Skip to main content
Log in

Metamorphic Indicators for Collision, Extension, and Shear Zone Geodynamic Settings of the Earth’s Crust

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

An effective method for identifying the tectonic-magmatic causes of metamorphism is the reconstruction and analysis of PTt paths, which can be used to develop a model of rock evolution with time in the “pressure–temperature–time” coordinates. This approach is most widely used in interpreting the development of orogens with a polycyclic history, where different types of metamorphism are combined in contrasting geodynamic settings. The progress in this direction in recent years is due to the improvement of the instrumental base, precision methods for the study of matter – in situ local microanalysis and dating of zonal metamorphic minerals, and the computing apparatus of geothermobarometric procedures using multi-equilibria. The article discusses these issues on the example of geological complexes of various geodynamic nature, which are typical for different types of metamorphism. Reaction microtextures, chemical zoning in minerals, geochronological dating as well as the trajectory of the Р-Т paths provide evidence for the polymetamorphic history. A generalized P-T diagram was built using data on well-studied metamorphic complexes, which are characterized by the simultaneous presence of prograde and retrograde segments of a P-T path. Diagnostic P-T-t paths characteristic of rocks formed in zones of active tectogenesis—under collision, extension and in shear zones of the earth’s crust—have been established. This paper discusses some of the ambiguous interpretations of P-T-t paths in areas with simultaneous manifestation of different metamorphic processes, which requires further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. Mineral abbreviations are taken from (Whitney, Evans, 2010).

REFERENCES

  1. Abu-Alam, T.S. and Stuwe, K., Exhumation during oblique transpression: the Feiran–Solaf region, Egypt, J. Metamorph. Geol., 2009, vol. 27, pp. 439–459.

    Article  Google Scholar 

  2. Avchenko, O.V., Chudnenko, K.V., and Aleksandrov, I.A., Osnovy fiziko-khimicheskogo modelirovaniya mineral’nykh system (Principles of Physicochemical Modeling of Mineral Systems), Moscow: Nauka, 2009.

  3. Balen, D., Massonne, H.–J., and Petrinec, Z., Collision–related Early Paleozoic evolution of a crustal fragment from the northern Gondwana margin (Slavonian mountains, Tisia mega-unit, Croatia): reconstruction of the PT path, timing and paleotectonic implications, Lithos, 2015, vol. 232, pp. 211–228.

    Article  Google Scholar 

  4. Bell, T.H., Rieuwers, M.T., Cihan, M., et al., Inter-relationships between deformation partitioning, metamorphism and tectonism, Tectonophysics, 2013, vol. 587, pp. 119–132.

    Article  Google Scholar 

  5. Berman, R.G., Thermobarometry using multi-equilibribrium calculations: a new technique, with petrological applications, Can. Mineral., 1991, vol. 29, pp. 833–856.

    Google Scholar 

  6. Bucher, K. and Grapes, R., Petrogenesis of Metamorphic Rocks, Berlin-Heidelberg: Springer-Verlag, 2011.

    Book  Google Scholar 

  7. Burg, J.-P. and Schmalholz, S.M., Viscous heating allows thrusting to overcome crustal scale buckling: numerical investigation with application to the Himalayan syntaxes, Earth Planet. Sci. Lett., 2008, vol. 274, pp. 189–203.

    Article  Google Scholar 

  8. Cagnard, F., Barbey, P., and Gapais, D., Transition between “archaean–type” and “modern–type” tectonics: insights from the Finnish Lapland granulite belt, Precambrian Res., 2011, vol. 187, pp. 127–142.

    Article  Google Scholar 

  9. Cai, J., Liu, F., Liu, P., et al., Metamorphic PT path and tectonic implications of pelitic granulites from the Daqingshan complex of the khondalite belt, north China Craton, Precambrian Res., 2014, vol. 241, pp. 161–184.

    Article  Google Scholar 

  10. de Capitani, C. and Petrakakis, K., The computation of equilibrium assemblage diagrams with Theriak/Domino software, Am. Mineral., 2010, vol. 95, pp. 1006–1016.

    Article  Google Scholar 

  11. Carlson, W.D., Rates and mechanism of Y, REE, and Cr diffusion in garnet, Am. Mineral., 2012, vol. 97, pp. 1598–1618.

    Article  Google Scholar 

  12. Connolly, J.A.D., Multivariable phase-diagrams – an algorithm based on generalized thermodynamics, Am. J. Sci., 1990, vol. 290, pp. 666–718.

