of mass-transfer during polymetamorphism in pelites of the Transangarian Yenisei Ridge. Russ Geol Geophys 57(8):1204–1220

    Article  Google Scholar 

  • Likhanov II, Santosh M (2017) Neoproterozoic intraplate magmatism along the western margin of the Siberian Craton: implications for breakup of the Rodinia supercontinent. Precambr Res 300:315–331

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV, Memmi I (1994) Short-range mobilization of elements in the biotite zone of contact aureole of the Kharlovo gabbro intrusion (Russia). Eur J Mineral 6:133–144

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV, Memmi I (1995) The origin of arfvedsonite in metabasites from the contact aureole of the Kharlovo gabbro intrusion (Russia). Eur J Mineral 7:379–389

    Article  Google Scholar 

  • Likhanov II, Polyanskii OP, Kozlov PS et al (2000) Replacement of andalusite by kyanite with increasing pressure at a low geothermal gradient in metapelites of the Enisei Ridge. Dokl Earth Sci 375(9):1411–1416

    Google Scholar 

  • Likhanov II, Polyanskii OP, Reverdatto VV et al (2001a) Metamorphic evolution of high-alumina metapelites near the Panimba overthrust (Yenisei Range): mineral associations, P-T conditions, and tectonic model. Geol Geofiz 42(8):1205–1220

    Google Scholar 

  • Likhanov II, Ten AA, Reverdatto VV et al (2001b) Inverse modeling approach for obtaining kinetic parameters of diffusion-controlled metamorphic reactions in the Kharlovo contact aureole (South Siberia, Russia). Mineral Petrol 71:51–65

    Article  Google Scholar 

  • Likhanov II, Polyansky OP, Reverdatto VV et al (2004) Evidence from Fe- and Al-rich metapelites for thrust loading in the Transangarian Region of the Yenisei Ridge, eastern Siberia. J Metamorph Geol 22:743–762

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV, Selyatizkii AY (2005) Mineral equilibria and P-T diagram for Fe- and Al-rich metapelites in the KFMASH system (K2O-FeO-MgO-Al2O3-SiO2-H2O). Petrology 13(1):73–83

    Google Scholar 

  • Likhanov II, Kozlov PS, Popov NV et al (2006) Collision metamorphism as a result of thrusting in the Transangara region of the Yenisei Ridge. Dokl Earth Sci 411(1):1313–1317

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV, Kozlov PS et al (2008a) Collision metamorphism of Precambrian complexes in the Transangarian Yenisei Range. Petrology 16(2):136–160

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV, Verschinin AE (2008b) Fe- and Al-rich metapelites of the Teya sequence, Yenisei Range: geochemistry, protoliths and the behavior of their matter during metamorphism. Geochem Int 46(1):17–36

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV, Kozlov PS (2009) Kyanite-sillimanite metamorphism of the Precambrian complexes, Transangarian region of the Yenisei Ridge. Russ Geol Geophys 50(12):1034–1051

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV, Kozlov PS et al (2010a) Upper Riphean age of kyanite-sillimanite metamorphism in Transangarian Yenisei Ridge: evidence from 40Ar-39Ar data. Dokl Earth Sci 433(2):1108–1113

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV, Travin AV (2010b) Exhumation rate of rocks from Neoproterozoic collisional metamorphic complexes of the Yenisei Ridge. Dokl Earth Sci 435(1):1518–1523

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV, Kozlov PS (2011a) Collision-related metamorphic complexes of the Yenisei Ridge: their evolution, ages, and exhumation rate. Russ Geol Geophys 52(10):1256–1269

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV, Kozlov PS (2011b) The Teya polymetamorphic complex in the Transangarian Yenisei Ridge: an example of metamorphic superimposed zoning of low- and medium-pressure facies series. Dokl Earth Sci 436(2):213–218

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV, Kozlov PS et al (2011c) New evidence for Grenville events on the western margin of the Siberian craton: the example of the Garevka metamorphic complex in the Transangarian Yenisei Ridge. Dokl Earth Sci 438(2):782–787

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV, Kozlov PS et al (2013a) Neoproterozoic metamorphic evolution in the Transangarian Yenisei Ridge: evidence from monazite and xenotime geochronology. Dokl Earth Sci 450(1):556–561

