Skip to main content

Great Earthquakes in Slow-Subduction, Low-Taper Margins

  • Conference paper
Subduction Zone Geodynamics

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

The seismic hazard presented by slow subduction zones is not well known. While there is a widely accepted apparent relation between “fast-young plate” subduction and great earthquake generation (e.g., Chile, 1960), the seismic record indicates that slow subduction zones are also capable of generating mega-thrust earthquakes (M > 8.2). Available data on the recurrence interval for slow subduction margins, suggests that repeat times are longer than for more rapid convergence margins (on the order of several hundred to a few thousand years). For several of these margins, however, no shallow dipping thrust earthquake focal mechanisms are observed and no mega-thrust earthquakes known either.

Slow subduction zones (v ≥ 4 cm/year) are typically characterized by thick sedimentary sections on the incoming plate (2–6 km) and by a broad accretionary wedge (100–250 km). The “taper” of these accretionary wedges is mechanically related to the basal and internal friction and ranges from about 2̆ to 12̆. Some wedges have extremely shallow mean surface and basal slopes (about 1–2̆ each, taper <4̆) indicating a very weak decollement layer. These include: Barbados Ridge, Makran, Hikurangi, Mediterranean Ridge, Calabria, Gibraltar/Cadiz, and Cascadia/Washington. Nankai, Sumatra and E. Alaska have slightly higher tapers of about 5–7̆. Most of these low-taper wedges have very slow to slow convergence rates (0.5–4 cm/year).

The presence of these wide accretionary wedges strongly affects the type and amount of deformation above the “up-dip limit” of the seismogenic zone. The thermally insulating effect of a wide and thick wedge of sediment produces a wide, shallow transition zone (between the 100̆C and 150̆C isotherms) as well as a substantial (up to 80 km wide) region between this and the front of the wedge, where the amount and timing of deformation is poorly understood. Indeed, recent seismological data from Nankai indicate “very-low-frequency” shallow-thrust earthquakes beneath the accretionary wedge, long considered to be “aseismic,” underscoring the unusual mechanical behavior in the transition zone. As the rigidity of the high-porosity wedge sediments is low, for an earthquake of a given seismic moment, more co-seismic slip will occur and for a longer duration, than for a deeper earthquake in more consolidated units. Thus shallow earthquakes in the wedge are more effi cient at generating a strong tsunami. Many of the margins with very broad accretionary wedges have produced extremely strong earthquakes (M9) in the past, as well as giant tsunamis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ando, M., 1975. Source mechanisms and tectonic significance of historical earthquakes along the Nankai Trough, Japan. Tectonophysics, 27, 119–140.

    Article  Google Scholar 

  • Bilek, S.L., and Lay, T., 1999. Rigidity variations with depth along interplate megathrust faults in subduction zones. Nature, 400, 443–446.

    Article  Google Scholar 

  • Bilek, S.L., Schwartz, S.Y., and DeShon, H.R., 2003. Control of seafl oor roughness on earthquake rupture behavior. Geology, 31, 455–458.

    Article  Google Scholar 

  • Byrne, D.E., Davis, D.M., and Sykes, L.R., 1988. Loci and maximum size of thrust earthquakes and the mechanics of the shallow region of subduction zones. Tectonics, 7, 833–857.

    Article  Google Scholar 

  • Cernobori, L., Hirn, A., McBride, J.H., Nicolich, R., Petronio, L., Romanelli, M., STREAMERS/PROFILES Working Groups, 1996. Crustal image of the Ionian basin and its Calabrian margins. Tectonophysics, 264, 175–189.

    Article  Google Scholar 

  • Clague, J.J., 1997. Evidence for large earthquakes at the Cascadia subduction zone. Rev. Geophys., 35, 439–460.

    Article  Google Scholar 

  • Cloos, M., 1992. Thrust-type subduction-zone earthquakes and seamount asperities: A physical model for seismic rupture. Geology, 20, 601–604.

    Article  Google Scholar 

  • Cloos, M., and Shreve, R.L., 1996. Shear-zone thickness and seismicity of Chilean- and Marianas-type subduction zones. Geology, 24, 107–110.

