Skip to main content

Multiparametric Magnetic Resonance Imaging Approaches in Focal Prostate Cancer Therapy

  • Chapter
  • First Online:
Imaging and Focal Therapy of Early Prostate Cancer

Abstract

This chapter reviews the role of Magnetic Resonance (MR) imaging in prostate cancer with emphasis on functional imaging techniques and roles in focal therapy. Multiparametric MR imaging sequences applied for prostate cancer imaging include T2-weighted MR, proton MR spectroscopic imaging, diffusion-weighted imaging, dynamic contrast-enhanced MR, and quantitative T2-weighted imaging. These techniques provide information on independent characteristics of normal and cancerous prostate tissue, including normal/abnormal ductal morphology, concentrations of metabolites relevant to prostate cancer, water diffusion rates which are affected by cellularity, blood flow rates and volumes and therefore vascularity, and quantitative morphology, respectively. The information provided by these independent MR imaging methods can be used to determine the presence and location of prostate cancers with high sensitivity and specificity. Prostate MRI can be applied to diagnosing prostate cancer, predicting organ-confined prostate cancer, localization of intra-glandular prostate cancer, and estimation of intra-glandular prostate cancer volume. It has been applied to MR directed transrectal ultrasound-guided biopsy, direct MR-guided biopsy, MR-transrectal ultrasound fusion biopsy, and MR-guided focal therapy. The chapter describes what is known about the potential for combining these imaging techniques to improve selection, guidance, and subsequent monitoring of the effectiveness of focal therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu-Yao GL, Albertsen PC, Moore DF, et al. Outcomes of localized prostate cancer following conservative management. JAMA. 2009;302(11):1202–9.

    Article  PubMed  CAS  Google Scholar 

  2. Dall’Era MA, Cooperberg MR, Chan JM, et al. Active surveillance for early-stage prostate cancer: review of the current literature. Cancer. 2008;112(8):1650–59.

    Article  PubMed  Google Scholar 

  3. Lawrentschuk N, Fleshner N. The role of magnetic resonance imaging in targeting prostate cancer in patients with previous negative biopsies and elevated prostate-specific antigen levels. BJU Int. 2009;103(6):730–3.

    Article  PubMed  Google Scholar 

  4. Onik G, Narayan P, Vaughan D, Dineen M, Brunelle R. Focal “nerve-sparing” cryosurgery for treatment of primary prostate cancer: a new approach to preserving potency. Urology. 2002;60(1):109–14.

    Article  PubMed  Google Scholar 

  5. Eggener SE, Scardino PT, Carroll PR, et al. Focal therapy for localized prostate cancer: a critical appraisal of rationale and modalities. J Urol. 2007;178(6):2260–7.

    Article  PubMed  Google Scholar 

  6. Jayram G, Eggener SE. Patient selection for focal therapy of localized prostate cancer. Curr Opin Urol. 2009;19(3):268–73.

    Article  PubMed  Google Scholar 

  7. Polascik TJ, Mouraviev V. Focal therapy for prostate cancer is a reasonable treatment option in properly selected patients. Urology. 2009;74(4):726–30.

    Article  PubMed  Google Scholar 

  8. Ahmed HU, Emberton M. Re: Focal therapy for localized prostate cancer: a critical appraisal of rationale and modalities. J Urol. 2008;180(2):780–1 (author reply 781–783).

    Article  PubMed  Google Scholar 

  9. Mouraviev V, Madden JF. Focal therapy for prostate cancer: pathologic basis. Curr Opin Urol. 2009;19(2):161–7.

    Article  PubMed  Google Scholar 

  10. Tsakiris P, Thuroff S, de la Rosette J, Chaussy C. Transrectal high-intensity focused ultrasound devices: a critical appraisal of the available evidence. J Endourol. 2008;22(2):221–9.

    Article  PubMed  Google Scholar 

  11. Han KR, Cohen JK, Miller RJ, et al. Treatment of organ confined prostate cancer with third generation cryosurgery: preliminary multicenter experience. J Urol. 2003;170(4 Pt 1):1126–30.

    Article  PubMed  Google Scholar 

  12. Pauly KB, Diederich CJ, Rieke V, et al. Magnetic resonance-guided high-intensity ultrasound ablation of the prostate. Top Magn Reson Imaging. 2006;17(3):195–207.

    Article  PubMed  Google Scholar 

  13. Hu Y, Ahmed HU, Allen C, et al. MR to ultrasound image registration for guiding prostate biopsy and interventions. Med Image Comput Comput Assist Interv. 2009;12(Pt 1):787–94.

    PubMed  Google Scholar 

  14. Presti Jr JC, O’Dowd GJ, Miller MC, Mattu R, Veltri RW. Extended peripheral zone biopsy schemes increase cancer detection rates and minimize variance in prostate specific antigen and age related cancer rates: results of a community multi-practice study. J Urol. 2003;169(1):125–9.

    Article  PubMed  Google Scholar 

  15. Scattoni V, Zlotta A, Montironi R, Schulman C, Rigatti P, Montorsi F. Extended and saturation prostatic biopsy in the diagnosis and characterisation of prostate cancer: a critical analysis of the literature. Eur Urol. 2007;52(5):1309–22.

    Article  PubMed  Google Scholar 

  16. Suardi N, Capitanio U, Chun FK, et al. Currently used criteria for active surveillance in men with low-risk prostate cancer: an analysis of pathologic features. Cancer. 2008;113(8):2068–72.

    Article  PubMed  Google Scholar 

  17. Conti SL, Dall’era M, Fradet V, Cowan JE, Simko J, Carroll PR. Pathological outcomes of candidates for active surveillance of prostate cancer. J Urol. 2009;181(4):1628–33. (discussion 1633–1624).

    Article  PubMed  Google Scholar 

  18. Duffield AS, Lee TK, Miyamoto H, Carter HB, Epstein JI. Radical prostatectomy findings in patients in whom active surveillance of prostate cancer fails. J Urol. 2009;182(5):2274–8.

    Article  PubMed  Google Scholar 

  19. Smaldone MC, Cowan JE, Carroll PR, Davies BJ. Eligibility for active surveillance and pathological outcomes for men undergoing radical prostatectomy in a large, community based cohort. J Urol. 2010;183(1):138–43.

    Article  PubMed  Google Scholar 

  20. Latini DM, Hart SL, Knight SJ, et al. The relationship between anxiety and time to treatment for patients with prostate cancer on surveillance. J Urol. 2007;178(3 Pt 1):826–31 (discussion 831–822).

    Article  PubMed  Google Scholar 

  21. Taira AV, Merrick GS, Galbreath RW, et al. Performance of transperineal template-guided mapping biopsy in detecting prostate cancer in the initial and repeat biopsy setting. Prostate Cancer Prostatic Dis. 2010;13(1):71–7.

    Article  PubMed  CAS  Google Scholar 

  22. Falzarano SM, Zhou M, Hernandez AV, Moussa AS, Jones JS, Magi-Galluzzi C. Can saturation biopsy predict prostate cancer localization in radical prostatectomy specimens: a correlative study and implications for focal therapy. Urology. 2010;76(3):682–7.

    Article  PubMed  Google Scholar 

  23. Sooriakumaran P, Grover S, Tewari A. The success of focal therapy hinges on the success of imaging platforms. BJU Int. 2011;107(9):1344–6.

    Article  PubMed  Google Scholar 

  24. Sciarra A, Barentsz J, Bjartell A, et al. Advances in magnetic resonance imaging: how they are changing the management of prostate cancer. Eur Urol. 2011;59(6):962–77.

    Article  PubMed  Google Scholar 

  25. Rosenkrantz AB, Scionti SM, Mendrinos S, Taneja SS. Role of MRI in minimally invasive focal ablative therapy for prostate cancer. AJR Am J Roentgenol. 2011;197(1):W90–96.

    Article  PubMed  Google Scholar 

  26. Ahmed HU, Freeman A, Kirkham A, et al. Focal therapy for localized prostate cancer: a phase I/II trial. J Urol. 2011;185(4):1246–54.

    Article  PubMed  CAS  Google Scholar 

  27. Moman MR, van den Berg CA, Boeken Kruger AE, et al. Focal salvage guided by T2-weighted and dynamic contrast-enhanced magnetic resonance imaging for prostate cancer recurrences. Int J Rad Oncol Biol Phys. 2010;76(3):741–6.

    Article  Google Scholar 

  28. Lindner U, Lawrentschuk N, Trachtenberg J. Image guidance for focal therapy of prostate cancer. World J Urol. 2010;28(6):727–34.

    Article  PubMed  CAS  Google Scholar 

  29. Engelbrecht MR, Puech P, Colin P, Akin O, Lemaitre L, Villers A. Multimodality magnetic resonance imaging of prostate cancer. J Endourol Endourol Soc. 2010;24(5):677–84.

    Article  Google Scholar 

  30. Villers A, Lemaitre L, Haffner J, Puech P. Current status of MRI for the diagnosis, staging and prognosis of prostate cancer: implications for focal therapy and active surveillance. Curr Opin Urol. 2009;19(3):274–82.

