Skip to main content

The Use of NASA LANCE Imagery and Data for Near Real-Time Applications

  • Chapter
  • First Online:
Time-Sensitive Remote Sensing

Abstract

NASA’s Land, Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) supports users interested in monitoring and analyzing a wide variety of natural and man-made phenomena in Near Real-Time (NRT). This chapter provides descriptions of how LANCE products are being used and key lessons learned about delivering these products to end-users. The applications of LANCE data and imagery described in this chapter include: agricultural monitoring, volcano monitoring, aerosol forecasting, short-term weather forecasting, supplying ships with ice conditions, planning flights near hurricanes, monitoring air quality, and the use of fire email alerts to warn of illegal fires in protected forests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For more information about the AQI, go to http://www.airnow.gov.

  2. 2.

    Correspondence and informal interviews with users and feedback from users through the NASA EOSDIS User Support Tool.

References

  • Aquila V, Oman LD, Stolarski RS et al (2012) Dispersion of the volcanic sulfate cloud from a Mount Pinatubo–like eruption. J Geophys Res 117:D06216. doi:10.1029/2011JD016968

    Google Scholar 

  • Becker-Reshef I, Justice C, Sullivan M et al (2010a) Monitoring global croplands with coarse resolution earth observations: the Global Agriculture Monitoring (GLAM) Project. Remote Sens 2:1589–1609. doi:10.3390/rs2061589

    Article  Google Scholar 

  • Becker-Reshef I, Vermote E, Lindeman M, Justice C (2010b) A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sens Environ 114:1312–1323. doi:10.1016/j.rse.2010.01.010

    Article  Google Scholar 

  • Bian H, Colarco PR, Chin M et al (2013) Source attributions of pollution to the Western Arctic during the NASA ARCTAS field campaign. Atmos Chem Phys 13:4707–4721. doi:10.5194/acp-13-4707-2013

    Article  Google Scholar 

  • Carn SA, Krueger AJ, Krotkov NA et al (2008) Tracking volcanic sulfur dioxide clouds for aviation hazard mitigation. Nat Hazards 51:325–343. doi:10.1007/s11069-008-9228-4

    Article  Google Scholar 

  • Chin M, Ginoux P, Kinne S et al (2002) Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements. J Atmos Sci 59:461–483. doi:10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2

    Article  Google Scholar 

  • Colarco P, da Silva A, Chin M, Diehl T (2010) Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J Geophys Res 115:D14207. doi:10.1029/2009JD012820

    Article  Google Scholar 

  • Darmenov A, da Silva AM (2013) The Quick Fire Emissions Dataset (QFED)—documentation of versions 2.1, 2.2 and 2.4. NASA Technical Report Series on Global Modeling and Data Assimilation 32

    Google Scholar 

  • Jedlovec G (2013) Transitioning research satellite data to the operational weather community: The SPoRT Paradigm [Organization Profiles]. Geosci Remote Sens Mag IEEE 1:62–66. doi:10.1109/MGRS.2013.2244704

    Google Scholar 

  • Justice CO, Townshend JRG, Holben BN, Tucker CJ (1985) Analysis of the phenology of global vegetation using meteorological satellite data. Int J Remote Sens 6:1271–1318. doi:10.1080/01431168508948281

    Article  Google Scholar 

  • Justice CO, Townshend JRG, Vermote EF et al (2002) An overview of MODIS Land data processing and product status. Remote Sens Environ 83:3–15. doi:10.1016/S0034-4257(02)00084-6

    Article  Google Scholar 

  • Justice CO, Román MO, Csiszar I et al (2013) Land and cryosphere products from Suomi NPP VIIRS: overview and status. J Geophys Res Atmos 118:1–13. doi:10.1002/jgrd.50771

    Article  Google Scholar 

  • Krueger AJ, Krotkov NA, Yang K et al (2009) Applications of satellite-based sulfur dioxide monitoring. IEEE J Sel Top Appl Earth Obs Remote Sens 2:293–298. doi:10.1109/JSTARS.2009.2037334

    Article  Google Scholar 

  • Masuoka E, Roy D, Wolfe R et al (2011) MODIS land data products: generation, quality assurance and validation. L Remote Sens Glob Environ Change 11:509–531

    Google Scholar 

  • Murphy K, Justice CO, Lowe D et al (2012) LANCE user working group meeting summary. Earth Obs 24:19–21

    Google Scholar 

  • Nowottnick E, Colarco P, Ferrare R et al (2010) Online simulations of mineral dust aerosol distributions: comparisons to NAMMA observations and sensitivity to dust emission parameterization. J Geophys Res 115:D03202. doi:10.1029/2009JD012692

    Google Scholar 

  • Nowottnick E, Colarco P, da Silva A et al (2011) The fate of Saharan dust across the Atlantic and implications for a central American dust barrier. Atmos Chem Phys Discuss 11:8337–8384. doi:10.5194/acpd-11-8337-2011

    Article  Google Scholar 

  • Randles CA, Colarco PR, da Silva A (2013) Direct and semi-direct aerosol effects in the NASA GEOS-5 AGCM: aerosol-climate interactions due to prognostic versus prescribed aerosols. J Geophys Res Atmos 118:149–169. doi:10.1029/2012JD018388

    Article  Google Scholar 

  • Trigg SN, Roy DP (2007) A focus group study of factors that promote and constrain the use of satellite-derived fire products by resource managers in southern Africa. J Environ Manag 82:95–110. doi:10.1016/j.jenvman.2005.12.008

    Article  Google Scholar 

  • Tucker CJ, Holben BN, Elgin JH, McMurtrey JE (1981) Remote sensing of total dry-matter accumulation in winter wheat. Remote Sens Environ 11:171–189. doi:10.1016/0034-4257(81)90018-3

    Article  Google Scholar 

  • Vizcarra N (2012) https://earthdata.nasa.gov/featured-stories/featured-research/orbiting-watchtowers. Accessed 10 April 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Murphy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davies, D. et al. (2015). The Use of NASA LANCE Imagery and Data for Near Real-Time Applications. In: Lippitt, C., Stow, D., Coulter, L. (eds) Time-Sensitive Remote Sensing. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2602-2_11

Download citation

Publish with us

Policies and ethics