Skip to main content

Protein Transport into Plastids of Secondarily Evolved Organisms

  • Chapter
  • First Online:
Plastid Biology

Part of the book series: Advances in Plant Biology ((AIPB,volume 5))

Abstract

Secondary or complex plastids arose by the engulfment of photosynthetically active eukaryotes by eukaryotic host cells. Co-evolution of the host cell and the endosymbiont led to the establishment of complex plastids, which are surrounded by additional membranes in comparison to chloroplasts from land plants. Plastid proteins, encoded by the genome of the host cell have to be imported from the host cytoplasm into the complex plastid thereby crossing up to four plastid surrounding membranes. This resulted in an increased complexity of targeting signals as well as transport- and sorting machineries. Here we summarize current knowledge about protein transport into different types of complex plastids, indicating that pre-existing mechanisms were often reused and altered to fulfill new requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BTS:

Bipartite targeting signal

CASH:

Cryptophytes, alveolates, stramenopiles, and haptophytes

EGT:

Endosymbiotic gene transfer

ER:

Endoplasmatic reticulum

ERAD:

ER-associated degradation

PPC:

Periplastidal compartment

SELMA:

Symbiont-specific ERAD-like machinery

SP:

Signal peptide

TAT:

Twin arginine targeting

TIC:

Translocon of the inner chloroplast membrane

TOC:

Translocon of the outer chloroplast membrane

TP:

Transit peptide

TTDs:

Thylakoid targeting domains

References

  1. Agrawal S, van Dooren GG, Beatty WL, Striepen B (2009) Genetic evidence that an endosymbiont-derived endoplasmic reticulum-associated protein degradation (ERAD) system functions in import of apicoplast proteins. J Biol Chem 284:33683–33691

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Agrawal S et al (2013) An apicoplast localized ubiquitylation system is required for the import of nuclear-encoded plastid proteins. PLoS Pathog 9:e1003426

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Archibald JM (2009) The puzzle of plastid evolution. Curr Biol 19:R81–R88

    Article  PubMed  CAS  Google Scholar 

  4. Bagola K, Mehnert M, Jarosch E, Sommer T (2011) Protein dislocation from the ER. Biochim Biophys Acta 1808:925–936

    Article  PubMed  CAS  Google Scholar 

  5. Bolte K, Bullmann L, Hempel F, Bozarth A, Zauner S, Maier UG (2009) Protein targeting into secondary plastids. J Eukaryot Microbiol 56:9–15

    Article  PubMed  CAS  Google Scholar 

  6. Bolte K, Gruenheit N, Felsner G, Sommer MS, Maier UG, Hempel F (2011) Making new out of old: recycling and modification of an ancient protein translocation system during eukaryotic evolution. Mechanistic comparison and phylogenetic analysis of ERAD, SELMA and the peroxisomal importomer. Bioessays 33:368–376

    Article  PubMed  CAS  Google Scholar 

  7. Broughton MJ, Howe CJ, Hiller RG (2006) Distinctive organization of genes for light-harvesting proteins in the cryptophyte alga Rhodomonas. Gene 369:72–79

    Article  PubMed  CAS  Google Scholar 

  8. Bullmann L, Haarmann R, Mirus O, Bredemeier R, Hempel F, Maier UG, Schleiff E (2010) Filling the gap, evolutionarily conserved Omp85 in plastids of chromalveolates. J Biol Chem 285:6848–6856

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Cavalier-Smith T (2003) Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Philos Trans R Soc Lond B Biol Sci 358:109–133 (discussion 133–144)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Chaal BK, Ishida K, Green BR (2003) A thylakoidal processing peptidase from the heterokont alga Heterosigma akashiwo. Plant Mol Biol 52:463–472

    Article  PubMed  CAS  Google Scholar 

  11. DeRocher A, Gilbert B, Feagin JE, Parsons M (2005) Dissection of brefeldin A-sensitive and -insensitive steps in apicoplast protein targeting. J Cell Sci 118:565–574

    Article  PubMed  CAS  Google Scholar 

  12. Deschamps P, Moreira D (2012) Reevaluating the green contribution to diatom genomes. Genome Biol Evol 4:683–688

    Article  PubMed  CAS  Google Scholar 

  13. Douglas S et al (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410:1091–1096

    Article  PubMed  CAS  Google Scholar 

  14. Durnford DG, Gray MW (2006) Analysis of Euglena gracilis plastid-targeted proteins reveals different classes of transit sequences. Eukaryot Cell 5:2079–2091

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Felsner G, Sommer MS, Gruenheit N, Hempel F, Moog D, Zauner S, Martin W, Maier UG (2010) ERAD components in organisms with complex red plastids suggest recruitment of a preexisting protein transport pathway for the periplastid membrane. Genome Biol Evol 3:140–150

    Article  PubMed  PubMed Central  Google Scholar 

  16. Foth BJ, Ralph SA, Tonkin CJ, Struck NS, Fraunholz M, Roos DS, Cowman AF, McFadden GI (2003) Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 299:705–708