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV, Kozlov PS et al (2013b) Three metamorphic events in Precambrian P-T-t history of the Transangarian Yenisei Ridge recorded in garnet grains in metapelites. Petrology 21(6):561–578

    Article  Google Scholar 

  • Likhanov II, Nozhkin AD, Reverdatto VV et al (2014) Grenville tectonic events and evolution of the Yenisei Ridge at the western margin of the Siberian craton. Geotectonics 48(5):371–389

    Article  Google Scholar 

  • Likhanov II, Nozhkin AD, Reverdatto VV et al (2015a) P-T evolution of ultrahigh temperature metamorphism: evidence for a late Paleoproterozoic intraplate extension at the southwestern margin of the Siberian Craton. Dokl Earth Sci 465(1):1139–1142

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV, Kozlov PS et al (2015b) P-T-t constraints on polymetamorphic complexes in the Yenisei Ridge, East Siberia: implications for Neoproterozoic paleocontinental reconstructions. J Asian Earth Sci 113:391–410

    Article  Google Scholar 

  • Likhanov II, Nozhkin AD, Reverdatto VV et al (2016) Metamorphic evolution of ultrahigh-temperature Fe- and Al-rich granulites in the South Yenisei Ridge and tectonic implications. Petrology 24(4):392–408

    Article  Google Scholar 

  • Likhanov II, Régnier J-L, Santosh M (2018) Blueschist facies fault tectonites from the western margin of the Siberian Craton: implications for subduction and exhumation associated with early stages of the Paleo-Asian Ocean. Lithos 304–307:468–488

    Article  Google Scholar 

  • Liou JG (1973) Synthesis and stability relations of epidote, Ca2Al3FeSi3O12(OH). J Petrol 14:381–413

    Article  Google Scholar 

  • Liou JG, Kuniyoshi S, Ito K (1974) Experimental studies of the phase relations between greenschist and amphibolite in a basaltic system. Am J Sci 274:613–632

    Article  Google Scholar 

  • Liou JG, Kim HS, Maruyama S (1983) Prehnite-epidote equilibria and their petrologic applications. J Petrol 24:321–342

    Article  Google Scholar 

  • Liu M, Peterson JC, Yund RA (1997) Diffusion-controlled growth of albite and pyroxene reaction rim. Contrib Mineral Petrol 126:217–223

    Article  Google Scholar 

  • Livio F, Sileo G, Michetti AM et al (2007) Pleistocene compressive tectonics in Central Southern Alps (Italy): rates of folding determined from growth strata. Geophys Res Abstr 9:02740

    Google Scholar 

  • McKenzie DP (1969) Speculations on the consequences and causes of plate motions. Geophys J Roy Astron Soc 18:1–32

    Article  Google Scholar 

  • Miyashiro A (1958) Regional metamorphism of the Gosaisyo-Takanuki district in the central Abakuma Plateau. J Fac Sci Univ Tokyo 11:211–229

    Google Scholar 

  • Miyashiro A (1973) Metamorphism and metamorphic belts. Allen and Unwin, London

    Book  Google Scholar 

  • Mugnier J-L, Huyghe P, Leturmy P et al (2004) Episodicity and rates of thrust-sheet motion in the Himalayas (western Nepal). In: McClay KR (ed) Thrust tectonics and hydrocarbon systems, vol 82. American Association Petroleum Geologist Memoir, AAPG, Boulder, pp 93–116

    Google Scholar 

  • Mulrooney D, Rivers T (2005) Redistribution of the rare-earth elements among coexisting minerals in metamorphic rocks across the epidote-out isograd: an example from the St. Anthony Complex, northern Newfoundland, Canada. Can Mineral 43:263–294

    Article  Google Scholar 

  • Nehring F, Foley SF, Holtta P (2010) Trace element partitioning in the granulite facies. Contrib Mineral Petrol 159:493–519

    Article  Google Scholar 

  • Nozhkin AD, Turkina OM (1993) Geochimiya granulitov iz kanskogo i sharyzhalgaiskogo kompleksov (Geochemistry of granulites from kansk and sharyzhalgay complexes). UIGGM Press, Novosibirsk