    Article  Google Scholar 

  • Collot, J.-Y., Marcaillou, B., Sage, F., Michaud, F., Agudelo, W., Charvis, P., Graindorge, D., Gutscher, M.-A., Spence, G., 2004. Are rupture zone limits of great subduction earthquakes controlled by upper plate structures? Evidence from multichannel seismic refl ection data acquired across the northern Ecuador—southwest Colombia margin. J. Geophys. Res., 109, B11103, doi: 10.1029/2004JB003060.

    Article  Google Scholar 

  • Davey, F.J., Hampton, M., Childs, J., Fisher, M.A., Lewis, K., and Pettinga, J.R., 1986. Structure of a growing accretion-ary prism, Hikurangi margin, New Zealand. Geology, 14, 663–666.

    Article  Google Scholar 

  • Davis, D., Suppe, J., and Dahlen, F., 1983. Mechanics of fold and thrust belts and accretionary wedges. J. Geophys. Res., 88, 1153–1172.

    Article  Google Scholar 

  • DeMets, C., Jansma, P.E., Mattioli, G.S., Dixon, T.H., Farina, F., Bilham, R., Calais, E., and Mann, P., 2000. GPS geodetic constraints on Caribbean-North America plate motion. Geophys. Res. Lett., 27, 437–440.

    Article  Google Scholar 

  • De Voogd, B., Truffert, C., Chamot-Rooke, N., Lallemant, S., and Le Pichon, X., 1992. Two-ship deep seismic soundings in the basins of the Eastern Mediterranean Sea (Pasiphae cruise). Geophys. J. Int., 109, 536–552.

    Article  Google Scholar 

  • Ellouz-Zimmermann, N., Lallemant, S.J., Castilla, R., Mouchot, N., Leturmy, P., Battani, A., Buret, C., Cherel, L., Desaubliaux, G., Deville, E., Ferrand, J., Lugke, A., Mahieux, G., Mascle, G., Muhr, P., Pierson-Wickmann, A.-C., Robion, P., Schmitz, J., Danish, M., Hasany, S., Shazad, A., Tabreez, A., 2007. Offshore frontal part of the Makran accretionary prism (Pakistan) The CHAMAK survey. In Lacombe, O., Lavé, J., Roure, F., Verges, J. (Eds.), Thrust Belts and Foreland Basins. Frontiers in Earth Science, Springer, Berlin.

    Google Scholar 

  • Engdahl, E.R., and Villasenor, A., 2002. Global Seismicity: 1900–1999. In Lee, W.H.K., Kanamori, H., Jennings, P.C., and Kisslinger, C. (Eds.), International Handbook of Earthquake and Engineering Seismology, Part A, Chapter 41, pp. 665–690, Academic Press.

    Google Scholar 

  • Engdahl, E.R., van der Hilst, R.D., and Buland, R., 1998. Global teleseismic earthquake relocation with improved travel times and procedures for depth relocation. Bull. Seism. Soc. Am., 88, 722–743.

    Google Scholar 

  • Ferguson, I.J., Westbrook, G.K., Langseth, M.G., and Thomas, G.P., 1993. Heat fl ow and thermal models of the Barbados ridge accretionary complex. J. Geophys. Res., 98, 4121–4142.

    Article  Google Scholar 

  • Flinch, J.F., Amaral, J., Doulcet, A., Mouly, B., Claudia Osorio, C., Pince, J.-M., 2003. Onnshore-offshore structure of the Northern Colombia accretionary complex. Proc. Amer. Assoc. Petr. Geol. Meeting, Barcelona, Spain Sept. 2003 (extended abstract, 5 p. 2 fi gs.).

    Google Scholar 

  • Flueh, E.R., Fisher, M.A., Bialas, J., Childs, J.R., Klaeschen, D., Kukowski, N., Parsons, T., Scholl, D.W., ten Brink, U., Tréhu, A.M., and Vidal, N., 1998. New Seismic Images of the Cascadia Subduction Zone from Cruise SO108 — ORWELL: Tectonophysics, v. 293, p. 69–84.

    Article  Google Scholar 

  • Goes, S., 1996. Irregular recurrence of large earthquakes: An analysis of historic and paleoseismic catalogs. J. Geophys. Res., 101, 5739–5749.