    Article  PubMed  CAS  Google Scholar 

  17. Gibbs SP (1979) The route of entry of cytoplasmically synthesized proteins into chloroplasts of algae possessing chloroplast ER. J Cell Sci 35:253–266

    PubMed  CAS  Google Scholar 

  18. Gilson PR, Su V, Slamovits CH, Reith ME, Keeling PJ, McFadden GI (2006) Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature’s smallest nucleus. Proc Natl Acad Sci U S A 103:9566–9571

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Gould SB, Sommer MS, Kroth PG, Gile GH, Keeling PJ, Maier UG (2006) Nucleus-to-nucleus gene transfer and protein retargeting into a remnant cytoplasm of cryptophytes and diatoms. Mol Biol Evol 23:2413–2422

    Article  PubMed  CAS  Google Scholar 

  20. Gould SB, Sommer MS, Hadfi K, Zauner S, Kroth PG, Maier UG (2006) Protein targeting into the complex plastid of cryptophytes. J Mol Evol 62:674–681

    Article  PubMed  CAS  Google Scholar 

  21. Gould SB, Fan E, Hempel F, Maier UG, Klosgen RB (2007) Translocation of a phycoerythrin alpha subunit across five biological membranes. J Biol Chem 282:30295–30302

    Article  PubMed  CAS  Google Scholar 

  22. Gould SB, Waller RF, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59:491–517

    Article  PubMed  CAS  Google Scholar 

  23. Gruber A, Vugrinec S, Hempel F, Gould SB, Maier UG, Kroth PG (2007) Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif. Plant Mol Biol 64:519–530

    Article  PubMed  CAS  Google Scholar 

  24. Hempel F, Bozarth A, Sommer MS, Zauner S, Przyborski JM, Maier UG (2007) Transport of nuclear-encoded proteins into secondarily evolved plastids. Biol Chem 388:899–906

    Article  PubMed  CAS  Google Scholar 

  25. Hempel F, Bullmann L, Lau J, Zauner S, Maier UG (2009) ERAD-derived preprotein transport across the second outermost plastid membrane of diatoms. Mol Biol Evol 26:1781–1790

    Article  PubMed  CAS  Google Scholar 

  26. Hempel F, Felsner G, Maier UG (2010) New mechanistic insights into pre-protein transport across the second outermost plastid membrane of diatoms. Mol Microbiol 76:793–801

    Article  PubMed  CAS  Google Scholar 

  27. Hempel F, Bozarth AS, Lindenkamp N, Klingl A, Zauner S, Linne U, Steinbuchel A, Maier UG (2011) Microalgae as bioreactors for bioplastic production. Microb Cell Fact 10:81

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Hirakawa Y, Nagamune K, Ishida K (2009) Protein targeting into secondary plastids of chlorarachniophytes. Proc Natl Acad Sci U S A 106:12820–12825

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Hirakawa Y, Gile GH, Ota S, Keeling PJ, Ishida K (2010) Characterization of periplastidal compartment-targeting signals in chlorarachniophytes. Mol Biol Evol 27:1538–1545

    Article  PubMed  CAS  Google Scholar 

  30. Hirakawa Y, Burki F, Keeling PJ (2012) Genome-based reconstruction of the protein import machinery in the secondary plastid of a chlorarachniophyte alga. Eukaryot Cell 11:324–333

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Inaba T, Schnell DJ (2008) Protein trafficking to plastids: one theme, many variations. Biochem J 413:15–28

    Article  PubMed  CAS  Google Scholar 

  32. Kalanon M, Tonkin CJ, McFadden GI (2009) Characterization of two putative protein translocation components in the apicoplast of Plasmodium falciparum. Eukaryot Cell 8:1146–1154

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Kilian O, Kroth PG (2005) Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. Plant J 41:175–183

    Article  PubMed  CAS  Google Scholar 

  34. Lane CE, van den Heuvel K, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM (2007) Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function. Proc Natl Acad Sci U S A 104:19908–19913

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Maier UG, Zauner S, Woehle C, Bolte K, Hempel F, Allen JF, Martin WF (2013) Massively convergent evolution for ribosomal protein gene content in plastid and mitochondrial genomes. Genome Biol Evol 5:2318–2329

    Article  PubMed  PubMed Central  Google Scholar 

  36. Martin W (2003) Gene transfer from organelles to the nucleus: frequent and in big chunks. Proc Natl Acad Sci U S A 100:8612–8624

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Martin W, Stoebe B, Goremykin V, Hapsmann S, Hasegawa M, Kowallik KV (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393:162–165

    Article  PubMed  CAS  Google Scholar 

  38. Moog D, Stork S, Zauner S, Maier UG (2011) In silico and in vivo investigations of proteins of a minimized eukaryotic cytoplasm. Genome Biol Evol 3:375–382

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D (2009) Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324:1724–1726

    Article  PubMed  CAS  Google Scholar 

  40. Nassoury N, Cappadocia M, Morse D (2003) Plastid ultrastructure defines the protein import pathway in dinoflagellates. J Cell Sci 116:2867–2874

