Skip to main content

Advertisement

Log in

Tracking volcanic sulfur dioxide clouds for aviation hazard mitigation

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Satellite measurements of volcanic sulfur dioxide (SO2) emissions can provide critical information for aviation hazard mitigation, particularly when ash detection techniques fail. Recent developments in space-based SO2 monitoring are discussed, focusing on daily, global ultraviolet (UV) measurements by the Ozone Monitoring Instrument (OMI) on NASA’s Aura satellite. OMI’s high sensitivity to SO2 permits long-range tracking of volcanic clouds in the upper troposphere and lower stratosphere (UTLS) and accurate mapping of their perimeters to facilitate avoidance. Examples from 2006 to 2007 include eruptions of Soufriere Hills (Montserrat), Rabaul (Papua New Guinea), Nyamuragira (DR Congo), and Jebel at Tair (Yemen). A tendency for some volcanic clouds to occupy the jet stream suggests an increased threat to aircraft that exploit this phenomenon. Synergy between NASA A-Train sensors such as OMI and the Atmospheric Infrared Sounder (AIRS) on the Aqua satellite can provide critical information on volcanic cloud altitude. OMI and AIRS SO2 data products are being produced in near real-time for distribution to Volcanic Ash Advisory Centers (VAACs) via a NOAA website. Operational issues arising from these improved SO2 measurements include the reliability of SO2 as proxy for co-erupted ash, the duration of VAAC advisories for long-lived volcanic clouds, and the potential effects of elevated concentrations of SO2 and sulfate aerosol in ash-poor clouds on aircraft and avionics (including cumulative effects after multiple inadvertent transits through dilute clouds). Further research is required in these areas. Aviation community assistance is sought through continued reporting of sulfurous odors or other indications of diffuse volcanic cloud encounters, in order to validate the satellite retrievals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AI:

Aerosol Index

AIRS:

Atmospheric Infrared Sounder

AVHRR:

Advanced very high resolution radiometer

CALIOP:

Cloud-Aerosol Lidar with Orthogonal Polarization

CALIPSO:

Cloud-aerosol Lidar and Infrared Pathfinder Satellite Observation

CCD:

Charge-coupled device

CNMI:

Commonwealth of the Northern Mariana Islands

COSPEC:

Correlation spectroscopy

DOAS:

Differential optical absorption spectroscopy

EP:

Earth Probe

EPA:

Environmental Protection Agency

GOME:

Global Ozone Monitoring Experiment

HYSPLIT:

Hybrid Single-Particle Lagrangian Integrated Trajectory

IASI:

Infrared Atmospheric Sounding Interferometer

IR:

Infrared

LT:

Local time

MLS:

Microwave Limb Sounder

MODIS:

Moderate Resolution Infrared Spectroradiometer

N7:

Nimbus-7

NASA:

National Aeronautics and Space Administration

NOAA:

National Oceanic and Atmospheric Administration

NRT:

Near real time

OMI:

Ozone Monitoring Instrument

PBL:

Planetary boundary layer

PNG:

Papua New Guinea

SCIAMACHY:

Scanning Imaging Absorption Spectrometer For Atmospheric Cartography

TES:

Tropospheric Emission Spectrometer

TOMS:

Total Ozone Mapping Spectrometer

UT:

Universal time

UTLS:

Upper troposphere and lower stratosphere

UV:

Ultraviolet

VAAC:

Volcanic Ash Advisory Center

VCD:

Vertical column density

VEI:

Volcanic Explosivity Index

References

  • Alzueta MU, Bilbao R, Glarborg P (2001) Inhibition and sensitization of fuel oxidation by SO2. Combust Flame 127:2234–2251

    Article  Google Scholar 

  • Bernard A, Rose WI (1990) The injection of sulfuric acid aerosols in the stratosphere by the El Chichón volcano and its related hazards to the international air traffic. Nat Hazards 3:59–67

    Article  Google Scholar 

  • Bluth GJS, Carn SA (2008) Exceptional sulfur degassing from Nyamuragira volcano, 1979–2005. Int J Remote Sens (in press)

  • Bluth GJS, Scott CJ, Sprod IE, Schnetzler CC, Krueger AJ, Walter LS (1995) Explosive emissions of sulfur dioxide from the 1992 Crater Peak eruptions, Mount Spurr volcano, Alaska. In: Keith TEC (ed) The 1992 eruptions of Crater Peak vent, Mount Spurr volcano, Alaska. U.S. Geological Survey Bulletin 2139, pp 37–45