    Article  Google Scholar 

  13. Cruciani, G., Franceschelli, M., and Groppo, C., PT evolution of eclogite-facies metabasite from NE Sardinia, Italy: insights into the prograde evolution of Variscan eclogites, Lithos, 2011, vol. 121, pp. 135–150.

    Article  Google Scholar 

  14. Cutts, K.A., Kinny, P.D., Strachan, R.A., et al., Three metamorphic events recorded in a single garnet: integrated phase modelling, in situ LA-ICPMS and SIMS geochronology from the Moine Supergroup, NW Scotland, J. Metamorph. Geol., 2010, vol. 28, pp. 249–267.

    Article  Google Scholar 

  15. England, P.C. and Thompson, A.B., Pressure–temperature–time paths of regional metamorphism 1. Heat transfer during the evolution of regions of thickened continental crust, J. Petrol., 1984, vol. 25, pp. 894–928.

    Article  Google Scholar 

  16. Ernst, W.G., Tectonic history of subduction zones inferred from retrograde blueschist PT paths, Geology, 1988, vol. 16, pp. 1081–1084.

    Article  Google Scholar 

  17. Ernst, W.G., Subduction-zone metamorphism, calc-alkaline magmatism, and convergent-margin crustal evolution, Gondwana Res., 2010, vol. 18, pp. 8–16.

    Article  Google Scholar 

  18. Escuder-Viruete, J. and Pérez-Estaún, A., Contrasting exhumation PT paths followed by high-P rocks in the northern Caribbean subduction–accretionary complex: insights from the structural geology, microtextures and equilibrium assemblage diagrams, Lithos, 2013, vol. 160–161, pp. 117–144.

    Article  Google Scholar 

  19. Faryad, S.W. and Chakraborty, S., Duration of Eo-Alpine metamorphic events obtained from multicomponent diffusion modeling of garnet: a case study from the eastern Alps, Contrib. Mineral. Petrol., 2005, vol. 150, pp. 306–318.

    Article  Google Scholar 

  20. Fornash, K.F., Cosca, M.A., and Whitney, D.L., Tracking the timing of subduction and exhumation using 40Ar/39Ar phengite ages in blueschist- and eclogite-facies rocks (Sivrihisar, Turkey), Contrib. Mineral. Petrol., 2016, vol. 171, p. 67.

    Article  Google Scholar 

  21. Gerya, T.V., Precambrian geodynamics: concepts and models, Gondwana Res., 2014, vol. 25, pp. 442–463.

    Article  Google Scholar 

  22. Gerya, T.V. and Perchuk, L.L., GEOPATH: a new computer program for geothermobarometry and related calculations with the IBM PC computer, IMA. The 15th General Meeting, Beijing: Abstracts, 1990, vol. 2, p. 1010.

  23. Groppo, C. and Rolfo, F., Counterclockwise PT evolution of the Aghil Range: metamorphic record of an accretionary melange between Kunlun and Karakorum (SW Sinkiang, China), Lithos, 2008, vol. 105, pp. 365–378.

    Article  Google Scholar 

  24. Harley, S.L., Paragenetic and mineral–chemical relationships in orthoamphibole–bearing gneisses from Enderby Land, East Antarctica: a record of Proterozoic uplift, J. Metamorph. Geol., 1985, vol. 3, pp. 179–200.

    Article  Google Scholar 

  25. Harley, S.L., The origins of granulites: a metamorphic perspective, Geol. Mag., 1989, vol. 126, pp. 215–247.

    Article  Google Scholar 

  26. Harley, S.L., Ultrahigh temperature granulite metamorphism (1050 degrees C, 12 kbar) and decompression in garnet (Mg70)–orthopyroxene–sillimanite gneisses from the Rauer Group, East Antarctica, J. Metamorph. Geol., 1998, vol. 16, pp. 541–562.

    Article  Google Scholar 

  27. Harley, S.L., Extending our understanding of ultrahigh temperature crustal metamorphism, J. Mineral. Petrol. Sci., 2004, vol. 99, pp. 140–158.

    Article  Google Scholar 

  28. Harley, S.L., Refining the PT records of UHT crustal metamorphism, J. Metamorph. Geol., 2008, vol. 26, pp. 125–154.

    Article  Google Scholar 

  29. He, Z., Zhang, Z., Zong, K., et al., Metamorphic P-T-t evolution of mafic HP granulites in the northeastern segment of the Tarim Craton (Dunhuang block): evidence for Early Paleozoic continental subduction, Lithos, 2014, vol. 196–197, pp. 1–13.

