Skip to main content

ASTER Datasets and Derived Products for Global Glacier Monitoring

  • Chapter
  • First Online:
Global Land Ice Measurements from Space

Part of the book series: Springer Praxis Books ((GEOPHYS))

Abstract

This book investigates a wide selection of the world’s glaciers and the status of remote-sensing and GIS technologies designed to address their global monitoring in this age of rapid climate change impacts on glaciers and increasing awareness of the policy and economic relevance of glaciers in areas as diverse as water resources and geohazards. This chapter focuses on an important part of the data component, especially data from the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) project, which also spawned the Global Land Ice Measurements from Space (GLIMS) project as an ASTER Science Team member project (see Foreword by Hugh Kieffer). ASTER’s combination of sensor systems, spanning the visible through thermal infrared and its stereo-imaging capability, the high radiometric and geometric fidelity of the cameras, combined with a liberal data dissemination policy for glacier images, have made it a favored instrument for glacier remote-sensing studies. Operational use of the instrument with on-demand targeting has also aided specific studies ranging from preplanned field campaigns to rapid response to glacier-related disasters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arai, K., and Tonooka, H. (2005) Radiometric performance evaluation of ASTER VNIR, SWIR, and TIR. IEEE Transactions on Geoscience and Remote Sensing, 43(12), 2725–2732.

    Google Scholar 

  • Arai, K., Thome, K., Iwasaki, A., and Biggar, S. (2011) ASTER VNIR and SWIR Radiometric Calibration and Atmospheric Correction. In: B. Ramachandran, C. Justice, and M. Abrams (Eds.), Land Remote Sensing and Global Environmental Change, NASA’s Earth Observing System and the Science of ASTER and MODIS. Springer-Verlag, New York.

    Google Scholar 

  • ATBD (1999) Algorithm Theoretical Basis Document for ASTER Level 2B1 Surface Radiance and Level 2B5 Surface Reflectance. Principal Investigator: Kurt Thome. Available at http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/atbd/docs/ASTER/atbd-ast-07-09.pdf

  • Bishop, M.P., Olsenholler, J.A., Shroder, J.F., Barry, R.G., Raup, B.H., Bush, A.B.G., Copland, L., Dwyer, J.L., Fountain, A.G., Haeberli, W. et al. (2004) Global Land Ice Measurements from Space (GLIMS): Remote sensing and GIS investigations of the Earth’s cryosphere. Geocarto International, 19(2), 57–84.

    Google Scholar 

  • Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J.G., Frey, H., Kargel, J.S., Fujita, K., Scheel, M. et al. (2012) The state and fate of Himalayan glaciers. Science, 336, 310–314, and supplemental online material.

    Google Scholar 

  • Chrysoulakis N., Abrams, M., Kamarianakis, Y., and Stanislawski, M. (2011) Validation of ASTER GDEM for the area of Greece. Photogrammetric Engineering & Remote Sensing, 77(2), 157–165.

    Google Scholar 

  • Daucsavage, J., Kaminski, M., Ramachandran, B., Jenkerson, C., Sprenger, K., Faust, R., and Rockvam, T. (2011) ASTER and MODIS land data management at the land processes, and National Snow and Ice Data Centers. In: B. Ramachandran, C. Justice, and M. Abrams (Eds.), Land Remote Sensing and Global Environmental Change, NASA’s Earth Observing System and the Science of ASTER and MODIS. Springer-Verlag, New York.

    Google Scholar 

  • Fujisada, H. (2011) Terra ASTER instrument design and geometry. In: B. Ramachandran, C. Justice, and M. Abrams (Eds.), Land Remote Sensing and Global Environmental Change, NASA’s Earth Observing System and the Science of ASTER and MODIS. Springer-Verlag, New York.

    Google Scholar 

  • Gardelle, J., Berthier, E., and Arnaud, Y. (2012a) Slight mass gain of Karakoram glaciers in the early twentyfirst century. Nature Geoscience, 5, 322–325.

    Google Scholar 

  • Gardelle, J., Berthier, E., and Arnaud, Y. (2012b) Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing. Journal of Glaciology, 58(208), 419–422.

    Google Scholar 

  • Gesch, D.B., Oimoen, M.J., Zhang, Z., Meyer, D.J., and Danielson, J.J. (2012) Validation of the ASTER Global Digital Elevation Model Version 2 over the conterminous United States. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX(B4).

    Google Scholar 

  • Gillespie, A.R., Rokugawa, S., Matsunaga T., Cothern, S., Hook, S.J., and Kahle, A.B. (1998) A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36, 1113–1126.