    Google Scholar 

  • Nozhkin AD, Likhanov II, Savko KA et al (2018) Sapphirine-bearing ultrahigh-temperature granulites of the Anabar shield: chemical composition, U-Pb zircon ages and P-T conditions of metamorphism. Doklady Earth Sci 479(1):347–351

    Article  Google Scholar 

  • Oelkers EH (1996) Physical and chemical properties of rocks and fluids for chemical mass transport calculations. In: Lichtner PC, Steefel CI, Oelkers EH (eds) Reactive transport in porous media. Review in mineralogy, vol 34. Mineralogical Society of America, Washington, pp 131–191

    Google Scholar 

  • Otamendi JE, de la Rosa JD, Patino Douce AE et al (2002) Rayleigh fractionation of heavy rare earths and yttrium during metamorpfic garnet growth. Geology 30:159–162

    Article  Google Scholar 

  • Pattison DRM (2001) Instability of Al2SiO5 “triple point” assemblages in muscovite+biotite+quartz-bearing metapelites, with implications. Am Mineral 86:1414–1422

    Article  Google Scholar 

  • Peacock SM (2003) Thermal structure and metamorphic evolution of subducting slabs. In: Eiler J, Abers GA (eds) Inside the subduction factory. Geophysical monograph series, vol 238. AGU, Washington, pp 7–22

    Chapter  Google Scholar 

  • Perchuk LL (1989) Vzaimosoglasovanie nekotorykh Fe-Mg geotermomotrov na osnove zakona |Nernsta: revisiya (Mutual consistence between some Fe-Mg-geothermometers based on the Nernst law: revision). Geokhimiya 27(5):611–622

    Google Scholar 

  • Perchuk LL, Gerya TV, van Reenen DD et al (2001) Formation and dynamics of granulite complexes within cratons. Gondwana Res 4:729–732

    Article  Google Scholar 

  • Perchuk LL, Gerya TV, van Reenen DD et al (2006) P-T paths and problems of high-temperature polymetamorphism. Petrology 14:117–153

    Article  Google Scholar 

  • Perchuk AL, Safonov OG, Sazonova LV et al (2015) Osnovy petrologii magmaticheskih processov (Basics of petrology of magmatic and metamorphic processes). Universitetskaya Kniga, Moscow

    Google Scholar 

  • Poli S, Schmidt MW (2004) Experimental subsolidus studies on epidote minerals. Rev Mineral Geochem 56:171–195

    Article  Google Scholar 

  • Polyanskii OP, Reverdatto VV, Anan’ev VA (2000) Evolution of the rift sedimentary basin as an indicator of geodynamic setting (on example of the Enisei-Khatanga depression). Dokl Akad Nauk 370(1):71–75

    Google Scholar 

  • Prigogine I (1961) Introduction to thermodynamics of irreversible processes, 2nd edn. Interscience, New York

    Google Scholar 

  • Prigogine I, Defay R (1962) Chemische thermodynamic. Verlag für Grundstoffindustrie, Leipzig

    Google Scholar 

  • Pyle JM, Spear FS, Rudnick RL et al (2001) Monazite-xenotine-garnet equilibrium in metapelites and a new monazite-garnet thermometer. J Petrol 42:2083–2107

    Article  Google Scholar 

  • Rambaldi ER (1973) Variation in the composition of plagioclase and epidote in some metamorphic rocks near Bancroft, Ontario. Can J Earth Sci 10:852–868

    Article  Google Scholar 

  • Raychenko AI (1981) Matematicheskaya teoriya diffusii v prilozheniyah (Mathematical theory of diffusion in applications). Naukova dumka, Kiev

    Google Scholar 

  • Reinhardt J, Rubenach MJ (1989) Temperature-time relationships across metamorphic zones: evidence from porphyroblast-matrix relationships in progressively deformed metapelites. Tectonophysics 158:141–161

    Article  Google Scholar 

  • Reverdatto VV, Kolobov VY (1987) Mass transportation in metamorphism. Geol Geofiz 28(3):1–9

    Google Scholar 

  • Reverdatto VV, Polyansky OP (1992) Evolution of PT-parameters in the alternative models of metamorphism. Dokl Akad Nauk 325(5):1017–1020