    Article  PubMed  Google Scholar 

  31. Turkbey B, Pinto PA, Choyke PL. Imaging techniques for prostate cancer: implications for focal therapy. Nature reviews. Urology. 2009;6(4):191–203.

    PubMed  Google Scholar 

  32. Carroll PR, Coakley FV, Kurhanewicz J. Magnetic resonance imaging and spectroscopy of prostate cancer. Rev Urol. 2006;8 Suppl 1:S4–S10.

    PubMed  Google Scholar 

  33. Casciani E, Gualdi GF. Prostate cancer: value of magnetic resonance spectroscopy 3D chemical shift imaging. Abdom Imaging. 2006;31(4):490–9.

    Article  PubMed  Google Scholar 

  34. Coakley FV, Chen I, Qayyum A, et al. Validity of prostate-specific antigen as a tumour marker in men with prostate cancer managed by watchful-waiting: correlation with findings at serial endorectal magnetic resonance imaging and spectroscopic imaging. BJU Int. 2007;99(1):41–5.

    Article  PubMed  CAS  Google Scholar 

  35. Costouros NG, Coakley FV, Westphalen AC, et al. Diagnosis of prostate cancer in patients with an elevated prostate-specific antigen level: role of endorectal MRI and MR spectroscopic imaging. AJR Am J Roentgenol. 2007;188(3):812–6.

    Article  PubMed  Google Scholar 

  36. Futterer JJ, Engelbrecht MR, Jager GJ, et al. Prostate cancer: comparison of local staging accuracy of pelvic phased-array coil alone versus integrated endorectal-pelvic phased-array coils. Local staging accuracy of prostate cancer using endorectal coil MR imaging. Eur Radiol. 2007;17(4):1055–65.

    Article  PubMed  Google Scholar 

  37. Girouin N, Mege-Lechevallier F, Tonina Senes A, et al. Prostate dynamic contrast-enhanced MRI with simple visual diagnostic criteria: is it reasonable? Eur Radiol. 2007;17((6):1498–509.

    Article  Google Scholar 

  38. Hom JJ, Coakley FV, Simko JP, et al. High-grade prostatic intraepithelial neoplasia in patients with prostate cancer: MR and MR spectroscopic imaging features–initial experience. Radiology. 2007;242(2):483–9.

    Article  PubMed  Google Scholar 

  39. Kwock L, Smith JK, Castillo M, et al. Clinical role of proton magnetic resonance spectroscopy in oncology: brain, breast, and prostate cancer. Lancet Oncol. 2006;7(10):859–68.

    Article  PubMed  Google Scholar 

  40. Manenti G, Squillaci E, Carlani M, Mancino S, Di Roma M, Simonetti G. Magnetic resonance imaging of the prostate with spectroscopic imaging using a surface coil. Initial clinical experience. Radiol Med (Torino). 2006;111(1):22–32.

    Article  CAS  Google Scholar 

  41. Mueller-Lisse UG, Scherr MK. Proton MR spectroscopy of the prostate. Eur J Radiol. 2007;63(3):351–60.

    Article  PubMed  Google Scholar 

  42. Pels P, Ozturk-Isik E, Swanson MG, et al. Quantification of prostate MRSI data by model-based time domain fitting and frequency domain analysis. NMR Biomed. 2006;19(2):188–97.

    Article  PubMed  CAS  Google Scholar 

  43. Shukla-Dave A, Hricak H, Kattan MW, et al. The utility of magnetic resonance imaging and spectroscopy for predicting insignificant prostate cancer: an initial analysis. BJU Int. 2007;99(4):786–93.

    Article  PubMed  CAS  Google Scholar 

  44. Taouli B. MR spectroscopic imaging for evaluation of prostate cancer. J Radiol. 2006;87(2 Pt 2):222–7.

    Article  PubMed  CAS  Google Scholar 

  45. Testa C, Schiavina R, Lodi R, et al. Prostate cancer: sextant localization with MR imaging, MR spectroscopy, and 11C-choline PET/CT. Radiology. 2007;244(3):797–806.

    Article  PubMed  Google Scholar 

  46. van Lin EN, Futterer JJ, Heijmink SW, et al. IMRT boost dose planning on dominant intraprostatic lesions: gold marker-based three-dimensional fusion of CT with dynamic contrast-enhanced and 1 H-spectroscopic MRI. Int J Radiat Oncol Biol Phys. 2006;65(1):291–303.

    Article  PubMed  Google Scholar 

  47. Wang L, Hricak H, Kattan MW, et al. Prediction of seminal vesicle invasion in prostate cancer: incremental value of adding endorectal MR imaging to the Kattan nomogram. Radiology. 2007;242(1):182–8.

    Article  PubMed  Google Scholar 

  48. Wang L, Zhang J, Schwartz LH, et al. Incremental value of multiplanar cross-referencing for prostate cancer staging with endorectal MRI. AJR Am J Roentgenol. 2007;188(1):99–104.

    Article  PubMed  Google Scholar 

  49. Wang L, Mullerad M, Chen HN, et al. Prostate cancer: incremental value of endorectal MR imaging findings for prediction of extracapsular extension. Radiology. 2004;232(1):133–9.

    Article  PubMed  Google Scholar 

  50. Wang L, Hricak H, Kattan MW, Chen HN, Scardino PT, Kuroiwa K. Prediction of organ-confined prostate cancer: incremental value of MR imaging and MR spectroscopic imaging to staging nomograms. Radiology. 2006;238(2):597–603.

    Article  PubMed  Google Scholar 

  51. Miao H, Fukatsu H, Ishigaki T. Prostate cancer detection with 3-T MRI: comparison of diffusion-weighted and T2-weighted imaging. Eur J Radiol. 2007;61(2):297–302.

    Article  PubMed  Google Scholar 

  52. Pickles MD, Gibbs P, Sreenivas M, Turnbull LW. Diffusion-weighted imaging of normal and malignant prostate tissue at 3.0 T. J Magn Reson Imag. 2006;23(2):130–4.

    Article  Google Scholar 

  53. Mulkern RV, Barnes AS, Haker SJ, et al. Biexponential characterization of prostate tissue water diffusion decay curves over an extended b-factor range. Magn Reson Imaging. 2006;24(5):563–8.

    Article  PubMed  Google Scholar 

  54. Manenti G, Squillaci E, Di Roma M, Carlani M, Mancino S, Simonetti G. In vivo measurement of the apparent diffusion coefficient in normal and malignant prostatic tissue using thin-slice echo-planar imaging. Radiol Med (Torino). 2006;111(8):1124–33.

    Article  CAS  Google Scholar 

  55. Hacklander T, Scharwachter C, Golz R, Mertens H. Value of diffusion-weighted imaging for diagnosing vertebral metastases due to prostate cancer in comparison to other primary tumors. Rofo. 2006;178(4):416–24.

    Article  PubMed  CAS  Google Scholar 

  56. Gibbs P, Pickles MD, Turnbull LW. Diffusion imaging of the prostate at 3.0 tesla. Invest Radiol. 2006;41(2):185–8.

    Article  PubMed  Google Scholar 

  57. Villers A, Puech P, Mouton D, Leroy X, Ballereau C, Lemaitre L. Dynamic contrast enhanced, pelvic phased array magnetic resonance imaging of localized prostate cancer for predicting tumor volume: correlation with radical prostatectomy findings. J Urol. 2006;176(6 Pt 1):2432–7.

    Article  PubMed  Google Scholar 

  58. Dafni H, Kim SJ, Panda K, Bankson JA, Ronen SM. Signal loss in DCE-MRI associated with tumor progression in prostate cancer bone metastasis. Paper presented at: Proceedings of the 14th ISMRM. Seattle; 2006.

    Google Scholar 

  59. Futterer JJ, Heijmink SW, Scheenen TW, et al. Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology. 2006;241(2):449–58.

    Article  PubMed  Google Scholar 

  60. Kirkham AP, Emberton M, Allen C. How good is MRI at detecting and characterising cancer within the prostate? Eur Urol. 2006;50(6):1163–74 (discussion 1175).

    Article  PubMed  Google Scholar 

  61. Prando A. Dynamic contrast enhanced, pelvic phased array magnetic resonance imaging of localized prostate cancer for predicting tumor volume: correlation with radical prostatectomy findings. Int Braz J Urol. 2006;32(6):727–8.

    Article  Google Scholar 

  62. Kim CK, Park BK, Kim B. Localization of prostate cancer using 3 T MRI: comparison of T2-weighted and dynamic contrast-enhanced imaging. J Comput Assist Tomogr. 2006;30(1):7–11.

    Article  PubMed  Google Scholar 

  63. Chan I, Wells 3rd W, Mulkern RV, et al. Detection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-weighted magnetic resonance imaging; a multichannel statistical classifier. Med Phys. 2003;30(9):2390–8.

    Article  PubMed  Google Scholar 

  64. Gibbs P, Tozer DJ, Liney GP, Turnbull LW. Comparison of quantitative T2 mapping and diffusion-weighted imaging in the normal and pathologic prostate. Magn Reson Med. 2001;46(6):1054–8.