    Article  Google Scholar 

  30. Karpov, I.K., Chudnenko, K.V., Kulik, D.A., et al., Minimization of Gibbs free energy in geochemical systems by convex programming, Geochem. Int., 2001, vol. 39, no. 11, pp. 1108–1119.

    Google Scholar 

  31. Kelsey, D.E., On ultrahigh-temperature crustal metamorphism, Gondwana Res., 2008, vol. 13, pp. 1–29.

    Article  Google Scholar 

  32. Kelsey, D.E. and Hand, M., On ultrahigh temperature crustal metamorphism: phase equilibria,trace element thermometry, bulk composition, heat sources, timescales and tectonic settings, Geosci. Front., 2015, vol. 6, pp. 311–356.

    Article  Google Scholar 

  33. Korikovsky, S.P., Contrasting models of prograde-retrograde evolution of metamorphism of the Phanerozoic fold belts in collisional and subduction zones, Petrology, 1995, vol. 3, no. 1, pp. 45–63.

    Google Scholar 

  34. Korobeinikov, S.N., Polyanskii, O.P., Likhanov, I.I., et al., Mathematical modeling of overthrusting as a cause of andalusite-kyanite metamorphic zoning in the Yenisei Ridge, Dokl. Earth Sci., 2006, vol. 408, no. 4, pp. 652–656.

    Article  Google Scholar 

  35. Krebs, M., Maresch, W.V., Schertl, H.-P., et al., The dynamics of intra-oceanic subduction zones: a direct comparison between fossil petrological evidence (Rio San Juan complex, Dominican Republic) and numerical simulation, Lithos, 2008, vol. 103, pp. 106–137.

    Article  Google Scholar 

  36. Lazaro, C., Garcia-Casco, A., Rojas Agramonte Y., et al. Fifty-five-million-year history of oceanic subduction and exhumation at the northern edge of the Carribean plate (Sierra del Convento mélange, Cuba), J. Metamorph. Geol., 2009, vol. 27, pp. 19–40.

    Article  Google Scholar 

  37. Li, J., Klemd, R., Gao, J., and John, T., Poly-cyclic metamorphic evolution of eclogite: evidence for multistage burial–exhumation cycling in a subduction channel, J. Petrol., 2016, vol. 57, pp. 119–146.

    Article  Google Scholar 

  38. Likhanov, I.I., Chloritoid, staurolite and gedrite of the high–alumina hornfelses of the Karatash pluton, Int. Geol. Rev., 1988, vol. 30, no. 8, pp. 868–877.

    Article  Google Scholar 

  39. Likhanov, I.I., Mineral reactions in high-alumina ferriferous metapelitic hornfelses: the problem of stability of rare parageneses of contact metamorphism, Geologiya i Geofizika, 2003, vol. 44, no. 4, pp. 305–316.

    Google Scholar 

  40. Likhanov, I.I., Mass-transfer and differential element mobility in metapelites during multistage metamorphism of Yenisei Ridge, Siberia, Metamorphic Geology: Microscale to Mountain Belts, S. Ferrero, P. Lanari, P. Gonsalves, and E. G. Grosch, Eds., Geol. Soc., London: Spec. Publ., 2018, vol. 478, pp. 98–115. https://doi.org/10.1144/SP478.11

  41. Likhanov, I.I. and Reverdatto, V.V., Neoproterozoic collisional metamorphism in overthrust terranes of the Transangarian Yenisey Ridge, Siberia, Int. Geol. Rev., 2011, vol. 53, no. 7, pp. 802–845.

    Article  Google Scholar 

  42. Likhanov I.I. and Reverdatto V.V. P–T–t constraints on the metamorphic evolution of the Transangara Yenisei Ridge: geodynamic and petrological implications, Russ. Geol. Geophys., 2014, vol. 55, no. 3, pp. 299–322.

    Article  Google Scholar 

  43. Likhanov, I.I. and Santosh, M., Neoproterozoic intraplate magmatism along the western margin of the Siberian Craton: implications for breakup of the Rodinia supercontinent, Precambrian Res., 2017, vol. 300, pp. 315–331.

    Article  Google Scholar 

  44. Likhanov, I.I. and Santosh, M., A-type granites in the western margin of the Siberian Craton: implications for breakup of the Precambrian supercontinents Columbia/Nuna and Rodinia, Precambrian Res., 2019, vol. 328, pp. 128–145.