    Google Scholar 

  • Reverdatto VV, Polyansky OP (2004) Modelling of the thermal history of metamorphic zoning in the Connemara region (western Ireland). Tectonophysics 379:77–91

    Article  Google Scholar 

  • Reverdatto VV, Sharapov VN, Lavrent’ev YG et al (1974) Investigations in isochemical contact metamorphism. Contrib Mineral Petrol 48:287–299

    Article  Google Scholar 

  • Reverdatto VV, Pertsev NN, Korolyuk VN (1979) PCO2-T-evolution and origin of zoning in melilite during the regressive stage of contact metamorphism in carbonate-bearing rocks. Contrib Mineral Petrol 70:203–208

    Article  Google Scholar 

  • Reverdatto VV, Likhanov II, Polyansky OP et al (2017) Priroda i modeli metamorfizma (Nature and models of metamorphism). Publishing House SB RAS, Novosibirsk

    Google Scholar 

  • Reverdatto VV, Babichev AV, Likhanov II et al (2018) Movement rates of metamorphic fronts in tocks near magmatic intrusive bodies. Dokl Earth Sci 480(2):751–753

    Article  Google Scholar 

  • Ridley J (1985) The effect of reaction enthalpy on the progress of a metamorphic reaction. In: Thompson AB, Rubie DC (eds) Advances in physical geochemistry, vol 4. Springer, Berlin, pp 80–97

    Google Scholar 

  • Robie RA, Bethke PM, Toulmin MS et al (1966) X-ray crystallographic data, densities and molar volumes of minerals. In: Clark SP (ed) Handbook of physical constants. Geological Society of America, New York, pp 29–73

    Google Scholar 

  • Robinson D, Beavins RE (1989) Diastathermal (extensional) metamorphism at very low grades and possible high grade analogues. Earth Planet Sci Lett 92:81–88

    Article  Google Scholar 

  • Rubenach MJ (1992) Proterozoic low-pressure/high-temperature metamorphism and an anticlockwise P-T-t path for the Hazeldene area, Mount Isa Inlier, Queensland, Australia. J Metamorph Geol 10:333–346

    Article  Google Scholar 

  • Sandiford M, Powell R (1991) Some remarks on high-temperature-low-pressure metamorphism in convergent orogens. J Metamorph Geol 9:333–340

    Article  Google Scholar 

  • Sarkar T, Schenk V (2014) Two-stage granulite formation in a Proterozoic magmatic arc (Ongole domain of the Eastern Ghats Belt, India): Part 1. Petrology and pressure–temperature evolution. Precambr Res 255:485–509

    Article  Google Scholar 

  • Savko КA, Bazikov NS (2011) Phase Equilibria of bastnaesite, allanite, and monazite: bastnaesite-out isograde in metapelites of the Vorontsovskaya Group, Voronezh Crystalline Massif. Petrology 19:445–469

    Article  Google Scholar 

  • Savko КA, Bazikov NS, Korish EKh et al (2012) Accessory rare earths-bearing minerals in Palaeoproterozoic schists of Voronezh crystalline massif. Zap RMO 141:107–128

    Google Scholar 

  • Schenk V (1984) Petrology of felsic granulites, metapelites, metabasites and metacarbonates from southern Calabria (Italy): prograde metamorphism, uplift and cooling of a former lower crust. J Petrol 25:255–298

    Article  Google Scholar 

  • Seroglazov VV (1992) Mass transfer at the contact of high-Al gneisses and metaultrabasites (Sharyzhalgai Complex, eastern Sayan). Dokl Akad Nauk 323(5):925–929

    Google Scholar 

  • Sharp WE, Kennedy GC (1965) The system CaO–CO2–H2O in two-phase region calcite—aqueous solution. J Geol 73(2):391–403

    Article  Google Scholar 

  • Sheplev VS (1998) Matematicheskoe modelirovanie chimitcheskoy zonalnosti v metamorfitcheskih reakcionnyh strukturah (Mathematical modeling of chemical zoning in metamorphic reaction structures). Doctor of Science Dissertation, OIGGM SO RAN, Novosibirsk