    Article  PubMed  CAS  Google Scholar 

  65. Jacobs MA, Ouwerkerk R, Petrowski K, Macura KJ. Diffusion-weighted imaging with apparent diffusion coefficient mapping and spectroscopy in prostate cancer. Top Magn Reson Imaging. 2008;19(6):261–72.

    Article  PubMed  Google Scholar 

  66. Langer DL, van der Kwast TH, Evans AJ, Trachtenberg J, Wilson BC, Haider MA. Prostate cancer detection with multi-parametric MRI: logistic regression analysis of quantitative T2, diffusion-weighted imaging, and dynamic contrast-enhanced MRI. J Magn Reson Imaging. 2009;30(2):327–34.

    Article  PubMed  Google Scholar 

  67. Liney GP, Knowles AJ, Manton DJ, Turnbull LW, Blackband SJ, Horsman A. Comparison of conventional single echo and multi-echo sequences with a fast spin-echo sequence for quantitative T2 mapping: application to the prostate. J Magn Reson Imaging. 1996;6(4):603–7.

    Article  PubMed  CAS  Google Scholar 

  68. Kumar V, Jagannathan NR, Kumar R, et al. Evaluation of the role of magnetization transfer imaging in prostate: a preliminary study. Magn Reson Imaging. 2008;26(5):644–9.

    Article  PubMed  Google Scholar 

  69. Cunningham C, Vigneron D, Chen A, et al. Design of Flyback Echo-Planar Readout Gradients for MR Spectroscopic Imaging. Paper presented at: 13th International Society for Magnetic Resonance in Medicine; 2005 7–13; Miami Beach, Florida.

    Google Scholar 

  70. Scheenen TW, Gambarota G, Weiland E, et al. Optimal timing for in vivo 1 H-MR spectroscopic imaging of the human prostate at 3 T. Magn Reson Med. 2005;53(6):1268–74.

    Article  PubMed  CAS  Google Scholar 

  71. Chen AP, Cunningham CH, Ozturk-Isik E, et al. High-speed 3 T MR spectroscopic imaging of prostate with flyback echo-planar encoding. J Magn Reson Imaging. 2007;25(6):1288–92.

    Article  PubMed  Google Scholar 

  72. Phillips ME, Kressel HY, Spritzer CE, et al. Prostatic disorders: MR imaging at 1.5 T. Radiology. 1987;164(2):386–92.

    PubMed  CAS  Google Scholar 

  73. Hricak H, Dooms GC, McNeal JE, et al. MR imaging of the prostate gland. Normal anatomy. AJR. 1987;148:51–5.

    Article  PubMed  CAS  Google Scholar 

  74. Hricak H, Dooms GC, Jeffrey RB, et al. Prostatic carcinoma: staging by clinical assessment, CT, and MR imaging. Radiology. 1987;162(2):331–6.

    PubMed  CAS  Google Scholar 

  75. Carrol CL, Sommer FG, McNeal JE, Stamey TA. The abnormal prostate: MR imaging at 1.5 T with histopathologic correlation. Radiology. 1987;163(2):521–5.

    PubMed  CAS  Google Scholar 

  76. Bezzi M, Kressel HY, Allen KS, et al. Prostatic carcinoma: staging with MR imaging at 1.5 T. Radiology. 1988;169(2):339–46.

    PubMed  CAS  Google Scholar 

  77. Hom JJ, Coakley FV, Simko JP, Qayyum A, Carroll P, Kurhanewicz J. Endorectal MR and MR spectroscopic imaging of prostate cancer: Histopathological determinants of tumor visibility. Am J Roentgenol. 2005;184(4):62–2.

    Google Scholar 

  78. Hricak H, Kurhanewicz J, Proctor E, Bruce N, Vigneron DB. Phased-array endorectal coil MRI of prostate cancer. GE Clin Symp. 1994;7(4):1–12.

    Google Scholar 

  79. Chen M, Hricak H, Kalbhen CL, et al. Hormonal ablation of prostatic cancer: effects on prostate morphology, tumor detection, and staging by endorectal coil MR imaging. AJR Am J Roentgenol. 1996;166(5):1157–63.

    Article  PubMed  CAS  Google Scholar 

  80. Coakley FV, Hricak H. Radiologic anatomy of the prostate gland: a clinical approach. Radiol Clin North Am. 2000;38(1):15–30.

    Article  PubMed  CAS  Google Scholar 

  81. Wang L, Akin O, Mazaheri Y, et al. Are histopathological features of prostate cancer lesions associated with identification of extracapsular extension on magnetic resonance imaging? BJU Int. 2010;106(9):1303–8.

    Article  PubMed  Google Scholar 

  82. Nogueira L, Wang L, Fine SW, et al. Focal treatment or observation of prostate cancer: pretreatment accuracy of transrectal ultrasound biopsy and T2-weighted MRI. Urology. 2010;75(2):472–7.

    Article  PubMed  Google Scholar 

  83. Westphalen AC, McKenna DA, Kurhanewicz J, Coakley FV. Role of magnetic resonance imaging and magnetic resonance spectroscopic imaging before and after radiotherapy for prostate cancer. J Endourol. 2008;22(4):789–94.

    Article  PubMed  Google Scholar 

  84. McKenna DA, Coakley FV, Westphalen AC, et al. Prostate cancer: role of pretreatment MR in predicting outcome after external-beam radiation therapy–initial experience. Radiology. 2008;247(1):141–6.

    Article  PubMed  Google Scholar 

  85. Sala E, Eberhardt SC, Akin O, et al. Endorectal MR imaging before salvage prostatectomy: tumor localization and staging. Radiology. 2006;238(1):176–83.

    Article  PubMed  Google Scholar 

  86. Hricak H, Wang L, Wei DC, et al. The role of preoperative endorectal magnetic resonance imaging in the decision regarding whether to preserve or resect neurovascular bundles during radical retropubic prostatectomy. Cancer. 2004;100(12):2655–63.

    Article  PubMed  Google Scholar 

  87. Yu KK, Scheidler J, Hricak H, et al. Prostate cancer: prediction of extracapsular extension with endorectal MR imaging and three-dimensional proton MR spectroscopic imaging. Radiology. 1999;213(2):481–8.

    PubMed  CAS  Google Scholar 

  88. Hricak H, White S, Vigneron D, et al. Carcinoma of the prostate gland: MR imaging with pelvic phased-array coils versus integrated endorectal–pelvic phased-array coils. Radiology. 1994;193(3):703–9.

    PubMed  CAS  Google Scholar 

  89. Rosen MA, Goldstone L, Lapin S, Wheeler T, Scardino PT. Frequency and location of extracapsular extension and positive surgical margins in radical prostatectomy specimens. J Urol. 1992;148(2 Pt 1):331–7.

    PubMed  CAS  Google Scholar 

  90. Kurhanewicz J, Swanson MG, Nelson SJ, Vigneron DB. Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J Magn Reson Imaging. 2002;16(4):451–63.

    Article  PubMed  Google Scholar 

  91. Kurhanewicz J, Vigneron DB, Nelson SJ. Three-dimensional magnetic resonance spectroscopic imaging of brain and prostate cancer. Neoplasia. 2000;2(1–2):166–89.

    Article  PubMed  CAS  Google Scholar 

  92. Tran TK, Vigneron DB, Sailasuta N, et al. Very selective suppression pulses for clinical MRSI ­studies of brain and prostate cancer. Magn Reson Med. 2000;43(1):23–33.

    Google Scholar 

  93. Schricker AA, Pauly JM, Kurhanewicz J, Swanson MG, Vigneron DB. Dualband spectral-spatial RF pulses for prostate MR spectroscopic imaging. Magn Reson Med. 2001;46(6):1079–87.

    Article  PubMed  CAS  Google Scholar 

  94. Cunningham CH, Vigneron DB, Chen AP, et al. Design of symmetric-sweep spectral-spatial RF pulses for spectral editing. Magn Reson Med. 2004;52(1):147–53.

    Article  PubMed  Google Scholar 

  95. Kurhanewicz J, Vigneron DB, Hricak H, Narayan P, Carroll P, Nelson SJ. Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24–0.7-cm3) spatial resolution. Radiology. 1996;198(3):795–805.

    PubMed  CAS  Google Scholar 

  96. Costello LC, Franklin RB. Concepts of citrate production and secretion by prostate: 2.Hormonal relationships in normal and neoplastic prostate. Prostate. 1991;19(3):181–205.

    Article  PubMed  CAS  Google Scholar 

  97. Costello LC, Franklin RB. Bioenergetic theory of prostate malignancy. Prostate. 1994;25(3):162–6.

    Article  PubMed  CAS  Google Scholar 

  98. Costello LC, Franklin RB. Novel role of zinc in the regulation of prostate citrate metabolism and its implications in prostate cancer. Prostate. 1998;35(4):285–96.