    Article  Google Scholar 

  45. Likhanov, I.I., Reverdatto, V.V., Sheplev, V.S., et al., Contact metamorphism of Fe- and Al-rich graphitic metapelites in the Transangarian region of the Yenisey Ridge, Eastern Siberia, Russia, Lithos, 2001, vol. 58, nos. 1–2, pp. 55–80.

    Article  Google Scholar 

  46. Likhanov, I.I., Polyansky, O.P., Reverdatto, V.V., and Memmi, I., Evidence from Fe- and Al-rich metapelites for thrust loading in the Transangarian region of the Yenisey Ridge, Eastern Siberia, J. Metamorph. Geol., 2004, vol. 22, pp. 743–762.

    Article  Google Scholar 

  47. Likhanov, I.I., Kozlov, P.S., Popov, N.V., et al., Collisional metamorphism as a result of thrusting in the Transangara region of the Yenisei Ridge, Dokl. Earth Sci., 2006, vol. 411, no. 2, pp. 1313–1317.

    Article  Google Scholar 

  48. Likhanov I.I., Reverdatto V.V., Kozlov P.S., Popov N.V. Collision metamorphism of Precambrian complexes in the Transangarian Yenisei Range, Petrology, 2008, vol. 16, no. 2, pp. 136–160.

    Article  Google Scholar 

  49. Likhanov, I.I., Reverdatto, V.V., and Kozlov, P.S., Collision-related metamorphic complexes of the Yenisei Ridge: their evolution, ages, and exhumation rate, Russ. Geol. Geophys., 2011, vol. 52, no. 10, pp. 1256–1269.

    Article  Google Scholar 

  50. Likhanov I.I., Reverdatto V.V., Kozlov P.S., et al., Three metamorphic events in the Precambrian PTt History of the Transangarian Yenisey Ridge recorded in garnet grains in metapelites, Petrology, 2013, vol. 21, no. 6, pp. 561–578.

    Article  Google Scholar 

  51. Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., et al., P-T-t reconstructions of South Yenisei Ridge metamorphic history (Siberian Craton): petrological consequences and application to the supercontinental cycles, Russ. Geol. Geophys., 2015, vol. 56, no. 6, pp. 805–824.

    Article  Google Scholar 

  52. Likhanov, I.I., Nozhkin, A.D., Reverdatto, V.V., et al., Metamorphic evolution of ultrahigh-temperature Fe- and Al-rich granulites in the south Yenisei Ridge and tectonic implications, Petrology, 2016, vol. 24, no. 4, pp. 392–408.

    Article  Google Scholar 

  53. Likhanov, I.I., Nozhkin, A.D., and Savko, K.A., Accretionary tectonics of rock complexes in the western margin of the Siberian Craton, Geotectonics, 2018, vol. 52, no. 1, pp. 22–44.

    Article  Google Scholar 

  54. Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., et al., P–T–t constraints on polymetamorphic complexes in the Yenisey Ridge, East Siberia: implications for Neoproterozoic paleocontinental reconstructions, J. Asian Earth Sci., 2015, vol. 113, pp. 391–410.

    Article  Google Scholar 

  55. Likhanov, I.I., Régnier, J.-L., and Santosh, M., Blueschist facies fault tectonites from the western margin of the Siberian Craton: implications for subduction and exhumation associated with early stages of the Paleo-Asian ocean, Lithos, 2018, vol. 304–307, pp. 468–488.

    Article  Google Scholar 

  56. Nozhkin, A.D., Likhanov, I.I., Savko, K.A., et al., Sapphirine-bearing granulites of the Anabar Shield, Geochem. Int., 2019, vol. 64, no. 5, pp. 524–539.

    Article  Google Scholar 

  57. Pactunc, A.D., Modan: an interactive computer program for estimating mineral quantities based on bulk composition, Comput. Geosci., 1998, vol. 24, pp. 425–431.

    Article  Google Scholar 

  58. Pattison, D.R.M., Instability of Al2SiO5 “triple” “point” assemblages in muscovite + biotite + quartz-bearing metapelites, with implications, Am. Mineral., 2001, vol. 86, pp. 1414–1422.

    Article  Google Scholar 

  59. Perchuk, L.L., Gerya, T.V., van Reenen, D.D., et al., Comparable petrology and metamorphic evolution of the Limpopo (South Africa) and Lapland (Fennoscandia) high-grade terrains, Mineral. Petrol., 2000, vol. 69, pp. 69–107.