    Google Scholar 

  • Sheplev VS, Reverdatto VV (1998) Mineralogical geothermobarometry under unsteady equilibrium conditions. Dokl Akad Nauk 361(3):392–396

    Google Scholar 

  • Sheplev VS, Korneeva LV, Reverdatto VV (1990) A simple model of dissolution and growth of scattered mineral grains during metamorphism. Geokhimiya 28(7):954–961

    Google Scholar 

  • Sheplev VS, Kolobov VY, Kuznetsova RN et al (1991) Analysis of growth of zonated mineral segregation and characteristics of mass transfer during metamorphism. 1. Theoretical model in a quasi-stationary approximation. Sov Geol Geophy 32(12):1–12

    Google Scholar 

  • Sheplev VS, Kuznetsova RP, Kolobov VY (1992a) Analysis of growth of zonated mineral segregation and characteristics of mass transfer during metamorphism. 2. The system SiO2–Al2O3–MgO–NaCa2O5/2). Geol Geofiz 33(2):73–80

    Google Scholar 

  • Sheplev VS, Kuznetsova RP, Kolobov VY (1992b) Analysis of growth of zonal mineral segregation and characteristics of mass transfer under metamorphism 3 The model of steady diffusion. Geol Geofiz 33(6):46–52

    Google Scholar 

  • Sheplev VS, Kolobov VY, Kuznetsova RP (1998) Analysis of growth of zonated mineral associations. In: Augustithis SS (ed) Theophrastus’ contributions to advanced studies in geology, vol II. Theophrastus Publications, Athens, pp 223–247

    Google Scholar 

  • Shmonov VM, Vitovtova VM, Zharikov AV (2002) Fluidnaya pronixaemost’ porod zemnoy kory (Fluid permeability of rocks of the Earth’s crust). Nauchniy Mir, Moscow

    Google Scholar 

  • Shvedenkov GY, Reverdatto VV, Bul’bak TA et al (2006) Bimetasomatic zoning in the CaO-MgO-SiO2-H2O-CO2 system: experiments with the use of natural rock samples. Petrology 14(5):515–527

    Article  Google Scholar 

  • Shvedenkova SV, Shvedenkov GY (1990) Experimental investigation of calcium and sodium distribution between plagioclase and solution at 350 °C and 100 MPa. Geol Geofis 2:75–80

    Google Scholar 

  • Sills JD, Rollinson HR (1987) The metamorphic evolution of the Lewisian Complex. In: Park RG, Tarney J (eds) Evolution of the Lewisian and comparable Precambrian high grade terrains, vol 28. Geological Society, London, Special Publications, pp 81–92

    Google Scholar 

  • Skippen C (1974) An experimental model for low pressure metamorphism of siliceous dolomitic marble. Am J Sci 274:487–509

    Article  Google Scholar 

  • Sklyarov EV (2006) Exhumation of metamorphic complexes: basic mechanisms. Russ Geol Geophys 47(1):68–72

    Google Scholar 

  • Sklyarov EV, Gladkochub DP, Donskaya TV et al (2001) Metamorfizm i tektonika (Metamorphism and Tectonics). Intermet Engineering, Moscow

    Google Scholar 

  • Skublov SG (2005) Geokhimiya redkozemelnyh elementov v porodoobrazuyushih metamorficheskih mineralah (Geochemistry of rare-earth elements in the rock-forming metamorphic minerals). Nauka, St. Petersburg

    Google Scholar 

  • Sobolev SV, Babeyko AYu (1994) Modeling of mineralogical composition, density and elastic-wave velocities in anhydrous magmatic rocks. Surv Geophys 15(5):515–544

    Article  Google Scholar 

  • Soloviev AV, Shapiro MN, Garver DI (2001) O skorostyah formirovaniya kollizionnyih nadvigov (On the rates of formation of collision thrusts (Lesnovsky overthrust, northern Kamchatka)). Bull MOIP Geol Dept 76(5):29–32

    Google Scholar 

  • Spear FS (1989) Relative thermobarometry and metamorphic P-T paths. In: Daly JS, Cliff RA, Yardley BWD (eds) Evolution of metamorphic belts. Geological Society Special Publication, Blackwell, Oxford, pp 63–82