    Article  PubMed  CAS  Google Scholar 

  99. Franklin RB, Ma J, Zou J, et al. Human ZIP1 is a major zinc uptake transporter for the accumulation of zinc in prostate cells. J Inorg Biochem. 2003;96(2–3):435–42.

    Article  PubMed  CAS  Google Scholar 

  100. Liang JY, Liu YY, Zou J, Franklin RB, Costello LC, Feng P. Inhibitory effect of zinc on human prostatic carcinoma cell growth. Prostate. 1999;40(3):200–7.

    Article  PubMed  CAS  Google Scholar 

  101. Zakian KL, Sircar K, Hricak H, et al. Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology. 2005;234(3):804–14.

    Article  PubMed  Google Scholar 

  102. Garcia-Martin ML, Adrados M, Ortega MP, et al. Quantitative (1) H MR spectroscopic imaging of the prostate gland using LCModel and a dedicated basis-set: correlation with histologic findings. Magn Reson Med. 2011;65(2):329–39.

    Article  PubMed  CAS  Google Scholar 

  103. Casciani E, Polettini E, Bertini L, et al. Prostate cancer: evaluation with endorectal MR imaging and three-dimensional proton MR spectroscopic imaging. Radiol Med. 2004;108(5–6):530–41.

    PubMed  Google Scholar 

  104. Kumar R, Kumar M, Jagannathan NR, Gupta NP, Hemal AK. Proton magnetic resonance spectroscopy with a body coil in the diagnosis of carcinoma prostate. Urol Res. 2004;32(1):36–40.

    Article  PubMed  Google Scholar 

  105. Keshari KR, Tsachres H, Iman R, et al. Correlation of phospholipid metabolites with prostate cancer pathologic grade, proliferative status and surgical stage - impact of tissue environment. NMR Biomed. 2011;24(6):691–9.

    Article  PubMed  CAS  Google Scholar 

  106. Stenman K, Stattin P, Stenlund H, Riklund K, Grobner G, Bergh A. H HRMAS NMR Derived Bio-markers Related to Tumor Grade, Tumor Cell Fraction, and Cell Proliferation in Prostate Tissue Samples. Biomark Insights. 2011;6:39–47.

    Article  PubMed  CAS  Google Scholar 

  107. Keshari K, Swanson M, Simko J, Vigneron DB, Nelson S, Kurhanewicz J. Quantification of choline and ethanolamine containing phospholipids in healthy and malignant prostate tissue. Paper presented at: Proceedings of the International Society of Magnetic Resonance in Medicine. Berlin, Germany; 2007.

    Google Scholar 

  108. Saverio B, Pierpaola D, Serenella A, et al. Tumor progression is accompanied by significant changes in the levels of expression of polyamine metabolism regulatory genes and clusterin (sulfated glycoprotein 2) in human prostate cancer specimens. Cancer Res. 2000;60(1):28–34.

    PubMed  CAS  Google Scholar 

  109. Swanson MG, Vigneron DB, Tran TK, Sailasuta N, Hurd RE, Kurhanewicz J. Single-voxel oversampled J-resolved spectroscopy of in vivo human prostate tissue. Magn Reson Med. 2001;45(6):973–80.

    Article  PubMed  CAS  Google Scholar 

  110. Umbehr M, Bachmann LM, Held U, et al. Combined magnetic resonance imaging and magnetic resonance spectroscopy imaging in the diagnosis of prostate cancer: a systematic review and meta-analysis. Eur Urol. 2009;55(3):575–90.

    Article  PubMed  Google Scholar 

  111. Westphalen AC, Coakley FV, Qayyum A, et al. Peripheral zone prostate cancer: accuracy of different interpretative approaches with MR and MR spectroscopic imaging. Radiology. 2008;246(1):177–84.

    Article  PubMed  Google Scholar 

  112. Mueller-Lisse UG, Swanson MG, Vigneron DB, et al. Time-dependent effects of hormone-deprivation therapy on prostate metabolism as detected by combined magnetic resonance imaging and 3D magnetic resonance spectroscopic imaging. Magn Reson Med. 2001;46(1):49–57.

    Article  PubMed  CAS  Google Scholar 

  113. Mueller-Lisse UG, Swanson MG, Vigneron DB, Kurhanewicz J. Magnetic resonance spectroscopy in patients with locally confined prostate cancer: association of prostatic citrate and metabolic atrophy with time on hormone deprivation therapy, PSA level, and biopsy Gleason score. Eur Radiol. 2007;17(2):371–8.

    Article  PubMed  Google Scholar 

  114. Mueller-Lisse UG, Vigneron DB, Hricak H, et al. Localized prostate cancer: effect of hormone deprivation therapy measured by using combined three-dimensional 1 H MR spectroscopy and MR imaging: clinicopathologic case-controlled study. Radiology. 2001;221(2):380–90.

    Article  PubMed  CAS  Google Scholar 

  115. Ryan CJ, Small EJ. Role of secondary hormonal therapy in the management of recurrent prostate cancer. Urology. 2003;62 Suppl 1:87–94.

    Article  PubMed  Google Scholar 

  116. Montironi R, Pomante R, Diamanti L, Magi-Galluzzi C. Apoptosis in prostatic adenocarcinoma following complete androgen ablation. Urol Int. 1998;60 Suppl 1:25–9 (discussion 30).

    Article  PubMed  Google Scholar 

  117. Chung HT, Noworolski SM, Kurhanewicz J, Weinberg V, Roach III M. A pilot study of endorectal magnetic resonance imaging and magnetic resonance spectroscopic imaging changes with dutasteride in patients with low risk prostate cancer. BJU Int. 2011;108(8 Pt 2):E164–70.

    Article  PubMed  Google Scholar 

  118. Roach III M, Kurhanewicz J, Carroll P. Spectroscopy in prostate cancer: hope or hype? Oncology (Williston Park). 2001;15(11):1399–410. (discussion 1415–1396, 1418).

    Google Scholar 

  119. Pickett B, Ten Haken RK, Kurhanewicz J, et al. Time to metabolic atrophy after permanent prostate seed implantation based on magnetic resonance spectroscopic imaging. Int J Radiat Oncol Biol Phys. 2004;59(3):665–73.

    Article  PubMed  Google Scholar 

  120. Kalbhen CL, Hricak H, Chen M, et al. Prostate carcinoma: MR imaging findings after cryosurgery. Radiology. 1996;198:807–11.

    PubMed  CAS  Google Scholar 

  121. Parivar F, Hricak H, Shinohara K, et al. Detection of locally recurrent prostate cancer after cryosurgery: evaluation by transrectal ultrasound, magnetic resonance imaging, and three-dimensional proton magnetic resonance spectroscopy. Urology. 1996;48(4):594–9.

    Article  PubMed  CAS  Google Scholar 

  122. Parivar F, Kurhanewicz J. Detection of recurrent prostate cancer after Cryosurgery. Curr Opin Urology. 1998;8:83–6.

    Article  CAS  Google Scholar 

  123. Pickett B, Kurhanewicz J, Coakley F, Shinohara K, Fein B, Roach 3rd M. Use of MRI and spectroscopy in evaluation of external beam radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2004;60(4):1047–55.

    Article  PubMed  Google Scholar 

  124. Coakley FV, Teh HS, Qayyum A, et al. Endorectal MR imaging and MR spectroscopic imaging for locally recurrent prostate cancer after external beam radiation therapy: preliminary experience. Radiology. 2004;233(2):441–8.

    Article  PubMed  Google Scholar 

  125. Westphalen AC, Coakley FV, Roach III M, McCulloch CE, Kurhanewicz J. Locally recurrent prostate cancer after external beam radiation therapy: diagnostic performance of 1.5-T endorectal MR imaging and MR spectroscopic imaging for detection. Radiology. 2010;256(2):485–92.

    Article  PubMed  Google Scholar 

  126. Rouviere O, Vitry T, Lyonnet D. Imaging of prostate cancer local recurrences: why and how? Eur Radiol. 2010;20(5):1254–66.

    Article  PubMed  Google Scholar 

  127. Jabbari S, Hsu IC, Kawakami J, et al. High-dose-rate brachytherapy for localized prostate adenocarcinoma post abdominoperineal resection of the rectum and pelvic irradiation: Technique and experience. Brachytherapy. 2009;8(4):339–44.

    Article  PubMed  Google Scholar 

  128. Blana A, Brown SC, Chaussy C, et al. High-intensity focused ultrasound for prostate cancer: comparative definitions of biochemical failure. BJU Int. 2009;104(8):1058–62.

    Article  PubMed  CAS  Google Scholar 

  129. Stephenson AJ, Scardino PT, Kattan MW, et al. Predicting the outcome of salvage radiation therapy for recurrent prostate cancer after radical prostatectomy. J Clin Oncol. 2007;25(15):2035–41.

    Article  PubMed  Google Scholar 

  130. Lee B, Shinohara K, Weinberg V, et al. Feasibility of high-dose-rate brachytherapy salvage for local prostate cancer recurrence after radiotherapy: the University of California-San Francisco experience. Int J Radiat Oncol Biol Phys. 2007;67(4):1106–12.