    Article  Google Scholar 

  60. Powell, R. and Holland, T.J.B., Optimal geothermometry and geobarometry, Am. Mineral., 1994, vol. 79, pp. 120–133.

    Google Scholar 

  61. Reverdatto, V.V. and Polyanskii O.P., Evolution of PT parameters in alternative models of metamorphism, Dokl. Akad. Nauk, 1992, vol. 325, no. 5, pp. 1017–1020.

    Google Scholar 

  62. Reverdatto, V.V., Likhanov, I.I., Polyansky, O.P., et al., Priroda i modeli metamorfizma (The Nature and Models of Metamorphism), Novosibirsk: Izd–vo SO RAN, 2017.

  63. Reverdatto, V.V., Likhanov, I.I., Polyansky, O.P., et al., The Nature and Models of Metamorphism, Cham: Springer, 2019, p. 330.

    Book  Google Scholar 

  64. Robinson, D. and Beavins, R.E., Diastathermal (extensional) metamorphism at very low grades and possible high grade analogues, Earth Planet. Sci. Lett., 1989, vol. 92, pp. 81–88.

    Article  Google Scholar 

  65. Sakhar, T. and Schenk, V., Two-stage granulite formation in a Proterozoic magmatic arc (Ongole domain of the eastern Ghats Belt, India): Part 1. Petrology and pressure–temperature evolution, Precambrian Res., 2014, vol. 255, pp. 485–509.

    Article  Google Scholar 

  66. Sandiford, M. and Powell, R., Some remarks on high-temperature–low-pressure metamorphism in convergent orogens, J. Metamorph. Geol., 1991, vol. 9, pp. 333–340.

    Article  Google Scholar 

  67. Schenk, V., Petrology of felsic granulites, metabasites, ultramafics and metacarbonates from South Calabria (Italy): prograde metamorphism, uplift and cooling of former lower crust, J. Petrol., 1984, vol. 25, pp. 255–298.

    Article  Google Scholar 

  68. Schmalholz, S.V. and Podladchikov, Y.Y., Tectonic overpressure in weak crustal-scale shear zones and implications for the exhumation of high pressure rocks, Geophys. Res. Lett., 2013, vol. 40, pp. 1984–1988.

    Article  Google Scholar 

  69. Sills, J.D. and Rollinson, H.R., The metamorphic evolution of the Lewisian complex, Evolution of the Lewisian and Comparable Precambrian High Grade Terrains, Park, R. G. and Tarney, J., Eds., Geol. Soc. London: Spec. Publ., 1987, vol. 28, pp. 81–92.

  70. Sklyarov E.V. Exhumation of metamorphic complexes: basic mechanisms, Russ. Geol. Geophys., 2006, vol. 47, no. 1, pp. 68–72.

    Google Scholar 

  71. Spear, F.S., Relative thermobarometry and metamorphic PT paths, Evolution of Metamorphic Belts, Daly, J.S., Cliff, R.A. and Yardley, B.W.D., Eds., Geol. Soc. London: Spec. Publ., 1989, vol. 43, pp. 63–82

  72. Spear, F.S., Hickmott, D.D., and Selverstone, J., Metamorphic consequences of thrust emplacement, Fall Mountain, New Hampshire, Geol. Soc. Am. Bull., 1990, vol. 102, pp. 1344–1360.

    Article  Google Scholar 

  73. Spear, F.S., Peacock, S.M., Kohn, M.J., and Florence, F., Computer programs for petrologic P–T–t path calculations, Am. Mineral., 1991, vol. 76, pp. 2009–2012.

    Google Scholar 

  74. Spear, F.S., Metamorphic Phase Equilibria and Pressure–Temperature–Time Paths, Washington, DC: Mineral. Soc. America, 1993.

    Google Scholar 

  75. Spear, F.S., Kohn, M.J., Cheney, J.T., and Florence, F., Metamorphic, thermal, and tectonic evolution of Central New England, J. Petrol., 2002, vol. 43, pp. 2097–2120.

    Article  Google Scholar 

  76. Sukhorukov, V.P., Polyansky, O.P., Krylov, A.A., and Zinov’ev, S.V., Reconstruction of the metamorphic PT path from the garnet zoning in aluminous schists from the Tsogt Block, Mongolian Altai, Petrology, 2016, vol. 24, no. 4, pp. 409–431.