  • Bovensmann H, Burrows JP, Buchwitz M, Frerick J, Noël S, Rozanov VV, Chance KV, Goede AHP (1999) SCIAMACHY—Mission objectives and measurement modes. J Atmos Sci 56(2):127–150

    Article  Google Scholar 

  • Burrows JP, Weber M, Buchwitz M, Rozanov V, Ladstätter-Weissenmayer A, Richter A, de Beek R, Hoogen R, Bramstedt K, Eichmann K-U, Eisinger M, Perner D (1999) The Global Ozone Monitoring Experiment (GOME): Mission concept and first scientific results. J Atmos Sci 56:151–175

    Article  Google Scholar 

  • Bursik M (2001) Effect of wind on the rise height of volcanic plumes. Geophys Res Lett 28(18):3621–3624

    Article  Google Scholar 

  • Cantor R (1998) Complete avoidance of volcanic ash is only procedure that guarantees flight safety. ICAO Mag 53(18–19):26

    Google Scholar 

  • Carey S, Bursik M (2000) Volcanic plumes. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic Press, San Diego, CA, pp 527–544

    Google Scholar 

  • Carn SA, Krueger AJ, Bluth GJS, Schaefer SJ, Krotkov NA, Watson IM, Datta S (2003) Volcanic eruption detection by the Total Ozone Mapping Spectrometer (TOMS) instruments: a 22-year record of sulfur dioxide and ash emissions, In: Oppenheimer C, Pyle DM, Barclay J (eds) Volcanic degassing. Geological Society, London, Special Publications, 213, pp 177–202

  • Carn SA, Strow LL, de Souza-Machado S, Edmonds Y, Hannon S (2005) Quantifying tropospheric volcanic emissions with AIRS: the 2002 eruption of Mt. Etna (Italy). Geophys Res Lett 32, L02301, doi:10.1029/2004GL021034

  • Carn SA, Krotkov NA, Yang K, Hoff RM, Prata AJ, Krueger AJ, Loughlin SC, Levelt PF (2007) Extended observations of volcanic SO2 and sulfate aerosol in the stratosphere. Atmos Chem, Phys Discuss 7:2857–2871 [Available online from http://www.atmos-chem-phys-discuss.net/7/2857/2007/acpd-7-2857-2007.html]

  • Carn SA, Krueger AJ, Krotkov NA, Arellano S, Yang K (2008) Daily monitoring of Ecuadorian volcanic degassing from space. J Volcanol Geotherm Res (in press)

  • Casadevall TJ (1994) The 1989–90 eruption of Redoubt volcano, Alaska: impacts on aircraft operations. J Volcanol Geotherm Res 62:301–316

    Article  Google Scholar 

  • Casadevall TJ, Krohn MD (1995) Effects of the 1992 Crater Peak eruptions on airports and aviation operations in the United States and Canada. In: Keith TEC (ed) The 1992 eruptions of Crater Peak vent, Mount Spurr volcano, Alaska. U.S. Geological Survey Bulletin 2139, pp 205–220

  • Casadevall TJ, Delos Reyes PJ, Schneider DJ (1996) The 1991 Pinatubo eruptions and their effects on aircraft operations. In: Newhall CG, Punongbayan RS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. University of Washington Press, Seattle/London, pp 1071–1088

    Google Scholar 

  • Constantine EK, Bluth GJS, Rose WI (2000) TOMS and AVHRR observations of drifting volcanic clouds from the August 1991 eruptions of Cerro Hudson. In: Mouginis-Mark PJ, Crisp JA, Fink JH (eds) Remote sensing of active volcanism. Geophysical monograph 116, American Geophysical Union, Washington, DC, pp 45–64

  • Draxler RR, Rolph GD (2003) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model, access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, MD

  • Eisinger M, Burrows JP (1998) Tropospheric sulfur dioxide observed by the ERS-2 GOME instrument. Geophys Res Lett 25:4177–4180

    Article  Google Scholar 

  • Ellrod GP, Connell BH, Hillger DW (2003) Improved detection of airborne volcanic ash using multispectral infrared satellite data. J Geophys Res 108:4356, doi:10.1029/2002JD002802

  • EPA (2007) National Ambient Air Quality Standards (NAAQS). [Available online from http://epa.gov/air/criteria.html]

  • Grindle TJ, Burcham FW Jr (2002) Even minor ash encounters can cause major damage to aircraft. ICAO J 57:12–30