    Article  PubMed  Google Scholar 

  131. Bong GW, Keane TE. Salvage options for biochemical recurrence after primary therapy for prostate cancer. Can J Urol. 2007;14 Suppl 1:2–9.

    PubMed  Google Scholar 

  132. Scheidler J, Hricak H, Vigneron DB, et al. Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging–clinicopathologic study. Radiology. 1999;213(2):473–80.

    PubMed  CAS  Google Scholar 

  133. Coakley FV, Kurhanewicz J, Lu Y, et al. Prostate cancer tumor volume: measurement with endorectal MR and MR spectroscopic imaging. Radiology. 2002;223(1):91–7.

    Article  PubMed  Google Scholar 

  134. Kurhanewicz J, Vigneron DB. Advances in MR spectroscopy of the prostate. Magn Reson Imaging Clin North Am. 2008;16(4):697–710.

    Article  Google Scholar 

  135. Jagannathan NR, Kumar V, Kumar R, Thulkar S. Role of magnetic resonance methods in the evaluation of prostate cancer: an Indian perspective. MAGMA. 2008;21(6):409.

    Article  Google Scholar 

  136. Nasu K, Kuroki Y, Kuroki S, Murakami K, Nawano S, Moriyama N. Diffusion-weighted single shot echo planar imaging of colorectal cancer using a sensitivity-encoding technique. Japn J Clin Oncol. 2004;34(10):620–6.

    Article  Google Scholar 

  137. Kozlowski P, Chang SD, Goldenberg SL. Diffusion-weighted MRI in prostate cancer – comparison between single-shot fast spin echo and echo planar imaging sequences. Magn Reson Imaging. 2008;26(1):72–6.

    Article  PubMed  Google Scholar 

  138. Yoshizako T, Wada A, Uchida K, et al. Apparent diffusion coefficient of line scan diffusion image in normal prostate and prostate cancer–comparison with single-shot echo planner image. Magn Reson Imaging. 2011;29(1):106–10.

    Article  PubMed  Google Scholar 

  139. Horsfield MA, Jones DK. Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases - a review. NMR Biomed. 2002;15(7–8):570–7.

    Article  PubMed  Google Scholar 

  140. Kubicki M, Westin CF, Maier SE, et al. Diffusion tensor imaging and its application to neuropsychiatric disorders. Harv Rev Psychiatry. 2002;10(6):324–36.

    Article  PubMed  Google Scholar 

  141. Moseley M. Diffusion tensor imaging and aging - a review. NMR Biomed. 2002;15(7–8):553–60.

    Article  PubMed  Google Scholar 

  142. Sotak CH. The role of diffusion tensor imaging in the evaluation of ischemic brain injury - a review. NMR Biomed. 2002;15(7–8):561–9.

    Article  PubMed  Google Scholar 

  143. Tan CH, Wang J, Kundra V. Diffusion weighted imaging in prostate cancer. Eur Radiol. 2011;21(3):593–603.

    Article  PubMed  Google Scholar 

  144. Zelhof B, Lowry M, Rodrigues G, Kraus S, Turnbull L. Description of magnetic resonance imaging-derived enhancement variables in pathologically confirmed prostate cancer and normal peripheral zone regions. BJU Int. 2009;104(5):621–7.

    Article  PubMed  Google Scholar 

  145. Jacobs MA, Ouwerkerk R, Petrowski K, Macura KJ. Diffusion-weighted imaging with apparent diffusion coefficient mapping and spectroscopy in prostate cancer. Top Magn Reson Imag: TMRI. 2008;19(6):261–72.

    Article  Google Scholar 

  146. Yoshimitsu K, Kiyoshima K, Irie H, et al. Usefulness of apparent diffusion coefficient map in diagnosing prostate carcinoma: correlation with stepwise histopathology. J Magn Reson Imaging. 2008;27(1):132–9.

    Article  PubMed  Google Scholar 

  147. de Souza NM, Riches SF, Vanas NJ, et al. Diffusion-weighted magnetic resonance imaging: a potential non-invasive marker of tumour aggressiveness in localized prostate cancer. Clin Radiol. 2008;63(7):774–82.

    Article  Google Scholar 

  148. Turkbey B, Shah VP, Pang Y, et al. Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images? Radiology. 2011;258(2):488–95.

    Article  PubMed  Google Scholar 

  149. Verma S, Rajesh A, Morales H, et al. Assessment of aggressiveness of prostate cancer: correlation of apparent diffusion coefficient with histologic grade after radical prostatectomy. AJR Am J Roentgenol. 2011;196(2):374–81.

    Article  PubMed  Google Scholar 

  150. Kim CK, Park BK, Lee HM, Kwon GY. Value of diffusion-weighted imaging for the prediction of prostate cancer location at 3 T using a phased-array coil: preliminary results. Invest Radiol. 2007;42(12):842–7.

    Article  PubMed  Google Scholar 

  151. Morgan VA, Riches SF, Thomas K, et al. Diffusion-weighted magnetic resonance imaging for monitoring prostate cancer progression in patients managed by active surveillance. Br J Radiol. 2011;84(997):31–7.

    Article  PubMed  CAS  Google Scholar 

  152. Kim CK, Park BK, Lee HM. Prediction of locally recurrent prostate cancer after radiation therapy: incremental value of 3 T diffusion-weighted MRI. J Magn Reson Imaging. 2009;29(2):391–7.

    Article  PubMed  Google Scholar 

  153. Nemoto K, Tateishi T, Ishidate T. Changes in diffusion-weighted images for visualizing prostate cancer during antiandrogen therapy: preliminary results. Urol Int. 2010;85(4):421–6.

    Article  PubMed  CAS  Google Scholar 

  154. Kim CK, Park BK, Lee HM, Kim SS, Kim E. MRI techniques for prediction of local tumor progression after high-intensity focused ultrasonic ablation of prostate cancer. AJR Am J Roentgenol. 2008;190(5):1180–6.

    Article  PubMed  Google Scholar 

  155. Kurhanewicz J, Vigneron D, Carroll P, Coakley F. Multiparametric magnetic resonance imaging in prostate cancer: present and future. Curr Opin Urol. 2008;18(1):71–7.

    Article  PubMed  Google Scholar 

  156. Alonzi R, Padhani AR, Allen C. Dynamic contrast enhanced MRI in prostate cancer. Eur J Radiol. 2007;63(3):335–50.

    Article  PubMed  Google Scholar 

  157. Tofts PS, Wicks DA, Barker GJ. The MRI measurement of NMR and physiological parameters in tissue to study disease process. Prog Clin Biol Res. 1991;363:313–25.

    PubMed  CAS  Google Scholar 

  158. Tofts PS. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging. 1997;7(1):91–101.

    Article  PubMed  CAS  Google Scholar 

  159. Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10(3):223–32.

    Article  PubMed  CAS  Google Scholar 

  160. Noworolski SM, Vigneron DB, Chen AP, Kurhanewicz J. Dynamic contrast-enhanced MRI and MR diffusion imaging to distinguish between glandular and stromal prostatic tissues. Magn Reson Imaging. 2008;26(8):1071–80.

    Article  PubMed  Google Scholar 

  161. Bonekamp D, Macura KJ. Dynamic contrast-enhanced magnetic resonance imaging in the evaluation of the prostate. Top Magn Reson Imaging. 2008;19(6):273–84.

    Article  PubMed  Google Scholar 

  162. Carlani M, Mancino S, Bonanno E, Finazzi Agro E, Simonetti G. Combined morphological, [1 H]-MR spectroscopic and contrast-enhanced imaging of human prostate cancer with a 3-Tesla scanner: preliminary experience. Radiol Med. 2008;113(5):670–88.

    Article  PubMed  CAS  Google Scholar 

  163. Cornud F, Beuvon F, Thevenin F, et al. Quantitative dynamic MRI and localisation of non-palpable prostate cancer. Prog Urol. 2009;19(6):401–13.

    Article  PubMed  CAS  Google Scholar 

  164. Haider MA, Chung P, Sweet J, et al. Dynamic contrast-enhanced magnetic resonance imaging for localization of recurrent prostate cancer after external beam radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70(2):425–30.

    Article  PubMed  Google Scholar 

  165. Hara N, Okuizumi M, Koike H, Kawaguchi M, Bilim V. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a useful modality for the precise detection and staging of early prostate cancer. Prostate. 2005;62(2):140–7.

    Article  PubMed  Google Scholar 

  166. Ito H, Kamoi K, Yokoyama K, Yamada K, Nishimura T. Visualization of prostate cancer using dynamic contrast-enhanced MRI: comparison with transrectal power Doppler ultrasound. Br J Radiol. 2003;76(909):617–24.

    Article  PubMed  CAS  Google Scholar 

  167. Jackson AS, Reinsberg SA, Sohaib SA, et al. Dynamic contrast-enhanced MRI for prostate cancer localization. Br J Radiol. 2009;82(974):148–56.