    Google Scholar 

  • Spear FS, Peacock SM (1989) Metamorphic pressure-temperature-time paths. American Geophysical Union, Washington

    Book  Google Scholar 

  • Spear FS, Hickmott DD, Selverstone J (1990) Metamorphic consequences of thrust emplacement, Fall Mountain, New Hampshire. Geol Soc Am Bull 102:1344–1360

    Article  Google Scholar 

  • Spear FS, Kohn MJ, Cheney JT et al (2002) Metamorphic, thermal and tectonic evolution of Central New England. J Petrol 43:2097–2120

    Article  Google Scholar 

  • Staudigel H, King SD (1992) Ultrafast subduction—the key to slab recycling efficiency and mantle differentiation. Earth Planet Sci Lett 109:517–530

    Article  Google Scholar 

  • Stein S, Stein CA (1996) Thermo-mechanical evolution of oceanic lithosphere: implications for the subduction process and deep earthquakes. In: Bebout GE, Scholl DW, Kirby SH et al (eds) Subduction: top to bottom. Geophysical monograph, vol 96. American Geophysical Union, New York, pp 1–17

    Google Scholar 

  • Suppe J, Chou GT, Hook SC (1992) Rates of folding and faulting determined from growth strata. In: McClay KR (ed) Thrust tectonics. Springer, Dordrecht, pp 105–121

    Chapter  Google Scholar 

  • Syracuse EM, van Keken PE, Abers GA (2010) The global range of subduction zone thermal models. Phys Earth Planet Inter 183:73–90

    Article  Google Scholar 

  • Tam PY, Zhao G, Sun M et al (2012a) Petrology and metamorphic P-T path of high-pressure mafic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton. Lithos 155:94–109

    Article  Google Scholar 

  • Tam PY, Zhao G, Zhou X et al (2012b) Metamorphic P-T path and implications of high-pressure pelitic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton. Gondwana Res 22:104–117

    Article  Google Scholar 

  • Teyssier C, Whitney DL (2002) Gneiss domes and orogeny. Geology 30:1139–1142

    Article  Google Scholar 

  • Thompson AB (1975) Calc-silikate diffusion zones between marble and pelitic schists. J Petrol 16(2):314–346

    Article  Google Scholar 

  • Thompson AB, England PC (1984) Pressure-temperature-paths of regional metamorphism, II: their influence and interpretation using mineral assemblages in metamorphic rocks. J Petrol 25:929–954

    Article  Google Scholar 

  • Tong L, Xu Y-G, Cawood PA et al (2014) Anticlockwise P-T evolution at ~280 Ma recorded from ultrahigh-temperature metapelitic granulite in the Chinese Altai orogenic belt, a possible link with the Tarim mantle plume? J Asian Earth Sci 94:1–11

    Article  Google Scholar 

  • Tozer RSJ, Butler RWH, Corrado S (2002) Comparing thin- and thick-skanned thrust tectonic models of the Central Apenines, Italy. In: Europ Geosci Union, Stephan Mueller Spec Publ Ser, vol 1. pp 181–194. https://doi.org/10.5194/smsps-1-181-2002

    Article  Google Scholar 

  • Trommsdorff V (1966) Progressive metamorphose kieseliger korbonatgesteine in den Zentralalpen zwischen Bernina und Simplon. Schweiz Mineral Petrogr Mitt 46(2):431–460

    Google Scholar 

  • Trommsdorff V (1972) Change in T-X during metamorphism of siliceous dolomitic rocks of the Central Alps. Schweiz Mineral Petrogr Mitt 52(3):567–571

    Google Scholar 

  • Tsunogae T, van Reenen DD (2006) Corundum + quartz and Mg-staurolite bearing granulite from the Limpopo Belt, southern Africa: implications for a P-T path. Lithos 92:576–587

    Article  Google Scholar 

  • Van Westrenen W, Allan NL, Blundy JD et al (2003) Trace element incorporation into pyrope-grossular solid solutions: an atomistic simulation study. Phys Chem Miner 30:217–229

    Article  Google Scholar 

  • Vernon RH (1976) Metamorphic processes, reactions and microstructure development. George Allen and Unwin, London