    Google Scholar 

  • Guffanti M, Ewert JW, Gallina GM, Bluth GJS, Swanson GL (2005) Volcanic-ash hazard to aviation during the 2003–2004 eruptive activity of Anatahan volcano, Commonwealth of the Northern Mariana Islands. J Volcanol Geotherm Res 146:241–255

    Article  Google Scholar 

  • IAVWOPSG (2005) Further evaluation of including smell of sulfur as a reportable element in the AIREP. International Airways Volcano Watch Operations Group, Working Paper IAVWOPSG/2-WP/32. [Available at: http://www.icao.int/anb/iavwopsg/meetings/iavwopsg2/wp/WP32.pdf]

  • IVHHN (2007) Gas and aerosol guidelines for sulfur dioxide (SO2) [Available at: http://www.esc.cam.ac.uk/ivhhn/guidelines/gas/so2.html]

  • Krotkov NA, Carn SA, Krueger AJ, Bhartia PK, Yang K (2006) Band residual difference algorithm for retrieval of SO2 from the Aura Ozone Monitoring Instrument (OMI). IEEE Trans Geosci Remote Sens 44(5):1259–1266, doi:10.1109/TGRS.2005.861932

    Article  Google Scholar 

  • Krueger AJ (1983) Sighting of El Chichon sulfur dioxide clouds with the Nimbus 7 total ozone mapping spectrometer. Science 220:1377–1379

    Article  Google Scholar 

  • Krueger AJ, Walter LS, Schnetzler CC, Doiron SD (1990) TOMS measurement of the sulfur dioxide emitted during the 1985 Nevado del Ruiz eruptions. J Volcanol Geotherm Res 41:7–15

    Article  Google Scholar 

  • Krueger AJ, Walter LS, Bhartia PK, Schnetzler CC, Krotkov NA, Sprod I, Bluth GJS (1995) Volcanic sulfur dioxide measurements from the total ozone mapping spectrometer instruments. J Geophys Res 100:14057–14076

    Article  Google Scholar 

  • Krueger AJ, Schaefer S, Krotkov N, Bluth G, Barker S (2000) Ultraviolet remote sensing of volcanic emissions. In: Mouginis-Mark PJ, Crisp JA, Fink JH (eds) Remote sensing of active volcanism. Geophysical Monograph 116, American Geophysical Union, Washington, DC, pp 25–43

  • Levelt PF, van den Oord GHJ, Dobber MR, Mälkki A, Visser H, De Vries J, Stammes P, Lundell JOV, Saari H (2006) The ozone monitoring instrument. IEEE Trans Geosci Remote Sens 44(5):1093–1101, doi:10.1109/TGRS.2006.872333

    Article  Google Scholar 

  • Miller TP, Casadevall TJ (2000) Volcanic ash hazards to aviation. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic Press, San Diego, CA, pp 915–930

    Google Scholar 

  • Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87:1231–1238

    Article  Google Scholar 

  • Pavolonis MJ, Feltz WF, Heidinger AK, Gallina GM (2006) A daytime complement to the reverse absorption technique for improved automated detection of volcanic ash. J Atmos Ocean Tech 23:1422–1444

    Article  Google Scholar 

  • Pieri D, Ma C, Simpson JJ, Hufford G, Grindle T, Grove C (2002) Analyses of in-situ airborne volcanic ash from the February 2000 eruption of Hekla volcano, Iceland. Geophys Res Lett 29(16):1767, doi:10.1029/2001GL013688

    Article  Google Scholar 

  • Prata AJ: 1989a, Observations of volcanic ash clouds in the 10–12-micron window using AVHRR/2 data. Int J Remote Sens 10:751–761

    Article  Google Scholar 

  • Prata AJ: 1989b, Radiative transfer calculations for volcanic ash clouds. Geophys Res Lett 16:1293–1296

    Article  Google Scholar 

  • Prata AJ, Bernardo C (2007) Retrieval of volcanic SO2 column abundance from Atmospheric Infrared Sounder data. J Geophys Res 112, D20204, doi:10.1029/2006JD007955

  • Prata AJ, Carn SA, Stohl A, Kerkmann J (2007) Long range transport and fate of a stratospheric volcanic cloud from Soufrière Hills volcano, Montserrat. Atmos Chem Phys 7:5093–5103 (http://www.atmos-chem-phys.net/7/5093/2007/acp-7-5093-2007.html)