    Article  PubMed  CAS  Google Scholar 

  168. Jacobs MA, Barker PB, Argani P, Ouwerkerk R, Bhujwalla ZM, Bluemke DA. Combined dynamic contrast enhanced breast MR and proton spectroscopic imaging: a feasibility study. J Magn Reson Imaging. 2005;21(1):23–8.

    Article  PubMed  Google Scholar 

  169. Jordan BF, Runquist M, Raghunand N, et al. Dynamic contrast-enhanced and diffusion MRI show rapid and dramatic changes in tumor microenvironment in response to inhibition of HIF-1alpha using PX-478. Neoplasia. 2005;7(5):475–85.

    Article  PubMed  CAS  Google Scholar 

  170. Kiessling F, Huber PE, Grobholz R, et al. Dynamic Magnetic Resonance Tomography and Proton Magnetic Resonance Spectroscopy of Prostate Cancers in Rats Treated by Radiotherapy. Invest Radiol. 2004;39(1):34–44.

    Article  PubMed  Google Scholar 

  171. Kim CK, Park BK, Park W, Kim SS. Prostate MR imaging at 3 T using a phased-arrayed coil in predicting locally recurrent prostate cancer after radiation therapy: preliminary experience. Abdom Imag. 2010;35(2):246–52.

    Article  Google Scholar 

  172. Kim JK, Hong SS, Choi YJ, et al. Wash-in rate on the basis of dynamic contrast-enhanced MRI: usefulness for prostate cancer detection and localization. J Magn Reson Imaging. 2005;22(5):639–46.

    Article  PubMed  CAS  Google Scholar 

  173. Kozlowski P, Chang SD, Jones EC, Berean KW, Chen H, Goldenberg SL. Combined diffusion-weighted and dynamic contrast-enhanced MRI for prostate cancer diagnosis–correlation with biopsy and histopathology. J Magn Reson Imaging. 2006;24(1):108–13.

    Article  PubMed  Google Scholar 

  174. Lemaitre L, Puech P, Poncelet E, et al. Dynamic contrast-enhanced MRI of anterior prostate cancer: morphometric assessment and correlation with radical prostatectomy findings. Eur Radiol. 2009;19(2):470–80.

    Article  PubMed  Google Scholar 

  175. Lowry M, Zelhof B, Liney GP, Gibbs P, Pickles MD, Turnbull LW. Analysis of prostate DCE-MRI: comparison of fast exchange limit and fast exchange regimen pharmacokinetic models in the discrimination of malignant from normal tissue. Invest Radiol. 2009;44(9):577–84.

    Article  PubMed  CAS  Google Scholar 

  176. Noworolski SM, Henry RG, Vigneron DB, Kurhanewicz J. Dynamic contrast-enhanced MRI in normal and abnormal prostate tissues as defined by biopsy, MRI, and 3D MRSI. Magn Reson Med. 2005;53(2):249–55.

    Article  PubMed  CAS  Google Scholar 

  177. Padhani AR, Hayes C, Landau S, Leach MO. Reproducibility of quantitative dynamic MRI of normal human tissues. NMR Biomed. 2002;15(2):143–53.

    Article  PubMed  Google Scholar 

  178. Puech P, Potiron E, Lemaitre L, et al. Dynamic contrast-enhanced-magnetic resonance imaging evaluation of intraprostatic prostate cancer: correlation with radical prostatectomy specimens. Urology. 2009;74(5):1094–9.

    Article  PubMed  Google Scholar 

  179. Ren J, Huan Y, Wang H, et al. Dynamic contrast-enhanced MRI of benign prostatic hyperplasia and prostatic carcinoma: correlation with angiogenesis. Clin Radiol. 2008;63(2):153–9.

    Article  PubMed  CAS  Google Scholar 

  180. Schlemmer HP, Merkle J, Grobholz R, et al. Can pre-operative contrast-enhanced dynamic MR imaging for prostate cancer predict microvessel density in prostatectomy specimens? Eur Radiol. 2003;14(2):309–17.

    Article  PubMed  Google Scholar 

  181. Storaas T, Gjesdal KI, Svindland A, Viktil E, Geitung JT. Dynamic first pass 3D EPI of the prostate: accuracy in tumor location. Acta Radiol. 2004;45(5):584–90.

    Article  PubMed  CAS  Google Scholar 

  182. Yakar D, Hambrock T, Huisman H, et al. Feasibility of 3 T dynamic contrast-enhanced magnetic resonance-guided biopsy in localizing local recurrence of prostate cancer after external beam radiation therapy. Invest Radiol. 2010;45(3):121–5.

    Article  PubMed  Google Scholar 

  183. van Dorsten FA, van der Graaf M, Engelbrecht MR, et al. Combined quantitative dynamic contrast-enhanced MR imaging and (1)H MR spectroscopic imaging of human prostate cancer. J Magn Reson Imaging. 2004;20(2):279–87.

    Article  PubMed  Google Scholar 

  184. Jager GJ, Ruijter ET, van de Kaa CA, et al. Local staging of prostate cancer with endorectal MR imaging: correlation with histopathology. AJR. 1996;166(4):845–52.

    Article  PubMed  CAS  Google Scholar 

  185. Schlemmer HP, Merkle J, Grobholz R, et al. Can pre-operative contrast-enhanced dynamic MR imaging for prostate cancer predict microvessel density in prostatectomy specimens? Eur Radiol. 2004;14(2):309–17.

    Article  PubMed  Google Scholar 

  186. Checkley D, Tessier JJ, Kendrew J, Waterton JC, Wedge SR. Use of dynamic contrast-enhanced MRI to evaluate acute treatment with ZD6474, a VEGF signalling inhibitor, in PC-3 prostate tumours. Br J Cancer. 2003;89(10):1889–95.

    Article  PubMed  CAS  Google Scholar 

  187. Nakamura K, Taguchi E, Miura T, et al. KRN951, a highly potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, has antitumor activities and affects functional vascular properties. Cancer Res. 2006;66(18):9134–42.

    Article  PubMed  CAS  Google Scholar 

  188. Padhani AR, Gapinski CJ, Macvicar DA, et al. Dynamic contrast enhanced MRI of prostate cancer: correlation with morphology and tumour stage, histological grade and PSA. Clin Radiol. 2000;55(2):99–109.

    Article  PubMed  CAS  Google Scholar 

  189. Foltz WD, Al-Kwifi O, Sussman MS, Stainsby JA, Wright GA. Optimized spiral imaging for measurement of myocardial T2 relaxation. Magn Reson Med. 2003;49(6):1089–97.

    Article  PubMed  Google Scholar 

  190. Liney GP, Turnbull LW, Lowry M, Turnbull LS, Knowles AJ, Horsman A. In vivo quantification of citrate concentration and water T2 relaxation time of the pathologic prostate gland using 1 H MRS and MRI. Magn Reson Imag. 1997;15(10):1177–86.

    Article  CAS  Google Scholar 

  191. Liney GP, Lowry M, Turnbull LW, et al. Proton MR T2 maps correlate with the citrate concentration in the prostate. NMR Biomed. 1996;9(2):59–64.

    Article  PubMed  CAS  Google Scholar 

  192. Yu KK, Hricak H, Alagappan R, Chernoff DM, Bacchetti P, Zaloudek CJ. Detection of extracapsular extension of prostate carcinoma with endorectal and phased-array coil MR imaging: multivariate feature analysis. Radiology. 1997;202(3):697–702.

    PubMed  CAS  Google Scholar 

  193. Partin AW, Yoo J, Carter HB, et al. The use of prostate specific antigen, clinical stage and Gleason score to predict pathological stage in men with localized prostate cancer. J Urol. 1993;150(1):110–4.

    PubMed  CAS  Google Scholar 

  194. Cooperberg MR, Freedland SJ, Pasta DJ, et al. Multiinstitutional validation of the UCSF cancer of the prostate risk assessment for prediction of recurrence after radical prostatectomy. Cancer. 2006;107(10):2384–91.

    Article  PubMed  Google Scholar 

  195. Graefen M, Augustin H, Karakiewicz PI, et al. Can predictive models for prostate cancer patients derived in the United States of America be utilized in European patients? A validation study of the Partin tables. Eur Urol. 2003;43(1):6–10 (discussion 11).

    Article  PubMed  Google Scholar 

  196. Steyerberg EW, Roobol MJ, Kattan MW, van der Kwast TH, de Koning HJ, Schroder FH. Prediction of indolent prostate cancer: validation and updating of a prognostic nomogram. J Urol. 2007;177(1):107–12 (discussion 112).

    Article  PubMed  CAS  Google Scholar 

  197. Han M, Partin AW, Piantadosi S, Epstein JI, Walsh PC. Era specific biochemical recurrence-free survival following radical prostatectomy for clinically localized prostate cancer. J Urol. 2001;166(2):416–9.

    Article  PubMed  CAS  Google Scholar 

  198. Draisma G, Boer R, Otto SJ, et al. Lead times and overdetection due to prostate-specific antigen screening: estimates from the European Randomized Study of Screening for Prostate Cancer. J Natl Cancer Inst. 2003;95(12):868–78.