    Article  Google Scholar 

  77. Sukhorukov, V.P. and Turkina, O.M., The PT path of metamorphism and age of migmatites from the northwestern Irkut Block (Sharyzhalgai Uplift of the Siberian Platform), Russ. Geol. Geophys., 2018, no. 6, pp. 673–689.

  78. Sukhorukov, V.P., Turkina, O.M., Tessalina, S., and Talavera, C., Sapphirine–bearing Fe–rich granulites in the SW Siberian Craton (Angara–Kan Block): implications for Paleoproterozoic ultrahigh–temperature metamorphism, Gondwana Res., 2018, vol. 57, pp. 26–47.

    Article  Google Scholar 

  79. Tam, P.Y., Zhao, G., Sun, M., et al., Petrology and metamorphic PT path of high–pressure mafic granulites from the Jiaobei massif in the Jiao–Liao–Ji belt, North China Craton, Lithos, 2012a, vol. 155, pp. 94–109.

    Article  Google Scholar 

  80. Tam, P.Y., Zhao, G., Zhou, X., et al., Metamorphic PT path and implications of high-pressure pelitic granulites from the Jiaobei massif in the Jiao–Liao–Ji Belt, North China Craton, Gondwana Res., 2012b, vol. 22, pp. 104–117.

    Article  Google Scholar 

  81. Tsunogae, T. and van Reenen, D.D., Corundum + quartz and mg–staurolite bearing granulite from the Limpopo Belt, Southern Sfrica: implications for a PT path, Lithos, 2006, vol. 92, pp. 576–587.

    Article  Google Scholar 

  82. Vry, J.K., Baker, J., Maas, R., et al., Zoned (Cretaceous and Cenozoic) garnet and timing of high grade metamorphism: Southern Alps, New Zealand, J. Metamorph. Geol., 2004, vol. 22, pp. 137–157.

    Article  Google Scholar 

  83. Wan, B., Windley, B.F., Xiao, W., et al., Paleoproterozoic high-pressure metamorphism in the northern north china craton and implications for the Nuna supercontinent, Nature Commun., 2015, vol. 6, Article number 8344.

    Article  Google Scholar 

  84. Waters, D.J., Metamorphic history of sapphirine–bearing and related magnesian gneisses from Namaqualand, South Africa, J. Petrol., 1986, vol. 27, pp. 541–565.

    Article  Google Scholar 

  85. White, R.W., Powell, R., and Clarke, G.L., The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, Central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3, J. Metamorph. Geol., 2002, vol. 20, pp. 41–55.

    Article  Google Scholar 

  86. Whitney, D.L. and Evans, B.W., Abbreviations for names of rock–forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.

    Article  Google Scholar 

  87. Will, T.M. and Schmadicke, E., Isobaric cooling and anti–clockwise PT paths in the Variscan Odenwald crystalline complex, Germany, J. Metamorph. Geol., 2003, vol. 21, pp. 469–480.

    Article  Google Scholar 

  88. Xiang, H., Zhang, L., Zhong, Z.Q., et al., Ultrahigh-temperature metamorphism and anticlockwise P–T–t path of Paleozoic granulites from north Qinling–Tongbai orogen, Central China, Gondwana Res., 2012, vol. 21, pp. 559–576.

    Article  Google Scholar 

  89. Yu, S., Zhang, J., and Real, P.G.D., Petrology and P–T path of high-pressure granulite from the Dulan Area, North Qaidam Mountains, northwestern China, J. Asian Earth Sci., 2011, vol. 42, pp. 641–660.

    Article  Google Scholar 

  90. Zhai, Q.G., Zhang, R.Y., Jahn, B.M., et al., Triassic eclogites from Central Qiangtang, northern Tibet, China: petrology, geochronology and metamorphic P–T path, Lithos, 2011, vol. 125, pp. 173–189.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to reviewers for constructive comments and valuable recommendations, which significantly improved the manuscript.

Funding

This work was made in the framework of State Task of the Sobolev Institute of Geology and Mineralogy of the Russian Academy of Sciences and was financially supported by the Russian Foundation for Basic Research (project no. 18-05-00152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Likhanov.

Additional information

Translated by M. M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Likhanov, I.I. Metamorphic Indicators for Collision, Extension, and Shear Zone Geodynamic Settings of the Earth’s Crust. Petrology 28, 1–16 (2020). https://doi.org/10.1134/S086959112001004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S086959112001004X

Keywords:

Navigation