Skip to main content
Log in

Culturing the epiblast cells of the pig blastocyst

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Pig epiblast cells that had been separated from other early embryonic cells were cultured in vitro. A three-step dissection protocol was used to isolate the epiblast from trophectoderm and primitive endoderm before culturing. Blastocysts collected at 7 to 8 days postestrus were immunodissected to obtain the inner cell mass (ICM) and destroy trophectodermal cells. The ICM was cultured for 2 to 3 days on STO feeder cells. The epiblast was then physically dissected free of associated primitive endoderm. Epiblast-derived cells, grown on STO feeders, produced colonies of small cells resembling mouse embryonic stem cells. This primary cell morphology changed as the colonies grew and evolved into three distinct colony types (endodermlike, neural rosette, or complex). Cell cultures derived from these three colony types spontaneously differentiated into numerous specialized cell types in STO co-culture. These included fibroblasts, endodermlike cells, neuronlike cells, pigmented cells, adipogenic cells, contracting muscle cells, dome-forming epithelium, ciliated epithelium, tubule-forming epithelium, and a round amoeboid cell type resembling a plasmacyte after Wright staining. The neuronlike cells, contracting muscle cells, and tubule-forming epithelium had normal karyotypes and displayed finite or undefined life spans upon long-term STO co-culture. The dome-forming epithelium had an indefinite life span in STO co-culture and also retained a normal karyotype. These results demonstrate the in vitro pluripotency of pig epiblast cells and indicate the epiblast can be a source for deriving various specialized cell cultures or cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, P. W.; Oosterhins, J. W.; Damjanov, I. Cell lines from human germ cell tumours. In: Robertson, E. J., ed. Teratocarcinomas and embryonic stem cells: a practical approach. Oxford: IRL Press; 1987:207–248.

    Google Scholar 

  2. Balinsky, B. I. An introduction to embryology. Philadelphia: W. B. Saunders; 1970:566–578.

    Google Scholar 

  3. Bradley, A.; Evans, M.; Kaufman, M. H., et al. Formation of germ line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309:255–256; 1984.

    Article  PubMed  CAS  Google Scholar 

  4. Butler, J. E. Production of experimental chimeras in livestock by blastocyst injection. In: Evans, J. W.; Hollaender, A., eds. Genetic engineering of animals: an agricultural perspective. New York: Plenum Press; 1986:175–185.

    Google Scholar 

  5. Doetschman, T. C.; Eistetter, H.; Katz, M., et al. Thein vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87:27–45; 1985.

    PubMed  CAS  Google Scholar 

  6. Doetschman, T.; Williams, P.; Maeda, N. Establishment of hamster blastocyst-derived embryonic stem (ES) cells. Dev. Biol. 127:224–227; 1988.

    Article  PubMed  CAS  Google Scholar 

  7. Drew, A. H. Growth and differentiation in tissue cultures. Br. J. Exp. Pathol. 4:46–52; 1923.

    CAS  Google Scholar 

  8. Evans, M. J.; Kaufman, M. H. Establishment in culture of pluripotent cells from mouse embryos. Nature 292:154–156; 1981.

    Article  PubMed  CAS  Google Scholar 

  9. Evans, M. J.; Notarianni, E.; Laurie, S., et al. Derivation and preliminary characterization of pluripotent cell lines from porcine and bovine embryos. Theriogenology 33:125–128; 1990.

    Article  Google Scholar 

  10. Gorbstein, C. Some transmission characteristics of the tubule-inducing influence on mouse metanephrogenic mesenchyme. Exp. Cell. Res. 13:575–587; 1957.

    Article  Google Scholar 

  11. Gustavsson, I. (coordinator). Committee for the standardized karyotype of the pig standard karyotype of the domestic pig. Hereditas 109:151–157; 1988.

    PubMed  CAS  Google Scholar 

  12. Hagen, D. R.; Prather, R. S.; Sims, M. M., et al. Development of one-cell porcine embryos to the blastocyst stage in simple media. J. Anim. Sci. 69:1147–1150; 1991.

    PubMed  CAS  Google Scholar 

  13. Watson, P. A slide centrifuge: an apparatus for concentrating cells in suspension on to a microscope slide. J. Lab. and Clin. Med. 68:494–501; 1966.

    CAS  Google Scholar 

  14. Haseyawa, T.; Hara, E. H.; Takehana, K., et al. A transient decrease in N-myc expression and its biological role during differentiation of human embryonal carcinoma cells. Differentiation 47:107–117; 1991.

    Article  Google Scholar 

  15. Hilton, J. H.; Gough, N. M. Leukemia inhibitory factor: a biological perspective. J. Cell. Biochem. 46:21–26; 1991.

    Article  PubMed  CAS  Google Scholar 

  16. Hogan, B.; Tilly, R.In vitro culture and differentiation of normal mouse blastocysts. Nature 265:626–629; 1977.

    Article  PubMed  CAS  Google Scholar 

  17. Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78:7634–7638; 1981.

    Article  PubMed  CAS  Google Scholar 

  18. Montesano, R.; Matsumoto, K.; Nakamura, T., et al. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67:901–908; 1991.

    Article  PubMed  CAS  Google Scholar 

  19. Mossman, H. W. Vertebrate fetal membranes. New Brunswick, NJ: Rutgers University Press; 1987:74–78.

    Google Scholar 

  20. Mummery, C. L.; van Achterberg, T. A. E.; van den Eijnden-van Raaij, J. M., et al. Visceral-endoderm-like cell lines induce differentiation of murine embryonal carcinoma cells. Differentiation 46:51–60; 1991.