    Article  PubMed  Google Scholar 

  199. Etzioni R, Penson DF, Legler JM, et al. Overdiagnosis due to prostate-specific antigen screening: lessons from U.S. prostate cancer incidence trends. J Natl Cancer Inst. 2002;94(13):981–90.

    Article  PubMed  Google Scholar 

  200. Carroll PR. Early stage prostate cancer–do we have a problem with over-detection, overtreatment or both? J Urol. 2005;173(4):1061–2.

    Article  PubMed  Google Scholar 

  201. Fradet V, Kurhanewicz J, Cowan JE, et al. Prostate cancer managed with active surveillance: role of anatomic MR imaging and MR spectroscopic imaging. Radiology. 2010;256(1):176–83.

    Article  PubMed  Google Scholar 

  202. Rastinehad AR, Baccala Jr AA, Chung PH, et al. D’Amico risk stratification correlates with degree of suspicion of prostate cancer on multiparametric magnetic resonance imaging. J Urol. 2011;185(3):815–20.

    Article  PubMed  Google Scholar 

  203. Mouraviev V, Mayes JM, Polascik TJ. Pathologic basis of focal therapy for early-stage prostate cancer. Nat Rev Urol. 2009;6(4):205–15.

    Article  PubMed  Google Scholar 

  204. Carroll PR, Presti JJ, Small E, Roach M. Focal therapy for prostate cancer 1996: maximizing outcome. Urology. 1996;1997:84–94.

    Google Scholar 

  205. Okamura T, Umemoto Y, Yamashita K, et al. Pitfalls with MRI evaluation of prostate cancer detection: comparison of findings with histopathological assessment of retropubic radical prostatectomy specimens. Urol Int. 2006;77(4):301–6.

    Article  PubMed  Google Scholar 

  206. Hom JJ, Coakley FV, Simko JP, et al. Prostate cancer: endorectal MR imaging and MR spectroscopic imaging–distinction of true-positive results from chance-detected lesions. Radiology. 2006;238(1):192–9.

    Article  PubMed  Google Scholar 

  207. Heijmink SW, Futterer JJ, Hambrock T, et al. Prostate cancer: body-array versus endorectal coil MR imaging at 3 T–comparison of image quality, localization, and staging performance. Radiology. 2007;244(1):184–95.

    Article  PubMed  Google Scholar 

  208. Akin O, Sala E, Moskowitz CS, et al. Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology. 2006;239(3):784–92.

    Article  PubMed  Google Scholar 

  209. Dhingsa R, Qayyum A, Coakley FV, et al. Prostate cancer localization with endorectal MR imaging and MR spectroscopic imaging: effect of clinical data on reader accuracy. Radiology. 2004;230(1):215–20.

    Article  PubMed  Google Scholar 

  210. Hasumi M, Suzuki K, Taketomi A, et al. The combination of multi-voxel MR spectroscopy with MR imaging improve the diagnostic accuracy for localization of prostate cancer. Anticancer Res. 2003;23(5b):4223–7.

    PubMed  Google Scholar 

  211. Hasumi M, Suzuki K, Oya N, et al. MR spectroscopy as a reliable diagnostic tool for localization of prostate cancer. Anticancer Res. 2002;22(2B):1205–8.

    PubMed  Google Scholar 

  212. Wefer AE, Hricak H, Vigneron DB, et al. Sextant localization of prostate cancer: comparison of sextant biopsy, magnetic resonance imaging and magnetic resonance spectroscopic imaging with step section histology. J Urol. 2000;164(2):400–4.

    Article  PubMed  CAS  Google Scholar 

  213. Jager GJ, Ruijter ET, van de Kaa CA, et al. Dynamic TurboFLASH subtraction technique for contrast-enhanced MR imaging of the prostate: correlation with histopathologic results. Radiology. 1997;203(3):645–52.

    PubMed  CAS  Google Scholar 

  214. Franiel T, Stephan C, Erbersdobler A, et al. Areas suspicious for prostate cancer: MR-guided biopsy in patients with at least one transrectal US-guided biopsy with a negative finding–multiparametric MR imaging for detection and biopsy planning. Radiology. 2011;259(1):162–72.

    Article  PubMed  Google Scholar 

  215. Kumar V, Jagannathan NR, Kumar R, et al. Correlation between metabolite ratios and ADC values of prostate in men with increased PSA level. Magn Reson Imaging. 2006;24(5):541–8.

    Article  PubMed  CAS  Google Scholar 

  216. Mazaheri Y, Shukla-Dave A, Hricak H, et al. Prostate cancer: identification with combined diffusion-weighted MR imaging and 3D 1 H MR spectroscopic imaging–correlation with pathologic findings. Radiology. 2008;246(2):480–8.

    Article  PubMed  Google Scholar 

  217. Mazaheri Y, Hricak H, Fine SW, et al. Prostate tumor volume measurement with combined T2-weighted imaging and diffusion-weighted MR: correlation with pathologic tumor volume. Radiology. 2009;252(2):449–57.

    Article  PubMed  Google Scholar 

  218. Schenck JF, Jolesz FA, Roemer PB, et al. Superconducting open-configuration MR imaging system for image-guided therapy. Radiology. 1995;195(3):805–14.

    PubMed  CAS  Google Scholar 

  219. Cormack RA, D’Amico AV, Hata N, Silverman S, Weinstein M, Tempany CM. Feasibility of transperineal prostate biopsy under interventional magnetic resonance guidance. Urology. 2000;56(4):663–4.

    Article  PubMed  CAS  Google Scholar 

  220. D’Amico AV, Tempany CM, Cormack R, et al. Transperineal magnetic resonance image guided prostate biopsy. J Urol. 2000;164(2):385–7.

    Article  PubMed  Google Scholar 

  221. Hata N, Jinzaki M, Kacher D, et al. MR imaging-guided prostate biopsy with surgical navigation software: device validation and feasibility. Radiology. 2001;220(1):263–8.

    PubMed  CAS  Google Scholar 

  222. Tempany C, Straus S, Hata N, Haker S. MR-guided prostate interventions. J Magn Reson Imaging. 2008;27(2):356–67.

    Article  PubMed  Google Scholar 

  223. Susil RC, Camphausen K, Choyk P, et al. System for prostate brachytherapy and biopsy in a standard 1.5 T MRI scanner. Magn Reson Med. 2004;52(3):683–7.

    Article  PubMed  Google Scholar 

  224. Krieger A, Susil RC, Menard C, et al. Design of a novel MRI compatible manipulator for image guided prostate interventions. IEEE Trans Biomed Eng. 2005;52(2):306–13.

    Article  PubMed  Google Scholar 

  225. Susil RC, Menard C, Krieger A, et al. Transrectal prostate biopsy and fiducial marker placement in a standard 1.5 T magnetic resonance imaging scanner. J Urol. 2006;175(1):113–20.

    Article  PubMed  Google Scholar 

  226. Yuen JS, Thng CH, Tan PH, et al. Endorectal magnetic resonance imaging and spectroscopy for the detection of tumor foci in men with prior negative transrectal ultrasound prostate biopsy. J Urol. 2004;171(4):1482–6.

    Article  PubMed  CAS  Google Scholar 

  227. Prando A, Kurhanewicz J, Borges AP, Oliveira Jr EM, Figueiredo E. Prostatic biopsy directed with endorectal MR spectroscopic imaging findings in patients with elevated prostate specific antigen levels and prior negative biopsy findings: early experience. Radiology. 2005;236(3):903–10.

    Article  PubMed  Google Scholar 

  228. Labanaris AP, Engelhard K, Zugor V, Nutzel R, Kuhn R. Prostate cancer detection using an extended prostate biopsy schema in combination with additional targeted cores from suspicious images in conventional and functional endorectal magnetic resonance imaging of the prostate. Prostate Cancer Prostatic Dis. 2010;13(1):65–70.

    Article  PubMed  CAS  Google Scholar 

  229. Haffner J, Lemaitre L, Puech P, et al. Role of magnetic resonance imaging before initial biopsy: comparison of magnetic resonance imaging-targeted and systematic biopsy for significant prostate cancer detection. BJU Int. 2011;108(8 Pt 2):E171–8.

    Article  PubMed  Google Scholar 

  230. Sciarra A, Panebianco V, Ciccariello M, et al. Value of magnetic resonance spectroscopy imaging and dynamic contrast-enhanced imaging for detecting prostate cancer foci in men with prior negative biopsy. Clin Cancer Res. 2010;16(6):1875–83.

    Article  PubMed  CAS  Google Scholar 

  231. Panebianco V, Sciarra A, Ciccariello M, et al. Role of magnetic resonance spectroscopic imaging ([(1)H]MRSI) and dynamic contrast-enhanced MRI (DCE-MRI) in identifying prostate cancer foci in patients with negative biopsy and high levels of prostate-specific antigen (PSA). La Radiologia Medica. 2010;115(8):1314–29.

    Article  PubMed  CAS  Google Scholar 

  232. Ouzzane A, Puech P, Lemaitre L, et al. Combined multiparametric MRI and targeted biopsies improve anterior prostate cancer detection, staging, and grading. Urology. 2011;78(6):1356–62.