    Google Scholar 

  • Walther JV, Wood BJ (1984) Rate and mechanism in prograde metamorphism. Contrib Mineral Petrol 88:246–259

    Article  Google Scholar 

  • Wan T (2010) The tectonics of China: data, maps and evolution. Springer, Heidelberg

    Google Scholar 

  • Wan B, Windley BF, Xiao W et al (2015) Paleoproterozoic high-pressure metamorphism in the northern North China Craton and implications for the Nuna supercontinent. Nat Commun 6:8344

    Article  Google Scholar 

  • Wang Q, Zhang PZ, Freymueller JT et al (2001) Present-day crustal deformation in China constrained by Global Positioning System measurements. Science 294:574–577

    Article  Google Scholar 

  • Waters DJ (1986) Metamorphic history of sapphirine-bearing and related magnesian gneisses from Namaqualand, South Africa. J Petrol 27:541–565

    Article  Google Scholar 

  • Weare JH, Stephens JR, Eugster HP (1976) Diffusion metasomatism and mineral reaction zones: general principles and application to feldspar alteration. Am J Sci 276:767–816

    Article  Google Scholar 

  • Wernicke B (1985) Uniform-sense normal simple shear of the continental lithosphere. Can J Earth Sci 22:108–125

    Article  Google Scholar 

  • White RW, Powell R, Clarke GL (2002) The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J Metamorph Geol 20:41–55

    Article  Google Scholar 

  • Whitney DL, Lang HM, Ghent ED (1995) Quantitative determination of metamorphic reaction history: mass balance between groundmass and mineral inclusion assemblages in metamorphic rocks. Contrib Mineral Petrol 120:404–411

    Article  Google Scholar 

  • Whitney DL, Mechum TA, Kuehner SM et al (1996) Progressive metamorphism of pelitic rocks from protolith to granulite facies, Dutchess County, New York, USA: Constraints on the timing of fluid infiltration during regional metamorphism. J Metamorph Geol 14:163–181

    Article  Google Scholar 

  • Whitney DL, Miller RB, Paterson SR (1999) P-T-t evidence for mechanisms of vertical tectonic motion in a contractional orogen: north-western US and Canadian Cordillera. J Metamorph Geol 17:75–90

    Article  Google Scholar 

  • Will TM, Schmadicke E (2003) Isobaric cooling and anti-clockwise P-T paths in the Variscan Odenwald crystalline complex, Germany. J Metamorph Geol 21:469–480

    Article  Google Scholar 

  • Wolfram S (2003) The mathematica book, 5th edn. Wolfram Media Inc., Champaign

    Google Scholar 

  • Xiang H, Zhang L, Zhong ZQ et al (2012) Ultrahigh-temperature metamorphism and anticlockwise P-T–t path of Paleozoic granulites from north Qinling-Tongbai orogen, Central China. Gondwana Res 21:559–576

    Article  Google Scholar 

  • Yalcin MN, Littke R, Sachsenhofer RF (1997) Thermal history of sedimentary basins. In: Welte DH, Horsfield B, Baker DR (eds) Petroleum and basin evolution. Insights from petroleum geochemistry, geology and basin modeling. Springer, Heidelberg, pp 71–168

    Chapter  Google Scholar 

  • Yu S, Zhang J, Real PGD (2011) Petrology and P-T path of high-pressure granulite from the Dulan area, North Qaidam Mountains, northwestern China. J Asian Earth Sci 42:641–660

    Article  Google Scholar 

  • Yund RA (1997) Rates of grain boundary diffusion through enstatite and forsterite reaction rims. Contrib Mineral Petrol 126:224–226

    Article  Google Scholar 

  • Zhai QG, Zhang RY, Jahn BM et al (2011) Triassic eclogites from central Qiangtang, northern Tibet, China: petrology, geochronology and metamorphic P-T path. Lithos 125:173–189

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Reverdatto .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reverdatto, V.V., Likhanov, I.I., Polyansky, O.P., Sheplev, V.S., Kolobov, V.Y. (2019). Metamorphic Processes in Rocks. In: The Nature and Models of Metamorphism. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-030-03029-2_4

Download citation

Publish with us

Policies and ethics