    Article  PubMed  CAS  Google Scholar 

  21. Murphy, M.; Reid, K.; Hilton, D. J., et al. Generation of sensory neurons is stimulated by leukemia inhibitory factor. Proc. Natl. Acad. Sci. USA 88:3498–3501; 1991.

    Article  PubMed  CAS  Google Scholar 

  22. Nagy, A.; Gocza, E.; Diaz, E. M., et al. Embryonic stem cells alone are able to support fetal development in the mouse. Development 110:815–821; 1990.

    PubMed  CAS  Google Scholar 

  23. Nicolas, J. F.; Avner, P.; Gaillard, J., et al. Cell lines derived from teratocarcinomas. Cancer Res. 36:4224–4231; 1976.

    PubMed  CAS  Google Scholar 

  24. Notarianni, E.; Laurie, S.; Moor, R. M., et al. Maintenance and differentiation in culture of pluripotential embryonic cell lines from pig blastocysts. J. Reprod. Fertil. Suppl. 41:51–56; 1990.

    PubMed  CAS  Google Scholar 

  25. Parchment, R.; Lewellyn, A.; Swartzendruber, D., et al. Serum amine oxidase activity contributes to crisis in mouse embryo cell lines. Proc. Natl. Acad. Sci. USA 87:4340–4344; 1990.

    Article  PubMed  CAS  Google Scholar 

  26. Pedersen, R. A.; Spindle, A. I.; Wiley, L. M. Regeneration of endoderm by ectoderm isolated from mouse blastocysts. Nature 270:435–437; 1977.

    Article  PubMed  CAS  Google Scholar 

  27. Pera, M. F.; Cooper, S.; Mills, J., et al. Isolation and characterization of a multipotent clone of human embryonal carcinoma cells. Differentiation 42:10–23; 1989.

    Article  PubMed  CAS  Google Scholar 

  28. Piedrahita, J. A.; Anderson, G. B.; BonDurant, R. H. On the isolation of embryonic stem cells: comparative behavior of murine, porcine, and ovine embryos. Theriogenology 34:879–901; 1990.

    Article  PubMed  CAS  Google Scholar 

  29. Rathjen, P. D.; Toth, S.; Willis, A., et al. Differentiation inhibiting activity is produced in matrix associated and diffusible forms that are generated by alternate promoter usage. Cell 62:1105–1114; 1990.

    Article  PubMed  CAS  Google Scholar 

  30. Robertson, E. Embryo-derived stem cell lines. In: Robertson, E., ed. Teratocarcinomas and embryonic stem cells: a practical approach. Oxford: IRL Press; 1987:71–112.

    Google Scholar 

  31. Robertson, E. J.; Bradley, A. Production of permanent cell lines from early embryos and their use in studying developmental problems. In: Rossant, J.; Pedersen, R. A., eds. Experimental approaches to mammalian embryonic development. New York: Cambridge University Press; 1986:475–508.

    Google Scholar 

  32. Rohme, D. Evidence for a relationship between longevity of mammalian species and life spans of normal fibroblastsin vitro and erythrocytesin vivo. Proc. Natl. Acad. Sci. USA 78:5009–5013; 1981.

    Article  PubMed  CAS  Google Scholar 

  33. Schmitt, R. M.; Bruyns, E.; Snodgrass, H. R. Hematopoietic development of embryonic stem cellsin vitro: cytokine and receptor gene expression. Genes Dev. 5:728–740; 1991.

    PubMed  CAS  Google Scholar 

  34. Schubert, D.; Kimura, H.; LaCorbiere, M., et al. Activin is a nerve cell survival molecule. Nature 344:868–870; 1990.

    Article  PubMed  CAS  Google Scholar 

  35. Smith, A. T.; Hooper, M. L. Medium conditioned by feeder cells inhibits the differentiation of embryonal carcinoma cultures. Exp. Cell. Res. 145:458–462; 1983.

    Article  PubMed  CAS  Google Scholar 

  36. Solter, D.; Knowles, B. B. Immunosurgery of mouse blastocyst. Proc. Natl. Acad. Sci. USA 72:5099–5102; 1975.

    Article  PubMed  CAS  Google Scholar 

  37. Strojek, R. M.; Reed, M. A.; Hoover, J. L., et al. A method for cultivating morphologically undifferentiated embryonic stem cells from porcine blastocysts. Theriogenology 33:901–913; 1990.

    Article  PubMed  CAS  Google Scholar 

  38. Tookey, J. I. Sulfhydryl dependence in primary explant hematopoietic cells. Inhibition of growthin vitro with vitamin B12 compounds. Proc. Natl. Acad. Sci. USA 72:73–77; 1975.

    Article  Google Scholar 

  39. van den Eijnden-van Raaij, A. J. M.; van Achterberg, T. A. E.; van der Kvuijssen, C. M. M., et al. Differentiation of aggregated murine P19 embryonal carcinoma cells is induced by a novel visceral endoderm-specific FGF-like factor and inhibited by activin. A. Mech. Dev. 33:157–166; 1991.

    Article  Google Scholar 

  40. Wiles, M. V.; Kellor, G. Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development 111:259–267; 1991.

    PubMed  CAS  Google Scholar 

  41. Williams, L. R.; Hilton, D. J.; Pease, S., et al. Myeloid leukemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336:684–687; 1988.

    Article  PubMed  CAS  Google Scholar 

  42. Wilmut, I.; Hooper, M. L.; Simons, J. P. Genetic manipulation of mammals and its application in reproductive biology. J. Reprod. Fertil. 92:245–279; 1991.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talbot, N.C., Rexroad, C.E., Pursel, V.G. et al. Culturing the epiblast cells of the pig blastocyst. In Vitro Cell Dev Biol - Animal 29, 543–554 (1993). https://doi.org/10.1007/BF02634148

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634148

Key words

Navigation