  • Rolph GD (2003) Real-time Environmental Applications and Display system (READY) Website [http://www.arl.noaa.gov/ready/hysplit4.html], NOAA Air Resources Laboratory, Silver Spring, MD

  • Rose WI, Delene DJ, Schneider DJ, Bluth GJS, Krueger AJ, Sprod I, McKee C, Davies HL, Ernst GGJ (1995) Ice in the 1994 Rabaul eruption cloud: implications for volcano hazard and atmospheric effects. Nature 375:477–479

    Article  Google Scholar 

  • Rose WI, Millard GA, Mather TA, Hunton DE, Anderson B, Oppenheimer C, Thornton BF, Gerlach TM, Viggiano AA, Kondo Y, Miller TM, Ballenthin JO (2006) Atmospheric chemistry of a 33–34 hour old volcanic cloud from Hekla Volcano (Iceland): insights from direct sampling and the application of chemical box modeling. J Geophys Res 111, D20206, doi:10.1029/2005JD006872

  • Schneider DJ, Rose WI, Coke LR, Bluth GJS, Sprod I, Krueger AJ (1999) Early evolution of a stratospheric volcanic eruption cloud as observed with TOMS and AVHRR. J Geophys Res 104(D4):4037–4050

    Article  Google Scholar 

  • Schnetzler CC, Doiron SD, Walter LS, Krueger AJ (1994) Satellite measurement of sulfur dioxide from the Redoubt eruptions of 1989–1990. J Volcanol Geotherm Res 62:353–357

    Article  Google Scholar 

  • Simkin T, Siebert L (1994) Volcanoes of the world, 2nd edn. Geoscience Press, Tucson, AZ

    Google Scholar 

  • Smithsonian Institution (1984) Mauna Loa, Scientific Event Alert Network (SEAN) 9(4) (http://www.volcano.si.edu/world/volcano.cfm?vnum=1302-02=&volpage=var#sean_0903)

  • Smithsonian Institution (2007) Jebel at Tair, Bulletin of the Global Volcanism Network 32(10) (http://www.volcano.si.edu/world/volcano.cfm?vnum=0201-01=&volpage=var#bgvn_3210)

  • Tupper A, Oswalt JS, Rosenfeld D (2005) Satellite and radar analysis of the volcanic-cumulonimbi at Mount Pinatubo, Philippines, 1991. J Geophys Res 110, doi:10.1029/2004JD005499

  • Tupper A, Davey J, Stewart P, Stunder B, Servranckx R, Prata F (2006) Aircraft encounters with volcanic clouds over Micronesia, Oceania, 2002–03. Aust Met Mag 55:289–299

    Google Scholar 

  • Tupper A, Itikarai I, Richards M, Prata AJ, Carn SA, Rosenfeld D (2007) Facing the challenges of the International Airways Volcano Watch: the 2004/05 eruptions of Manam, Papua New Guinea. Weather Forecast 22(1):175–191

    Article  Google Scholar 

  • Vicente G, Serafino G, Krueger A, Carn S, Yang K, Krotkov N, Guffanti M, Levelt P (2007) The NOAA near real-time OMI-SO2 cloud visualization and product distribution system. EOS Trans AGU 88(52), Fall Meet Suppl, Abstract V31A-0293

  • Winker DM, Pelon J, McCormick MP (2003) The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. Proc SPIE 4893:1–11

    Article  Google Scholar 

  • Yang K, Krotkov NA, Krueger AJ, Carn SA, Bhartia PK, Levelt PF (2007) Retrieval of large volcanic SO2 columns from the Aura Ozone Monitoring Instrument: comparison and limitations. J Geophys Res 112, D24S43, doi:10.1029/2007JD008825

Download references

Acknowledgments

Funding for this work was provided by the NASA Science Mission Directorate’s Earth-Sun System Division. The OMI project is managed by Royal Dutch Meteorological Institute (KNMI) and the Netherlands Agency for Aerospace Programs (NIVR). The NOAA Air Resources Laboratory (ARL) is acknowledged for provision of the HYSPLIT model and READY website (http://www.arl.noaa.gov/ready.html) used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon A. Carn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carn, S.A., Krueger, A.J., Krotkov, N.A. et al. Tracking volcanic sulfur dioxide clouds for aviation hazard mitigation. Nat Hazards 51, 325–343 (2009). https://doi.org/10.1007/s11069-008-9228-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-008-9228-4

Keywords

Navigation