    Article  PubMed  Google Scholar 

  233. Rouviere O, Girouin N, Glas L, et al. Prostate cancer transrectal HIFU ablation: detection of local recurrences using T2-weighted and dynamic contrast-enhanced MRI. Eur Radiol. 2010;20(1):48–55.

    Article  PubMed  Google Scholar 

  234. Anastasiadis AG, Lichy MP, Nagele U, et al. MRI-guided biopsy of the prostate increases diagnostic performance in men with elevated or increasing PSA levels after previous negative TRUS biopsies. Eur Urol. 2006;50(4):738–48 (discussion 748–739).

    Article  PubMed  CAS  Google Scholar 

  235. Beyersdorff D, Taymoorian K, Knosel T, et al. MRI of prostate cancer at 1.5 and 3.0 T: comparison of image quality in tumor detection and staging. AJR Am J Roentgenol. 2005;185(5):1214–20.

    Article  PubMed  Google Scholar 

  236. Engelhard K, Hollenbach HP, Kiefer B, Winkel A, Goeb K, Engehausen D. Prostate biopsy in the supine position in a standard 1.5-T scanner under real time MR-imaging control using a MR-compatible endorectal biopsy device. Eur Radiol. 2006;16(6):1237–43.

    Article  PubMed  CAS  Google Scholar 

  237. Hambrock T, Futterer JJ, Huisman HJ, et al. Thirty-two-channel coil 3 T magnetic resonance-guided biopsies of prostate tumor suspicious regions identified on multimodality 3 T magnetic resonance imaging: technique and feasibility. Invest Radiol. 2008;43(10):686–94.

    Article  PubMed  Google Scholar 

  238. Hambrock T, Somford DM, Hoeks C, et al. Magnetic resonance imaging guided prostate biopsy in men with repeat negative biopsies and increased prostate specific antigen. J Urol. 2010;183(2):520–7.

    Article  PubMed  CAS  Google Scholar 

  239. Hambrock T, Somford DM, Huisman HJ, et al. Relationship between apparent diffusion coefficients at 3.0-T MR imaging and Gleason grade in peripheral zone prostate cancer. Radiology. 2011;259(2):453–61.

    Article  PubMed  Google Scholar 

  240. Muntener M, Patriciu A, Petrisor D, et al. Transperineal prostate intervention: robot for fully automated MR imaging–system description and proof of principle in a canine model. Radiology. 2008;247(2):543–9.

    Article  PubMed  Google Scholar 

  241. Stoianovici D, Song D, Petrisor D, et al. “MRI Stealth” robot for prostate interventions. Minimally invasive therapy & allied technologies. J Soc Min Invas Ther: MITAT. 2007;16(4):241–8.

    Article  Google Scholar 

  242. Reynier C, Troccaz J, Fourneret P, et al. MRI/TRUS data fusion for prostate brachytherapy. Preliminary results. Med Phys. 2004;31(6):1568–75.

    Article  PubMed  Google Scholar 

  243. Daanen V, Gastaldo J, Giraud JY, et al. MRI/TRUS data fusion for brachytherapy. Int J Med Rob Comp Assist Surg. 2006;2(3):256–61.

    Article  CAS  Google Scholar 

  244. Xu S, Kruecker J, Guion P, et al. Closed-loop control in fused MR-TRUS image-guided prostate biopsy. Medical image computing and computer-assisted intervention. Med Image Computing Comput Assist Intervent. 2007;10(Pt 1):128–35.

    Google Scholar 

  245. Singh AK, Kruecker J, Xu S, et al. Initial clinical experience with real-time transrectal ultrasonography-magnetic resonance imaging fusion-guided prostate biopsy. BJU Int. 2008;101(7):841–5.

    Article  PubMed  Google Scholar 

  246. Xu S, Kruecker J, Turkbey B, et al. Real-time MRI-TRUS fusion for guidance of targeted prostate biopsies. Comput Aided Surg. 2008;13(5):255–64.

    Article  PubMed  Google Scholar 

  247. Ukimura O, Hirahara N, Fujihara A, et al. Technique for a hybrid system of real-time transrectal ultrasound with preoperative magnetic resonance imaging in the guidance of targeted prostate biopsy. Int J Urol. 2010;17(10):890–3.

    Article  PubMed  Google Scholar 

  248. Kuru TH, Tulea C, Simpfendorfer T, et al. MRI navigated stereotactic prostate biopsy: fusion of MRI and real-time transrectal ultrasound images for perineal prostate biopsies. Der Urologe Ausg A. 2011;51(1):50–6.

    Article  Google Scholar 

  249. Natarajan S, Marks LS, Margolis DJ, et al. Clinical application of a 3D ultrasound-guided prostate biopsy system. Urol Oncol. 2011;29(3):334–42.

    Article  PubMed  Google Scholar 

  250. Turkbey B, Xu S, Kruecker J, et al. Documenting the location of prostate biopsies with image fusion. BJU Int. 2011;107(1):53–7.

    Article  PubMed  Google Scholar 

  251. Turkbey B, Xu S, Kruecker J, et al. Documenting the location of systematic transrectal ultrasound-guided prostate biopsies: correlation with multi-parametric MRI. Cancer Imag. 2011;11:31–6.

    Article  Google Scholar 

  252. Pickett B, Vigneault E, Kurhanewicz J, Verhey L, Roach M. Static field intensity modulation to treat a dominant intra-prostatic lesion to 90 Gy compared to seven field 3-dimensional radiotherapy. Int J Radiat Oncol Biol Phys. 1999;44(4):921–9.

    Article  PubMed  CAS  Google Scholar 

  253. Xia P, Pickett B, Vigneault E, Verhey LJ, Roach III M. Forward or inversely planned segmental multileaf collimator IMRT and sequential tomotherapy to treat multiple dominant intraprostatic lesions of prostate cancer to 90 Gy. Int J Radiat Oncol Biol Phys. 2001;51(1):244–54.

    Article  PubMed  CAS  Google Scholar 

  254. DiBiase SJ, Hosseinzadeh K, Gullapalli RP, et al. Magnetic resonance spectroscopic imaging-guided brachytherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys. 2002;52(2):429–38.

    Article  PubMed  Google Scholar 

  255. Pouliot J, Kim Y, Lessard E, Hsu IC, Vigneron DB, Kurhanewicz J. Inverse planning for HDR prostate brachytherapy used to boost dominant intraprostatic lesions defined by magnetic resonance spectroscopy imaging. Int J Radiat Oncol Biol Phys. 2004;59(4):1196–207.

    Article  PubMed  Google Scholar 

  256. Zaider M, Zelefsky MJ, Lee EK, et al. Treatment planning for prostate implants using magnetic-resonance spectroscopy imaging. Int J Radiat Oncol Biol Phys. 2000;47(4):1085–96.

    Article  PubMed  CAS  Google Scholar 

  257. Kim Y, Hsu IC, Lessard E, Kurhanewicz J, Noworolski SM, Pouliot J. Class solution in inverse planned HDR prostate brachytherapy for dose escalation of DIL defined by combined MRI/MRSI. Radiother Oncol. 2008;88(1):148–55.

    Article  PubMed  Google Scholar 

  258. Barnes AS, Haker SJ, Mulkern RV, So M, D’Amico AV, Tempany CM. Magnetic resonance spectroscopy-guided transperineal prostate biopsy and brachytherapy for recurrent prostate cancer. Urology. 2005;66(6):1319.

    PubMed  Google Scholar 

  259. Moman MR, van den Berg CA, Boeken Kruger AE. Boeken Kruger AE, et al. Focal salvage guided by T2-weighted and dynamic contrast-enhanced magnetic resonance imaging for prostate cancer recurrences. Int J Radiat Oncol Biol Phys. 2010;76(3):741–6.

    Article  PubMed  Google Scholar 

  260. Raz O, Haider MA, Davidson SR, et al. Real-time magnetic resonance imaging-guided focal laser therapy in patients with low-risk prostate cancer. Eur Urol. 2010;58(1):173–7.

    Article  PubMed  Google Scholar 

  261. Lindner U, Lawrentschuk N, Weersink RA, et al. Focal laser ablation for prostate cancer followed by radical prostatectomy: validation of focal therapy and imaging accuracy. Eur Urol. 2010;57(6):1111–4.

    Article  PubMed  Google Scholar 

  262. Lindner U, Weersink RA, Haider MA, et al. Image guided photothermal focal therapy for localized prostate cancer: phase I trial. J Urol. 2009;182(4):1371–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadhna Verma M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Verma, S., Lamba, M.A.S., Vigneron, D.B., Jung, A., Kurhanewicz, J. (2013). Multiparametric Magnetic Resonance Imaging Approaches in Focal Prostate Cancer Therapy. In: Polascik, T. (eds) Imaging and Focal Therapy of Early Prostate Cancer. Current Clinical Urology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-182-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-182-0_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-181-3

  • Online ISBN: 978-1-62703-182-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics