Skip to main content

Embryonic Stem Cells: Discovery, Development, and Current Trends

  • Chapter
  • First Online:
Stem Cells & Regenerative Medicine

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 2022 Accesses

Abstract

Murine embryonic stem cells were first derived almost 30 years ago from cultured blastocysts and have been primarily used as a tool to better understand development through targeted gene deletions. Only recently has the focus has shifted toward embryonic stem cells themselves and the molecular mechanisms by which they choose a specific cell fate. Through rapid advances in cell culture and genomic modification techniques researchers are beginning to regularly utilize embryonic stem cells for in vitro gene function assays. More important, the mechanisms critical for establishing the pluripotent sate of embryonic stem cells have been elucidated to the point that clinically beneficial stem cell–like counterparts can now be generated from nonembryonic sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bain, G., Kitchens, D., Yao, M., et al. (1995) Embryonic stem cells express neuronal properties in vitro. Dev. Biol. 168, 342–357.

    Article  PubMed  CAS  Google Scholar 

  2. Barberi, T., Klivenyi, P., Calingasan, N.Y., et al. (2003) Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat. Biotechnol. 21, 1200–1207.

    Article  PubMed  CAS  Google Scholar 

  3. Beard, C., Hochedlinger, K., Plath, K., et al. (2006) Efficient method to generate single-copy transgenic mice by site-specific integration in embryonic stem cells. Genesis 44, 23–28.

    Article  PubMed  CAS  Google Scholar 

  4. Belteki, G., Haigh, J., Kabacs, N., et al. (2005) Conditional and inducible transgene expression in mice through the combinatorial use of Cre-mediated recombination and tetracycline induction. Nucleic Acids Res. 33, e51.

    Article  PubMed  Google Scholar 

  5. Bi, W., Deng, J.M., Zhang, Z., et al. (1999) Sox9 is required for cartilage formation. Nat. Genet. 22, 85–89.

    Article  PubMed  CAS  Google Scholar 

  6. Bibel, M., Richter, J., Lacroix, E., et al. (2007) Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells. Nat. Protoc. 2, 1034–1043.

    Article  PubMed  CAS  Google Scholar 

  7. Blyszczuk, P., Czyz, J., Kania, G., et al. (2003) Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc. Natl. Acad. Sci. USA 100, 998–1003.

    Article  PubMed  CAS  Google Scholar 

  8. Boyer, L.A., Lee, T.I., Cole, M.F., et al. (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956.

    Article  PubMed  CAS  Google Scholar 

  9. Bradley, A., Zheng, B., and Liu, P. (1998) Thirteen years of manipulating the mouse genome: a personal history. Int. J. Dev. Biol. 42, 943–950.

    PubMed  CAS  Google Scholar 

  10. Braun, T. and Arnold, H.H. (1994) ES-cells carrying two inactivated myf-5 alleles form skeletal muscle cells: activation of an alternative myf-5-independent differentiation pathway. Dev. Biol. 164, 24–36.

    Article  PubMed  CAS  Google Scholar 

  11. Brizuela, L., Braun, P., and LaBaer, J. (2001) FLEXGene repository: from sequenced genomes to gene repositories for high-throughput functional biology and proteomics. Mol. Biochem. Parasitol. 118, 155–165.

    Article  PubMed  CAS  Google Scholar 

  12. Bronson, S.K. and Smithies, O. (1994) Altering mice by homologous recombination using embryonic stem cells. J. Biol. Chem. 269, 27155–27158.

    PubMed  CAS  Google Scholar 

  13. Brown, G.L., Curtsinger, L., Jurkiewicz, M.J., et al. (1991) Stimulation of healing of chronic wounds by epidermal growth factor. Plast. Reconstr. Surg. 88, 189–194; discussion 195–196.

    Article  PubMed  CAS  Google Scholar 

  14. Brun, R.P., Tontonoz, P., Forman, B.M., et al. (1996) Differential activation of adipogenesis by multiple PPAR isoforms. Genes Dev. 10, 974–984.

    Article  PubMed  CAS  Google Scholar 

  15. Brustle, O., Jones, K.N., Learish, R.D., et al. (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285, 754–756.

    Article  PubMed  CAS  Google Scholar 

  16. Buehr, M., Meek, S., Blair, K., et al. (2008) Capture of authentic embryonic stem cells from rat blastocysts. Cell 135, 1287–1298.

    Article  PubMed  CAS  Google Scholar 

  17. Chambers, I., Colby, D., Robertson, M., et al. (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655.

    Article  PubMed  CAS  Google Scholar 

  18. Chanda, S.K., White, S., Orth, A.P., et al. (2003) Genome-scale functional profiling of the mammalian AP-1 signaling pathway. Proc. Natl. Acad. Sci. USA 100, 12153–12158.

    Article  PubMed  CAS  Google Scholar 

  19. Clamp, M., Fry, B., Kamal, M., et al. (2007) Distinguishing protein-coding and noncoding genes in the human genome. Proc. Natl. Acad. Sci. USA 104, 19428–19433.

    Article  PubMed  CAS  Google Scholar 

  20. Cohen-Tannoudji, M., Robine, S., Choulika, A., et al. (1998) I-SceI-induced gene replacement at a natural locus in embryonic stem cells. Mol. Cell Biol. 18, 1444–1448.

    PubMed  CAS  Google Scholar 

  21. Conti, L., Pollard, S.M., Gorba, T., et al. (2005) Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol. 3, e283.

    Article  PubMed  CAS  Google Scholar 

  22. Cowan, C.A., Atienza, J., Melton, D.A., et al. (2005) Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309, 1369–1373.

    Article  PubMed  CAS  Google Scholar 

  23. Davidson, A.J., Ernst, P., Wang, Y., et al. (2003) cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature 425, 300–306.

    Article  PubMed  CAS  Google Scholar 

  24. de Piedoue, G., Maurisse, R., Kuzniak, I., et al. (2005) Improving gene replacement by intracellular formation of linear homologous DNA. J. Gene Med. 7, 649–656.

    Article  PubMed  CAS  Google Scholar 

  25. Desbaillets, I., Ziegler, U., Groscurth, P., et al. (2000) Embryoid bodies: an in vitro model of mouse embryogenesis. Exp. Physiol. 85, 645–651.

    Article  PubMed  CAS  Google Scholar 

  26. Doetschman, T., Gregg, R.G., Maeda, N., et al. (1987) Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330, 576–578.

    Article  PubMed  CAS  Google Scholar 

  27. Doetschman, T., Williams, P., and Maeda, N. (1988) Establishment of hamster blastocyst-derived embryonic stem (ES) cells. Dev. Biol. 127, 224–227.

    Article  PubMed  CAS  Google Scholar 

  28. Doetschman, T.C., Eistetter, H., Katz, M., et al. (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 27–45.

    PubMed  CAS  Google Scholar 

  29. Doevendans, P.A., Kubalak, S.W., An, R.H., et al. (2000) Differentiation of cardiomyocytes in floating embryoid bodies is comparable to fetal cardiomyocytes. J. Mol. Cell Cardiol. 32, 839–851.

    Article  PubMed  CAS  Google Scholar 

  30. Donehower, L.A., Harvey, M., Slagle, B.L., et al. (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221.

    Article  PubMed  CAS  Google Scholar 

  31. Edwards, M.K., Harris, J.F., and McBurney, M.W. (1983) Induced muscle differentiation in an embryonal carcinoma cell line. Mol. Cell. Biol. 3, 2280–2286.

    PubMed  CAS  Google Scholar 

  32. Edwards, M.K. and McBurney, M.W. (1983) The concentration of retinoic acid determines the differentiated cell types formed by a teratocarcinoma cell line. Dev. Biol. 98, 187–191.

    Article  PubMed  CAS  Google Scholar 

  33. Evans, M.J. and Kaufman, M.H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156.

    Article  PubMed  CAS  Google Scholar 

  34. Falk, A., Karlsson, T.E., Kurdija, S., et al. (2007) High-throughput identification of genes promoting neuron formation and lineage choice in mouse embryonic stem cells. Stem Cells 25, 1539–1545.

    Article  PubMed  CAS  Google Scholar 

  35. Fan, Y., Melhem, M.F., and Chaillet, J.R. (1999) Forced expression of the homeobox-containing gene Pem blocks differentiation of embryonic stem cells. Dev. Biol. 210, 481–496.

    Article  PubMed  CAS  Google Scholar 

  36. Farah, M.H., Olson, J.M., Sucic, H.B., et al. (2000) Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development 127, 693–702.

    PubMed  CAS  Google Scholar 

  37. First, N.L., Sims, M.M., Park, S.P., et al. (1994) Systems for production of calves from cultured bovine embryonic cells. Reprod. Fertil. Dev 6, 553–562.

    Article  PubMed  CAS  Google Scholar 

  38. Fraichard, A., Chassande, O., Bilbaut, G., et al. (1995) In vitro differentiation of embryonic stem cells into glial cells and functional neurons. J. Cell Sci. 108, 3181–3188

    PubMed  CAS  Google Scholar 

  39. Fujikura, J., Yamato, E., Yonemura, S., et al. (2002) Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev. 16, 784–789.

    Article  PubMed  CAS  Google Scholar 

  40. Gelperin, D.M., White, M.A., Wilkinson, M.L., et al. (2005) Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev. 19, 2816–2826.

    Article  PubMed  CAS  Google Scholar 

  41. Guan, K., Nayernia, K., Maier, L.S., et al. (2006) Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440, 1199–1203.

    Article  PubMed  CAS  Google Scholar 

  42. Gutierrez-Ramos, J.C. and Palacios, R. (1992) In vitro differentiation of embryonic stem cells into lymphocyte precursors able to generate T and B lymphocytes in vivo. Proc. Natl. Acad. Sci. USA 89, 9171–9175.

    Article  PubMed  CAS  Google Scholar 

  43. Hammer, R.E., Swift, G.H., Ornitz, D.M., et al. (1987) The rat elastase I regulatory element is an enhancer that directs correct cell specificity and developmental onset of expression in transgenic mice. Mol. Cell Biol. 7, 2956–2967.

    PubMed  CAS  Google Scholar 

  44. Hanna, J., Wernig, M., Markoulaki, S., et al. (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318, 1920–1923.

    Article  PubMed  CAS  Google Scholar 

  45. Hartley, J.L., Temple, G.F., and Brasch, M.A. (2000) DNA cloning using in vitro site-specific recombination. Genome Res. 10, 1788–1795.

    Article  PubMed  CAS  Google Scholar 

  46. Heil, M. (2006) Newts which regrow their hearts. Available: http://www.eurekalert.org/pub_releases/2006-12/m-nwr120506.php. Last accessed 30, July 2009.

  47. Huangfu, D., Osafune, K., Maehr, R., et al. (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat. Biotechnol. 26, 1269–1275.

    Article  PubMed  CAS  Google Scholar 

  48. Ikeda, T., Kamekura, S., Mabuchi, A., et al. (2004) The combination of SOX5, SOX6, and SOX9 (the SOX trio) provides signals sufficient for induction of permanent cartilage. Arthritis Rheum. 50, 3561–3573.

    Article  PubMed  CAS  Google Scholar 

  49. Imrik, P. and Madarasz, E. (1991) Importance of cell-aggregation during induction of neural differentiation in PCC-7 embryonal carcinoma cells. Acta Physiol. Hung. 78, 345–358.

    PubMed  CAS  Google Scholar 

  50. Jacks, T., Fazeli, A., Schmitt, E.M., et al. (1992) Effects of an Rb mutation in the mouse. Nature 359, 295–300.

    Article  PubMed  CAS  Google Scholar 

  51. Jiang, Y., Jahagirdar, B.N., Reinhardt, R.L., et al. (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49.

    Article  PubMed  CAS  Google Scholar 

  52. Kamnasaran, D., Hawkins, C., and Guha, A. (2008) Characterization and transformation potential of “Synthetic” astrocytes differentiated from murine embryonic stem cells. Glia 56, 457–470.

    Article  PubMed  Google Scholar 

  53. Kattman, S.J., Huber, T.L., and Keller, G.M. (2006) Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev. Cell 11, 723–732.

    Article  PubMed  CAS  Google Scholar 

  54. Kawasaki, H., Mizuseki, K., Nishikawa, S., et al. (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28, 31v40.

    Article  PubMed  CAS  Google Scholar 

  55. Keller, G. (2005) Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev. 19, 1129–1155.

    Article  PubMed  CAS  Google Scholar 

  56. Kim, J.H., Auerbach, J.M., Rodriguez-Gomez, J.A., et al. (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418, 50–56.

    Article  PubMed  CAS  Google Scholar 

  57. Kim, J.H., Do, H.J., Yang, H.M., et al. (2005) Overexpression of SOX9 in mouse embryonic stem cells directs the immediate chondrogenic commitment. Exp. Mol. Med. 37, 261–268.

    Article  PubMed  CAS  Google Scholar 

  58. Kintner, C.R. and Brockes, J.P. (1984) Monoclonal antibodies identify blastemal cells derived from dedifferentiating limb regeneration. Nature 308, 67–69.

    Article  PubMed  CAS  Google Scholar 

  59. Kyba, M., Perlingeiro, R.C., Hoover, R.R., et al. (2003) Enhanced hematopoietic differentiation of embryonic stem cells conditionally expressing Stat5. Proc. Natl. Acad. Sci. USA 100, 11904–11910.

    Article  PubMed  CAS  Google Scholar 

  60. Lamesch, P., Li, N., Milstein, S., et al. (2007) hORFeome v3.1: a resource of human open reading frames representing over 10,000 human genes. Genomics 89, 307–315.

    Article  PubMed  CAS  Google Scholar 

  61. Lee, S.H., Lumelsky, N., Studer, L., et al. (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol. 18, 675–679.

    Article  PubMed  CAS  Google Scholar 

  62. Lendahl, U., Zimmerman, L.B., and McKay, R.D. (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60, 585–595.

    Article  PubMed  CAS  Google Scholar 

  63. Lewis, R. (2000). A Stem Cell Legacy: Leroy Stevens. Available: http://www.the-scientist.com/article/display/11738/. Last accessed 30, July 2009.

  64. Li, M.Z. and Elledge, S.J. (2005) MAGIC, an in vivo genetic method for the rapid construction of recombinant DNA molecules. Nat. Genet. 37, 311–319.

    Article  PubMed  CAS  Google Scholar 

  65. Li, P., Tong, C., Mehrian-Shai, R., et al. (2008) Germline competent embryonic stem cells derived from rat blastocysts. Cell 135, 1299–1310.

    Article  PubMed  CAS  Google Scholar 

  66. Lindenbaum, M.H. and Grosveld, F. (1990) An in vitro globin gene switching model based on differentiated embryonic stem cells. Genes Dev. 4, 2075–2085.

    Article  PubMed  CAS  Google Scholar 

  67. Linke, A., Muller, P., Nurzynska, D., et al. (2005) Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc. Natl. Acad. Sci. USA 102, 8966–8971.

    Article  PubMed  CAS  Google Scholar 

  68. Liu, S., Qu, Y., Stewart, T.J., et al. (2000) Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc. Natl. Acad. Sci. USA 97, 6126–6131.

    Article  PubMed  CAS  Google Scholar 

  69. Lo, D.C., Allen, F., and Brockes, J.P. (1993) Reversal of muscle differentiation during urodele limb regeneration. Proc. Natl. Acad. Sci. USA 90, 7230–7234.

    Article  PubMed  CAS  Google Scholar 

  70. Long, Q., Shelton, K.D., Lindner, J., et al. (2004) Efficient DNA cassette exchange in mouse embryonic stem cells by staggered positive-negative selection. Genesis 39, 256–262.

    Article  PubMed  CAS  Google Scholar 

  71. Lyssiotis, C.A., Foreman, R.K., Staerk, J., et al. (2009) Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc. Natl. Acad. Sci. USA 106, 8912–8917.

    Article  PubMed  Google Scholar 

  72. Maltsev, V.A., Rohwedel, J., Hescheler, J., et al. (1993) Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech. Dev. 44, 41–50

    Article  PubMed  CAS  Google Scholar 

  73. Mao, J., Barrow, J., McMahon, J., et al. (2005) An ES cell system for rapid, spatial and temporal analysis of gene function in vitro and in vivo. Nucleic Acids Res. 33, e155.

    Article  PubMed  CAS  Google Scholar 

  74. Martin, G.R. (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638.

    Article  PubMed  CAS  Google Scholar 

  75. Masui, S., Nakatake, Y., Toyooka, Y., et al. (2007) Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat. Cell Biol. 9, 625–635.

    Article  PubMed  CAS  Google Scholar 

  76. Masui, S., Shimosato, D., Toyooka, Y., et al. (2005) An efficient system to establish multiple embryonic stem cell lines carrying an inducible expression unit. Nucleic Acids Res. 33, e43.

    Article  PubMed  CAS  Google Scholar 

  77. Mathers, P.H., Grinberg, A., Mahon, K.A., et al. (1997) The Rx homeobox gene is essential for vertebrate eye development. Nature 387, 603–607.

    Article  PubMed  CAS  Google Scholar 

  78. Matsuda, T., Nakamura, T., Nakao, K., et al. (1999) STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. Embo J. 18, 4261–4269.

    Article  PubMed  CAS  Google Scholar 

  79. McBurney, M.W. and Rogers, B.J. (1982) Isolation of male embryonal carcinoma cells and their chromosome replication patterns. Dev. Biol. 89, 503–508.

    Article  PubMed  CAS  Google Scholar 

  80. Meijer, L., Skaltsounis, A.L., Magiatis, P., et al. (2003) GSK-3-selective inhibitors derived from Tyrian purple indirubins. Chem. Biol. 10, 1255–1266.

    Article  PubMed  CAS  Google Scholar 

  81. Meissner, A., Wernig, M., and Jaenisch, R. (2007) Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat. Biotechnol. 25, 1177–1181.

    Article  PubMed  CAS  Google Scholar 

  82. Miller-Hance, W.C., LaCorbiere, M., Fuller, S.J., et al. (1993) In vitro chamber specification during embryonic stem cell cardiogenesis. Expression of the ventricular myosin light chain-2 gene is independent of heart tube formation. J. Biol. Chem. 268, 25244–25252.

    PubMed  CAS  Google Scholar 

  83. Min, J.Y., Yang, Y., Converso, K.L., et al. (2002) Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J. Appl. Physiol. 92, 288–296.

    Article  PubMed  CAS  Google Scholar 

  84. Mitsui, K., Tokuzawa, Y., Itoh, H., et al. (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642.

    Article  PubMed  CAS  Google Scholar 

  85. Mizuno, K., Katagiri, T., Maruyama, E., et al. (1997) SHP-1 is involved in neuronal differentiation of P19 embryonic carcinoma cells. FEBS Lett. 417, 6–12.

    Article  PubMed  CAS  Google Scholar 

  86. Moreadith, R.W. and Graves, K.H. (1992) Derivation of pluripotential embryonic stem cells from the rabbit. Trans. Assoc. Am. Physicians 105, 197–203.

    PubMed  CAS  Google Scholar 

  87. Mujtaba, T., Piper, D.R., Kalyani, A., et al. (1999) Lineage-restricted neural precursors can be isolated from both the mouse neural tube and cultured ES cells. Dev. Biol. 214, 113–127.

    Article  PubMed  CAS  Google Scholar 

  88. Nagy, A., Gocza, E., Diaz, E.M., et al. (1990) Embryonic stem cells alone are able to support fetal development in the mouse. Development 110, 815–821.

    PubMed  CAS  Google Scholar 

  89. Nakagawa, M., Koyanagi, M., Tanabe, K., et al. (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26, 101–106.

    Article  PubMed  CAS  Google Scholar 

  90. Nakashima, K., Zhou, X., Kunkel, G., et al. (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108, 17–29.

    Article  PubMed  CAS  Google Scholar 

  91. Nichols, J., Chambers, I., Taga, T., et al. (2001) Physiological rationale for responsiveness of mouse embryonic stem cells to gp130 cytokines. Development 128, 2333–2339.

    PubMed  CAS  Google Scholar 

  92. Nichols, J., Davidson, D., Taga, T., et al. (1996) Complementary tissue-specific expression of LIF and LIF-receptor mRNAs in early mouse embryogenesis. Mech. Dev. 57, 123–131.

    Article  PubMed  CAS  Google Scholar 

  93. Niida, H., Matsumoto, T., Satoh, H., et al. (1998) Severe growth defect in mouse cells lacking the telomerase RNA component. Nat. Genet. 19, 203–206.

    Article  PubMed  CAS  Google Scholar 

  94. Niwa, H., Burdon, T., Chambers, I., et al. (1998) Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 12, 2048–2060.

    Article  PubMed  CAS  Google Scholar 

  95. Niwa, H., Miyazaki, J., and Smith, A.G. (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 24, 372–376.

    Article  PubMed  CAS  Google Scholar 

  96. Notarianni, E., Galli, C., Laurie, S., et al. (1991) Derivation of pluripotent, embryonic cell lines from the pig and sheep. J. Reprod. Fertil. Suppl. 43, 255–260.

    PubMed  CAS  Google Scholar 

  97. Odelberg, S.J., Kollhoff, A., and Keating, M.T. (2000) Dedifferentiation of mammalian myotubes induced by msx1. Cell 103, 1099–1109.

    Article  PubMed  CAS  Google Scholar 

  98. Okabe, S., Forsberg-Nilsson, K., Spiro, A.C., et al. (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech. Dev. 59, 89–102.

    Article  PubMed  CAS  Google Scholar 

  99. Okamoto, K., Okazawa, H., Okuda, A., et al. (1990) A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell 60, 461–472.

    Article  PubMed  CAS  Google Scholar 

  100. Okita, K., Ichisaka, T., and Yamanaka, S. (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317.

    Article  PubMed  CAS  Google Scholar 

  101. O’Shea, K.S. (2001) Directed differentiation of embryonic stem cells: genetic and epigenetic methods. Wound Repair Regen. 9, 443–459.

    Article  PubMed  Google Scholar 

  102. Pain, B., Clark, M.E., Shen, M., et al. (1996) Long-term in vitro culture and characterisation of avian embryonic stem cells with multiple morphogenetic potentialities. Development 122, 2339–2348.

    PubMed  CAS  Google Scholar 

  103. Paling, N.R., Wheadon, H., Bone, H.K., et al. (2004) Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signaling. J. Biol. Chem. 279, 48063–48070.

    Article  PubMed  CAS  Google Scholar 

  104. Park, I.H., Zhao, R., West, J.A., et al. (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146.

    Article  PubMed  CAS  Google Scholar 

  105. Pearlberg, J., Degot, S., Endege, W., et al. (2005) Screens using RNAi and cDNA expression as surrogates for genetics in mammalian tissue culture cells. Cold Spring Harb. Symp. Quant. Biol. 70, 449–459.

    Article  PubMed  CAS  Google Scholar 

  106. Pritsker, M., Ford, N.R., Jenq, H.T., et al. (2006) Genomewide gain-of-function genetic screen identifies functionally active genes in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 103, 6946–6951.

    Article  PubMed  CAS  Google Scholar 

  107. Rajasekhar, V.K., Dalerba, P., Passegue, E., et al. (2008) The 5th International Society for Stem Cell Research (ISSCR) Annual Meeting, June 2007. Stem Cells 26, 292–298.

    Article  PubMed  CAS  Google Scholar 

  108. Rathjen, P.D., Nichols, J., Toth, S., et al. (1990) Developmentally programmed induction of differentiation inhibiting activity and the control of stem cell populations. Genes Dev. 4, 2308–2318.

    Article  PubMed  CAS  Google Scholar 

  109. Renoncourt, Y., Carroll, P., Filippi, P., et al. (1998) Neurons derived in vitro from ES cells express homeoproteins characteristic of motoneurons and interneurons. Mech. Dev. 79, 185–197.

    Article  PubMed  CAS  Google Scholar 

  110. Risau, W., Sariola, H., Zerwes, H.G., et al. (1988) Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development 102, 471–478.

    PubMed  CAS  Google Scholar 

  111. Robbins, J., Gulick, J., Sanchez, A., et al. (1990) Mouse embryonic stem cells express the cardiac myosin heavy chain genes during development in vitro. J. Biol. Chem. 265, 11905–11909.

    PubMed  CAS  Google Scholar 

  112. Rosner, M.H., Vigano, M.A., Ozato, K., et al. (1990) A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 345, 686–692.

    Article  PubMed  CAS  Google Scholar 

  113. Rual, J.F., Hirozane-Kishikawa, T., Hao, T., et al. (2004) Human ORFeome version 1.1: a platform for reverse proteomics. Genome Res. 14, 2128–2135.

    Article  PubMed  CAS  Google Scholar 

  114. Saito, S., Sawai, K., Minamihashi, A., et al. (2006) Derivation, maintenance, and induction of the differentiation in vitro of equine embryonic stem cells. Methods Mol. Biol. 329, 59–79.

    PubMed  CAS  Google Scholar 

  115. Sasaki, T., Forsberg, E., Bloch, W., et al. (1998) Deficiency of beta 1 integrins in teratoma interferes with basement membrane assembly and laminin-1 expression. Exp. Cell. Res. 238, 70–81.

    Article  PubMed  CAS  Google Scholar 

  116. Sato, N., Meijer, L., Skaltsounis, L., et al. (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 10, 55–63.

    Article  PubMed  CAS  Google Scholar 

  117. Schmitt, R.M., Bruyns, E., and Snodgrass, H.R. (1991) Hematopoietic development of embryonic stem cells in vitro: cytokine and receptor gene expression. Genes Dev. 5, 728–740.

    Article  PubMed  CAS  Google Scholar 

  118. Scott, S. (2001). Starfish have amazing power of regeneration. Available: http://www.susanscott.net/OceanWatch2001/may25-01.html. Last accessed 30, July 2009.

  119. Serafimidis, I., Rakatzi, I., Episkopou, V., et al. (2008) Novel effectors of directed and Ngn3-mediated differentiation of mouse embryonic stem cells into endocrine pancreas progenitors. Stem Cells 26, 3–16.

    Article  PubMed  CAS  Google Scholar 

  120. Shani, M., Faerman, A., Emerson, C.P., et al. (1992) The consequences of a constitutive expression of MyoD1 in ES cells and mouse embryos. Symp. Soc. Exp. Biol. 46, 19–36.

    PubMed  CAS  Google Scholar 

  121. Sharma, S., Hansen, J.T., and Notter, M.F. (1990) Effects of NGF and dibutyryl cAMP on neuronal differentiation of embryonal carcinoma cells. Int. J. Dev. Neurosci. 8, 33–45.

    Article  PubMed  CAS  Google Scholar 

  122. Shi, Y., Desponts, C., Do, J.T., et al. (2008) Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3, 568–574.

    Article  PubMed  CAS  Google Scholar 

  123. Silva, J., Chambers, I., Pollard, S., et al. (2006) Nanog promotes transfer of pluripotency after cell fusion. Nature 441, 997–1001.

    Article  PubMed  CAS  Google Scholar 

  124. Simpson, J.C., Wellenreuther, R., Poustka, A., et al. (2000) Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing. EMBO Rep. 1, 287–292.

    Article  PubMed  CAS  Google Scholar 

  125. Singh, A.M., Li, F.Q., Hamazaki, T., et al. (2007) Chibby, an antagonist of the Wnt/beta-catenin pathway, facilitates cardiomyocyte differentiation of murine embryonic stem cells. Circulation 115, 617–626.

    Article  PubMed  CAS  Google Scholar 

  126. Smolich, B.D. and Papkoff, J. (1994) Regulated expression of Wnt family members during neuroectodermal differentiation of P19 embryonal carcinoma cells: overexpression of Wnt-1 perturbs normal differentiation-specific properties. Dev. Biol. 166, 300–310.

    Article  PubMed  CAS  Google Scholar 

  127. Soriano, P. (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71.

    Article  PubMed  CAS  Google Scholar 

  128. Stevens, L.C. and Varnum, D.S. (1974) The development of teratomas from parthenogenetically activated ovarian mouse eggs. Dev. Biol. 37, 369–380.

    Article  PubMed  CAS  Google Scholar 

  129. Strausberg, R.L., Feingold, E.A., Klausner, R.D., et al. (1999) The mammalian gene collection. Science 286, 455–457.

    Article  PubMed  CAS  Google Scholar 

  130. Strickland, S. and Mahdavi, V. (1978) The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell 15, 393–403.

    Article  PubMed  CAS  Google Scholar 

  131. Sukoyan, M.A., Vatolin, S.Y., Golubitsa, A.N., et al. (1993) Embryonic stem cells derived from morulae, inner cell mass, and blastocysts of mink: comparisons of their pluripotencies. Mol. Reprod. Dev. 36, 148–158.

    Article  PubMed  CAS  Google Scholar 

  132. Sun, L., Bradford, C.S., Ghosh, C., et al. (1995) ES-like cell cultures derived from early zebrafish embryos. Mol. Mar. Biol. Biotechnol. 4, 193–199.

    PubMed  CAS  Google Scholar 

  133. Tabata, Y., Ouchi, Y., Kamiya, H., et al. (2004) Specification of the retinal fate of mouse embryonic stem cells by ectopic expression of Rx/rax, a homeobox gene. Mol. Cell Biol. 24, 4513–4521.

    Article  PubMed  CAS  Google Scholar 

  134. Tada, M., Takahama, Y., Abe, K., et al. (2001) Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr. Biol. 11, 1553–1558.

    Article  PubMed  CAS  Google Scholar 

  135. Tai, G., Polak, J.M., Bishop, A.E., et al. (2004) Differentiation of osteoblasts from murine embryonic stem cells by overexpression of the transcriptional factor osterix. Tissue Eng. 10, 1456–1466.

    PubMed  CAS  Google Scholar 

  136. Takahashi, K., Okita, K., Nakagawa, M., et al. (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat. Protoc. 2, 3081–3089.

    Article  PubMed  CAS  Google Scholar 

  137. Talbot, N.C., Rexroad, C.E., Jr., Pursel, V.G., et al. (1993) Culturing the epiblast cells of the pig blastocyst. In Vitro Cell Dev. Biol. Anim. 29A, 543–554.

    Article  PubMed  CAS  Google Scholar 

  138. Tapscott, S.J., Davis, R.L., Thayer, M.J., et al. (1988) MyoD1: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science 242, 405–411.

    Article  PubMed  CAS  Google Scholar 

  139. Taranger, C.K., Noer, A., Sorensen, A.L., et al. (2005) Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol. Biol. Cell 16, 5719–5735.

    Article  PubMed  CAS  Google Scholar 

  140. Templeton, N.S., Roberts, D.D., and Safer, B. (1997) Efficient gene targeting in mouse embryonic stem cells. Gene. Ther. 4, 700–709.

    Article  PubMed  CAS  Google Scholar 

  141. Theodorou, E., Dalembert, G., Heffelfinger, C., et al. (2009) A high throughput embryonic stem cell screen identifies Oct-2 as a bifunctional regulator of neuronal differentiation. Genes Dev. 23, 575–588.

    Article  PubMed  CAS  Google Scholar 

  142. Thomas, K.R. and Capecchi, M.R. (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512.

    Article  PubMed  CAS  Google Scholar 

  143. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  144. Thomson, J.A., Kalishman, J., Golos, T.G., et al. (1995) Isolation of a primate embryonic stem cell line. Proc. Natl. Acad. Sci. USA 92, 7844–7848.

    Article  PubMed  CAS  Google Scholar 

  145. Thomson, J.A., Kalishman, J., Golos, T.G., et al. (1996) Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol. Reprod. 55, 254–259.

    Article  PubMed  CAS  Google Scholar 

  146. Tontonoz, P., Hu, E., and Spiegelman, B.M. (1994) Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79, 1147–1156.

    Article  PubMed  CAS  Google Scholar 

  147. Townes, T.M., Chen, H.Y., Lingrel, J.B., et al. (1985) Expression of human beta-globin genes in transgenic mice: effects of a flanking metallothionein-human growth hormone fusion gene. Mol. Cell Biol. 5, 1977–1983.

    PubMed  CAS  Google Scholar 

  148. Vincent, R., Treff, N., Budde, M., et al. (2006) Generation and characterization of novel tetracycline-inducible pancreatic transcription factor-expressing murine embryonic stem cell lines. Stem Cells Dev. 15, 953–962.

    Article  PubMed  CAS  Google Scholar 

  149. Wakayama, T., Perry, A.C., Zuccotti, M., et al. (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374.

    Article  PubMed  CAS  Google Scholar 

  150. Walhout, A.J., Temple, G.F., Brasch, M.A., et al. (2000) GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes. Methods Enzymol. 328, 575–592.

    Article  PubMed  CAS  Google Scholar 

  151. Wang, H., Charles, P.C., Wu, Y., et al. (2006) Gene expression profile signatures indicate a role for Wnt signaling in endothelial commitment from embryonic stem cells. Circ. Res. 98, 1331–1339.

    Article  PubMed  CAS  Google Scholar 

  152. Wang, J., Xie, L.Y., Allan, S., et al. (1998) Myc activates telomerase. Genes Dev. 12, 1769–1774.

    Article  PubMed  CAS  Google Scholar 

  153. Wang, Y., Yates, F., Naveiras, O., et al. (2005) Embryonic stem cell-derived hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 102, 19081–19086.

    Article  PubMed  CAS  Google Scholar 

  154. Wang, Z. and Jaenisch, R. (2004) At most three ES cells contribute to the somatic lineages of chimeric mice and of mice produced by ES-tetraploid complementation. Dev. Biol. 275, 192–201.

    Article  PubMed  CAS  Google Scholar 

  155. Weintraub, H., Tapscott, S.J., Davis, R.L., et al. (1989) Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc. Natl. Acad. Sci. USA 86, 5434–5438.

    Article  PubMed  CAS  Google Scholar 

  156. Weiss, M.J., Keller, G., and Orkin, S.H. (1994) Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev. 8, 1184–1197.

    Article  PubMed  CAS  Google Scholar 

  157. Wichterle, H., Lieberam, I., Porter, J.A., et al. (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397.

    Article  PubMed  CAS  Google Scholar 

  158. Woltjen, K., Michael, I.P., Mohseni, P., et al. (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458, 766–770.

    Article  PubMed  CAS  Google Scholar 

  159. Woodbury, D., Reynolds, K., and Black, I.B. (2002) Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J. Neurosci. Res. 69, 908–917.

    Article  PubMed  CAS  Google Scholar 

  160. Wu, K.H., Liu, Y.L., Zhou, B., et al. (2006) Cellular therapy and myocardial tissue engineering: the role of adult stem and progenitor cells. Eur. J. Cardiothorac. Surg. 30, 770–781.

    Article  PubMed  Google Scholar 

  161. Wutz, A. and Jaenisch, R. (2000) A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol. Cell 5, 695–705.

    Article  PubMed  CAS  Google Scholar 

  162. Yagi, T., Nada, S., Watanabe, N., et al. (1993) A novel negative selection for homologous recombinants using diphtheria toxin A fragment gene. Anal. Biochem. 214, 77–86.

    Article  PubMed  CAS  Google Scholar 

  163. Yanagawa, Y., Kobayashi, T., Ohnishi, M., et al. (1999) Enrichment and efficient screening of ES cells containing a targeted mutation: the use of DT-A gene with the polyadenylation signal as a negative selection maker. Transgenic Res. 8, 215–221.

    Article  PubMed  CAS  Google Scholar 

  164. Ying, Q.L., Nichols, J., Chambers, I., et al. (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–292.

    Article  PubMed  CAS  Google Scholar 

  165. Ying, Q.L., Stavridis, M., Griffiths, D., et al. (2003) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol. 21, 183–186.

    Article  PubMed  CAS  Google Scholar 

  166. Yoshida, K., Chambers, I., Nichols, J., et al. (1994) Maintenance of the pluripotential phenotype of embryonic stem cells through direct activation of gp130 signalling pathways. Mech. Dev. 45, 163–171.

    Article  PubMed  CAS  Google Scholar 

  167. Yu, J., Vodyanik, M.A., He, P., et al. (2006) Human embryonic stem cells reprogram myeloid precursors following cell-cell fusion. Stem Cells 24, 168–176.

    Article  PubMed  Google Scholar 

  168. Yu, J., Vodyanik, M.A., Smuga-Otto, K., (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146.

    Article  CAS  Google Scholar 

  169. Zambrowicz, B.P., Imamoto, A., Fiering, S., et al. (1997) Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc. Natl. Acad. Sci. USA 94, 3789–3794.

    Article  PubMed  CAS  Google Scholar 

  170. Zhao, R., Fahs, S.A., Weiler, H., et al. (2001) An efficient method to successively introduce transgenes into a given genomic locus in the mouse. BMC Dev. Biol. 1, 10.

    Article  PubMed  CAS  Google Scholar 

  171. Zhuang, Y., Kim, C.G., Bartelmez, S., et al. (1992) Helix-loop-helix transcription factors E12 and E47 are not essential for skeletal or cardiac myogenesis, erythropoiesis, chondrogenesis, or neurogenesis. Proc. Natl. Acad. Sci. USA 89, 12132–12136.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Snyder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Theodorou, E., Snyder, M. (2011). Embryonic Stem Cells: Discovery, Development, and Current Trends. In: Appasani, K., Appasani, R. (eds) Stem Cells & Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-860-7_2

Download citation

Publish with us

Policies and ethics