    Google Scholar 

  • Gustafson, W.T., Gillespie, A.R., and Yamada, G. (2006) Revisions to the ASTER temperature/emissivity separation algorithm. In: J.A. Sobrino (Ed.), Second Recent Advances in Quantitative Remote Sensing. Publicacions de la Universitat de Vale`ncia, Spain, pp. 770–775.

    Google Scholar 

  • Iwasaki, A., and Fujisada, H. (2005) ASTER geometric performance. IEEE Transactions on Geoscience and Remote Sensing, 43, 2700–2706.

    Google Scholar 

  • Iwasaki, A., and Tonooka, H. (2005) Validation of a crosstalk correction algorithm for ASTER/SWIR. IEEE Transactions on Geoscience and Remote Sensing, 43, 2747–2751.

    Google Scholar 

  • JPL (2001) ASTER Higher-Level Product User Guide, Version 2.0 (JPL D-20062). JPL-CalTech, Pasadena, CA.

    Google Scholar 

  • Kääb, A., Huggel, C., Paul, F., Wessels, R., Raup, B., Kieffer, H., and Kargel, J. (2003a) Glacier Monitoring from ASTER imagery: Accuracy and applications. Paper presented at Proceedings of EARSeL LISSIG Workshop: Observing Our Cryosphere from Space, Bern, March 11–13, 2002 (EARSeL eProceedings No. 2, pp. 43–53).

    Google Scholar 

  • Kääb A., Wessels, R., Haeberli, W., Huggel, C., Kargel, J.S., and Khalsa, S.J.S (2003b) Rapid ASTER imaging facilitates timely assessment of glacier hazards and disasters. EOS Trans. Am. Geophys. Union, 84(13), 117–121.

    Google Scholar 

  • Kargel, J.S., Abrams, M.J., Bishop, M.P., Bush, A., Hamilton, G., Jiskoot, H., Kääb, A., Kieffer, H.H., Lee, E.M., Paul, F. et al. (2005). Multispectral imaging contributions to global land ice measurements from space. Remote Sensing of Environment, 99, 187–219.

    Google Scholar 

  • Kargel, J.S., Leonard, G., Crippen, R.E., Delaney, K.B., Evans, S.G., and Schneider, J. (2010) Satellite monitoring of Pakistan’s rockslide-dammed Lake Gojal. EOS Trans. Am. Geophys. Union, 91(43), doi: 10.1029/2010EO430002.

    Google Scholar 

  • Kargel, J., Furfaro, R., Kaser, G., Leonard, G., Fink, W., Huggel, C., Kääb, A., Raup, B., Reynolds, J., Wolfe, D. et al. (2011). ASTER imaging and analysis of glacier hazards. In: B. Ramachandran, C.O. Justice, and M.J. Abrams (Eds.), Land Remote Sensing and Global Environmental Change: NASA’s Earth Observing System and the Science of Terra and Aqua. Springer-Verlag, New York, pp. 325–373.

    Google Scholar 

  • Kargel, J.S., Ahlstrøm, A.P., Alley, R.B., Bamber, J.L., Benham, T.J., Box, J.E., Chen, C., Christoffersen, P., Citterio, M., Cogley, J.G. et al. (2012a) (Brief Communication) Greenland’s shrinking ice cover: ‘‘Fast times’’ but not that fast. The Cryosphere, 6, 533–537. Available at http://www.the-cryosphere.net/6/533/2012/ doi: 10.5194/tc-6-533-2012.

    Google Scholar 

  • Kargel, J.S., Alho, P., Buytaert, W., Celleri, R., Cogley, J.G., Dussaillant, A., Zambrano, G., Haeberli, W. Harrison, S., Leonard, G. et al. (2012b) Glaciers in Patagonia: Controversy and Prospects. EOS Trans. Am. Geophys. Union, 93, 212.

    Google Scholar 

  • Kieffer, H., Kargel, J., Barry, R., Bindschadler, R., Bishop, M., MacKinnon, D., Ohmura, A., Raup, B., Antoninetti, M., Bamber, J. et al. (2000) New eyes in the sky measure glaciers and ice sheets. EOS Trans. Am. Geophys. Union, 81(24), June 13.

    Google Scholar 

  • Matsunaga, T. (1994) A temperature-emissivity separation method using an empirical relationship between the mean, the maximum, and the minimum of the thermal infrared emissivity spectrum. Journal of Remote Sensing Society of Japan, 14(2), 230–241 [in Japanese with English abstract].

    Google Scholar 

  • Nuth, C. and Kääb, A. (2011) Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. The Cryosphere, 5, 271–290.