    Article  Google Scholar 

  • Goldfi nger, C., Nelson, C.H., Johnson, J.E., and Shipboard Scientifi c Party, 2003. Holocene earthquake records from the Cascadia subduction zone and northern San Andreas Fault based on precise dating of offshore turbidites. Ann. Rev. Earth Planet. Sci., 31, 555–577.

    Article  Google Scholar 

  • Gutscher, M.-A., 2004. What caused the Great Lisbon Earthquake? Science, 305, 1247–1248.

    Article  Google Scholar 

  • Gutscher, M.-A., and Peacock, S.M., 2003. Thermal models of fl at subduction and the rupture zone of great subduction earthquakes. J. Geophys. Res., 108, B1, 2009, doi:10.1029/ 2001JB000787.

    Article  Google Scholar 

  • Gutscher, M.-A., Roger, J., Baptista, M.A., Miranda, J.M., Tinti, S., 2006. The source of the 1693 Catania earthquake and tsunami (Southern Italy): New evidence from tsunami modeling of a locked subduction fault plane. Geophys. Res. Lett., 33, L08309 10.1029/2005GL025442.

    Article  Google Scholar 

  • Gutscher, M.-A., Dominguez, S., Westbrook, G., Gente, P., Babonneau, N., Mulder, T., Gonthier, E., Bartolome, R., Luis, J., Rosas, F., Terrinha, P., and the Delila and DelSis Scientifi c Teams, 2008. Tectonic shortening and gravitational spreading in the Gulf of Cadiz accretionary wedge: Observations from multi-beam bathymetry and seismic profi ling. Journal of Marine and Petroleum Geology, Sp. Vol. on Submarine instabilities (in press).

    Google Scholar 

  • Hino, R., Ito, S., Shiobara, H., Shimamura, H., Sato, T., Kanazawa, T., Kasahara, J., and Hasegawa, A., 2000. Aftershock distribution of the 1994 Sanriku-oki earthquake (Mw7.7) revealed by ocean bottom seismographic observation. J. Geophys. Res., 105, 21697–21710.

    Article  Google Scholar 

  • Hyndman, R.D., and Wang, K., 1995. The rupture zone of Cascadia great earthquakes from current deformation and the thermal regime. J. Geophys. Res., 100, 22133–22154.

    Article  Google Scholar 

  • Hyndman, R.D., Yamano, M., and Wang, K., 1995. Thermal constraints on the seismogenic portion of the southwestern Japan subduction thrust. J. Geophys. Res., 100, 15373–15392.

    Article  Google Scholar 

  • IOC, IHO and BODC, 2003. “Centenary edition of the GEBCO Digital Atlas”, published on CD-ROM on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the General Bathymetric Chart of the Oceans; British Oceano-graphic Data Centre, Liverpool.

    Google Scholar 

  • Ito, Y., and Obara, K., 2006a. Dynamic excitation of the accretionary prism excites very low frequency earthquakes. Geophys. Res. Lett., 33, L02311, doi:10.1029/ 2005GL025270.

    Article  Google Scholar 

  • Ito, Y., and Obara, K., 2006b. Very low frequency earthquakes within accretionary prisms are very low stress-drop earthquakes. Geophys. Res. Lett., 33, L09302, doi:10.1029/ 2005GL025883.

    Article  Google Scholar 

  • Jarrard, R.D., 1986. Relations among subduction parameters. Rev. Geophys., 24, 217–284.

    Article  Google Scholar 

  • Kanamori, H., 1972. Tectonic implications of the 1944 Tonankai and 1946 Nankaido earthquakes. Phys. Earth Planet. Inter., 5, 129–139.

    Article  Google Scholar 

  • Klingelhoefer, F., Dessa, J.-X., Graindorge, D., Gutscher, M.-A., Permana, H., Andre, C., Dean, S., Singh, S., and Chauhan, A., 2007. Crustal structure of the 2004 Great Sumatra Earthquake epicentral zone from wide-angle seismic data. AGU Fall Meeting, San Fransisco, Dec. 2007, EOS suppl., v. 87.

    Google Scholar 

  • Kopp, C., Fruehn, J., Flueh, E.R., Reichert, C., Kukowski, N., Bialas, J., and Klaeschen, D., 2000a. Structure of the Makran subduction zone from wide-angle and refl ection seismic data. Tectonophysics, 329, 171–191.

    Article  Google Scholar 

  • Kopp, H., Flueh, E.R., Klaeschen, D., Bialas, J., and Reichert, C., 2000b. Crustal structure of the central Sunda margin at the onset of oblique subduction. Geophys. J. Int., 147, 449–474.

    Article  Google Scholar 

  • Kreemer, C., Holt, W.E., and Haines, A.J., 2003. An integrated global model of present-day plate motions and plate boundary deformation, Geophys. J. Int., 154, 8–34.

    Google Scholar 

  • Lallemand, S., Schnürle, P., and Malavieille, J., 1994. Coulomb theory applied to accretionary and nonaccretionary wedges: Possible causes for tectonic erosion and/or frontal accretion. J. Geophys. Res., 99, 12033–12055.

    Article  Google Scholar 

  • Lallemand, S., Heuret, A., and Boutelier, D., 2005. On the relationships between slab dip, back-arc stress, upper plate absolute motion and crustal nature in subduction zones.

    Google Scholar 

  • Geochem. Geophys. Geosyst., 6, Q09006, doi:10.1029/ 2005GC000917.

    Google Scholar 

  • Lay, T., Kanamori, H., Ammon, C.J., Nettles, M., Ward, S.N., Aster, R.C., Beck, S.L., Bilek, S.L., Brudzinski, M.R., Butler, R., DeShon, H.R., Ekstrom, G., Satake, J., and Sipkin, S., 2005. The Great Sumatra-Andaman earthquake of 26 December 2004. Science 308, 1127–1133.

    Article  Google Scholar 

  • Lebreiro, S.M., McCave, I.N., and Weaver, P., 1997. Late Quaternary turbidite emplacement on the Horseshoe abyssal plain (Iberian margin). J. Sediment. Res., 67, 856–870.

    Google Scholar 

  • McCaffrey, R., 1997. Infl uences of recurrence times and fault zone temperatures on the age-rate dependence of subduction zone seismicity. J. Geophys. Res., 102, 22839–22854.

    Article  Google Scholar 

  • McCaffrey, R., 2008. Global frequency of magnitude 9 earthquakes. Geology, 36, 263–266.

    Article  Google Scholar 

  • Molnar, P., 1979. Earthquake recurrence intervals and plate tectonics. Bull. Seismol. Soc. Am., 69, 115–133.

    Google Scholar 

  • Moore, J.C., and Saffer, D., 2001. Updip limit of the seis-mogenic zone beneath the accretionary prism of southwest Japan: An effect of diagenetic to low-grade metamorphic processes and increasing effective stress. Geology, 29, 183–186.

    Article  Google Scholar 

  • Moore, G.F., Shipley, T.H., Stoffa, P.L., Karig, D.E., Taira, A., Kuramoto, S., Tokuyama, H., and Suyehiro, K., 1990. Structure of the Nankai trough accretionary zone from multichannel seismic refl ection data. J. Geophys. Res., 95, 8753–8765.

    Article  Google Scholar 

  • Oleskevich, D.A., Hyndman, R.D., and Wang, K., 1999. The updip and downdip limits to great subduction earthquakes: Thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile. J. Geophys. Res., 104, 14965–14991.

    Article  Google Scholar 

  • Park, J.O., Tsuru, T., Kodaira, S., Cummins, P.R., and Kaneda, Y., 2002. Splay fault branching along the Nankai subduction zone. Science, 297, 1157–1160.

    Article  Google Scholar 

  • Peacock, S.M., and Wang, K., 1999. Seismic consequences of warm versus cool subduction zone metamorphism: Examples from northeast and southwest Japan. Science, 286, 937–939.

    Article  Google Scholar 

  • Polonia, A., Torelli, L., Brancolini, G., and Loreto, M.F., 2007. Tectonic erosion versus accretion along the Southern Chile Trench: Oblique subduction at a continental corner, Tectonics, v. 26, TC3005, doi:10.1029/2006TC001983.

    Article  Google Scholar 

  • Reston, T., Fruehn, J., von Huene, R., & the IMERSE Working Group, 2002. The structure and evolution of the western Mediterranean Ridge. Mar. Geol., 186, 83–111.

    Article  Google Scholar 

  • Ruff, L., 1996. Large earthquakes in subduction zones: Segment interaction and recurrence times. In Bebout, G.E., Scholl, D.W., Kirby, S.H., and Platt, J. (Eds.), Subduction: Top to Bottom, pp. 91–104, Geophysical Monograph 96, AGU.

    Google Scholar 

  • Ruff, L., and Kanamori, H., 1980. Seismicity and the subduction process. Phys. Earth Planet. Inter. 23, 240–252.

    Article  Google Scholar 

  • Ruff, L., and Kanamori, H., 1983. Seismic coupling and uncoupling at subduction zones. Tectonophysics, 99, 99–117.

    Article  Google Scholar 

  • Ruff, L.J., and Tichelaar, B.W., 1996. What controls the seis-mogenic plate interface in subduction zones? in Subduction: Top to Bottom, ed. by G.E. Bebout, D.W. Scholl, S.H. Kirby and J. Platt, Geophysical Monograph 96, AGU, p. 105–111.

    Google Scholar 

  • Saffer, D.M., and Bekins, B.A., 2002. Hydrological controls on the morphology and mechanics of accretionary wedges. Geology, 29, 183–186

    Google Scholar 

  • Satake, K., 1993. Depth distribution of coseismic slip along the Nankai Trough, Japan, from joint inversion of geodetic and tsunami data. J. Geophys. Res. 98, 4553–4565.

    Article  Google Scholar 

  • Satake, K., Shimazaki, K., Tsuji, Y. , and Ueda, K., 1996. Time and size of a giant earthquake in Cascadia inferred from Japanese tsunami records of January 1700. Nature, 379, 246–249.

    Article  Google Scholar 

  • Stein, S., and Okal, E.A., 2005. Speed and size of the Sumatra earthquake. Nature, 434, 581–582.

    Article  Google Scholar 

  • Taylor, F.W., Edwards, R.L., Wasserburg, G.J., and Frohlich, C., 1990. Seismic recurrence intervals and timing of aseismic subduction inferred from emerged corals and reefs of the Central Vanuatu (New Hebrides) frontal arc. J. Geophys. Res. 95, 393–408.

    Article  Google Scholar 

  • Thiebot, E., and Gutscher, M.-A., 2006. The Gibraltar Arc seis-mogenic zone (part1): Constraints on a shallow east dipping fault plane source for the 1755 Lisbon earthquake provided by seismic data, gravity and thermal modeling. Tectonophysics Sp. Vol. “Natural laboratories on seismogenic faults”, 427, 135–152, doi:10.1016/j.tecto.2006.02.024.

    Google Scholar 

  • Tichelaar, B.W., and Ruff, L.J., 1993. Depth of seismic coupling along subduction zones. J. Geophys. Res. 98, 2017–2037.

    Article  Google Scholar 

  • Uyeda, S., and Kanamori, H., 1979. Back-arc opening and the mode of subduction. J. Geophys. Res., 84, 1049–1061.

    Article  Google Scholar 

  • von Huene, R., and Scholl, D., 1991. Observations at convergent margins concerning sediment subduction, subduction erosion and the growth of continental crust. Rev. Geophys. 29, 279–316.

    Article  Google Scholar 

  • Westbrook, G.K., and Reston, T.J., 2002. The accretionary complex of the Mediterranean Ridge: Tectonics, fl uid fl ow and the formation of brine lakes: An introduction. Mar. Geol., 186, 1–8.

    Article  Google Scholar 

  • Westbrook, G.K., and Smith, M.J., 1983. Long decollements and mud volcanoes: Evidence from the Barbados Ridge Complex for the role of high pore fl uid pressure. Geology, 11, 279–283.

    Article  Google Scholar 

  • Westbrook, G.K., Ladd, J.W., Buhl, P., Bangs, N., and Tilley, G.J., 1988. Cross section of an accretionary wedge: Barbados Ridge complex. Geology, 16, 631–635.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gutscher, MA., Westbrook, G.K. (2009). Great Earthquakes in Slow-Subduction, Low-Taper Margins. In: Lallemand, S., Funiciello, F. (eds) Subduction Zone Geodynamics. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87974-9_7

Download citation

Publish with us

Policies and ethics