    Google Scholar 

  • Plafcan, D. (2011) Technoscientific diplomacy: The practice of international politics in the ASTER collaboration. In: B. Ramachandran, C. Justice, and M. Abrams (Eds.), Land Remote Sensing and Global Environmental Change, NASA’s Earth Observing System and the Science of ASTER and MODIS. Springer-Verlag, New York.

    Google Scholar 

  • Ramachandran, B., Justice, C., and Abrams, M. (2011) Land Remote Sensing and Global Environmental Change, NASA’s Earth Observing System and the Science of ASTER and MODIS. Springer-Verlag, New York.

    Google Scholar 

  • Raup, B.H., and J.S. Kargel (2012) Global land ice measurements from space (GLIMS). In: R.S. Williams and J.G. Ferrigno (Eds.), Satellite Image Atlas of the Glaciers of the World, Volume A—State of the Earth’s Cryosphere at the Beginning of the 21st Century: Glaciers, Snow Cover, Floating Ice, and Permafrost and Periglacial Environments (in press).

    Google Scholar 

  • Raup, B.H., Kieffer, H.H., Hare, T.M., and Kargel, J.S. (2000) Generation of data acquisition requests for the ASTER satellite instrument for monitoring a globally distributed target: Glaciers. IEEE Transactions on Geoscience and Remote Sensing, 38(2), 1105–1112.

    Google Scholar 

  • Raup, R., Kääb, A., Kargel, J.S., Bishop, M.P., Hamilton, G., Lee, E., Paul, F., Rau, F., Soltesz, D., Khalsa, S.J.S. et al. (2007) Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) project. Computers and Geoscience, doi: 10.1016/j.cageo.2006.05.015.

    Google Scholar 

  • Sakuma, F., Kikuchi, M., Ohgi, N., Inada, H., Akagi, S., and Ono, H. (2011) Eleven years of ASTER onboard calibration. Proc. SPIE 8176, Sensors, Systems, and Next-Generation Satellites XV, 81760F (October 3, 2011), doi: 10.1117/12.897744.

  • Tachikawa, T., Hato, M., Kaku, M., and Iwasaki, A. (2011) Characteristics of ASTER GDEM Version 2. IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS) Proceedings, pp. 3657–3660.

    Google Scholar 

  • Tonooka, H. (2011) ASTER TIR radiometric calibration and atmospheric correction. In: B. Ramachandran, C. Justice, and M. Abrams (Eds.), Land Remote Sensing and Global Environmental Change, NASA’s Earth Observing System and the Science of ASTER and MODIS. Springer-Verlag, New York.

    Google Scholar 

  • Tonooka, H., and Iwasaki, A. (2003) Improvement of ASTER/SWIR crosstalk correction. Proc. SPIE 5234, pp. 168–179.

    Google Scholar 

  • Toutin, T. (2011). ASTER stereoscopic data and digital elevation models. In: B. Ramachandran, C. Justice, and M. Abrams (Eds.), Land Remote Sensing and Global Environmental Change, NASA’s Earth Observing System and the Science of ASTER and MODIS. Springer-Verlag, New York.

    Google Scholar 

  • Watanabe, H., Bailey, G.B., Duda, K., Kannari, Y., Miura, A., and Ramachandran, B. (2011) The ASTER data system: An overview of the data products in Japan and in the United States. In: B. Ramachandran, C. Justice, and M. Abrams (Eds.), Land Remote Sensing and Global Environmental Change, NASA’s Earth Observing System and the Science of ASTER and MODIS. Springer-Verlag, New York.

    Google Scholar 

  • Yamaguchi, Y., Kahle, A.B., Tsu, H., Kawakami, T., and Pniel, M. (1998) Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1062–1071.

    Google Scholar 

Download references

Acknowledgments

We would like to thank Masami Hato (ERSDAC, Tokyo), Ken Duda (LP DAAC, Sioux Falls), and Bjorn Eng (JPL, Pasadena) for their help in tracking down certain critical details of the ASTER mission. We also thank Alan Gillespie (University of Washington, Seattle) for his updates and clarifications regarding the TES algorithm. ASTER data courtesy of NASA/GSFC/METI/Japan Space Systems, the U.S./Japan ASTER Science Team, and the GLIMS project.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ramachandran, B., Dwyer, J., Raup, B.H., Kargel, J.S. (2014). ASTER Datasets and Derived Products for Global Glacier Monitoring. In: Kargel, J., Leonard, G., Bishop, M., Kääb, A., Raup, B. (eds) Global Land Ice Measurements from Space. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79818-7_6

Download citation

Publish with us

Policies and ethics