    Article  PubMed  CAS  Google Scholar 

  41. Nassoury N, Wang Y, Morse D (2005) Brefeldin a inhibits circadian remodeling of chloroplast structure in the dinoflagellate Gonyaulax. Traffic 6:548–561

    Article  PubMed  CAS  Google Scholar 

  42. Osafune T, Schiff JA, Hase E (1991) Stage-dependent localization of LHCP II apoprotein in the Golgi of synchronized cells of Euglena gracilis by immunogold electron microscopy. Exp Cell Res 193:320–330

    Article  PubMed  CAS  Google Scholar 

  43. Patron NJ, Waller RF, Archibald JM, Keeling PJ (2005) Complex protein targeting to dinoflagellate plastids. J Mol Biol 348:1015–1024

    Article  PubMed  CAS  Google Scholar 

  44. Peschke M, Hempel F (2013) Glycoprotein import: a common feature of complex plastids? Plant Signal Behav 8:e26050

    Google Scholar 

  45. Peschke M, Moog D, Klingl A, Maier UG, Hempel F (2013) Evidence for glycoprotein transport into complex plastids. Proc Natl Acad Sci U S A 110:10860–10865

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Petersen J, Ludewig AK, Michael V, Bunk B, Jarek M, Baurain D, Brinkmann H (2014) Chromera velia, endosymbioses and the rhodoplex hypothesis-plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages). Genome Biol Evol 6:666–684

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rogers MB, Gilson PR, Su V, McFadden GI, Keeling PJ (2007) The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Mol Biol Evol 24:54–62

    Article  PubMed  CAS  Google Scholar 

  48. Sanchez-Puerto MV, Delwiche CF (2008) A hypothesis for plastid evolution in chromalveolates. J Phycol 44:1097–1107

    Article  Google Scholar 

  49. Sheiner L, Demerly JL, Poulsen N, Beatty WL, Lucas O, Behnke MS, White MW, Striepen B (2011) A systematic screen to discover and analyze apicoplast proteins identifies a conserved and essential protein import factor. PLoS Pathog 7:e1002392

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Shi LX, Theg SM (2013) The chloroplast protein import system: from algae to trees. Biochim Biophys Acta 1833:314–331

    Article  PubMed  CAS  Google Scholar 

  51. Shiflett AM, Johnson PJ (2010) Mitochondrion-related organelles in eukaryotic protists. Annu Rev Microbiol 64:409–429

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Slavikova S, Vacula R, Fang Z, Ehara T, Osafune T, Schwartzbach SD (2005) Homologous and heterologous reconstitution of Golgi to chloroplast transport and protein import into the complex chloroplasts of Euglena. J Cell Sci 118:1651–1661

    Article  PubMed  CAS  Google Scholar 

  53. Soll J, Schleiff E (2004) Protein import into chloroplasts. Nat Rev Mol Cell Biol 5:198–208

    Article  PubMed  CAS  Google Scholar 

  54. Sommer MS, Gould SB, Lehmann P, Gruber A, Przyborski JM, Maier UG (2007) Der1-mediated preprotein import into the periplastid compartment of chromalveolates? Mol Biol Evol 24:918–928

    Article  PubMed  CAS  Google Scholar 

  55. Spork S, Hiss JA, Mandel K, Sommer M, Kooij TW, Chu T, Schneider G, Maier UG, Przyborski JM (2009) An unusual ERAD-like complex is targeted to the apicoplast of Plasmodium falciparum. Eukaryot Cell 8:1134–1145

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Stork S, Moog D, Przyborski JM, Wilhelmi I, Zauner S, Maier UG (2012) Distribution of the SELMA translocon in secondary plastids of red algal origin and predicted uncoupling of ubiquitin-dependent translocation from degradation. Eukaryot Cell 11:1472–1481

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Stork S, Lau J, Moog D, Maier UG (2013) Three old and one new: protein import into red algal-derived plastids surrounded by four membranes. Protoplasma 250:1013–1023

    Article  PubMed  CAS  Google Scholar 

  58. Sulli C, Schwartzbach SD (1995) The polyprotein precursor to the Euglena light-harvesting chlorophyll a/b-binding protein is transported to the Golgi apparatus prior to chloroplast import and polyprotein processing. J Biol Chem 270:13084–13090

    Article  PubMed  CAS  Google Scholar 

  59. Sulli C, Fang Z, Muchhal U, Schwartzbach SD (1999) Topology of Euglena chloroplast protein precursors within endoplasmic reticulum to Golgi to chloroplast transport vesicles. J Biol Chem 274:457–463

    Article  PubMed  CAS  Google Scholar 

  60. Tanifuji G, Onodera NT, Wheeler TJ, Dlutek M, Donaher N, Archibald JM (2011) Complete nucleomorph genome sequence of the nonphotosynthetic alga Cryptomonas paramecium reveals a core nucleomorph gene set. Genome Biol Evol 3:44–54

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135

    Article  PubMed  CAS  Google Scholar 

  62. Tonkin CJ, Struck NS, Mullin KA, Stimmler LM, McFadden GI (2006) Evidence for Golgi-independent transport from the early secretory pathway to the plastid in malaria parasites. Mol Microbiol 61:614–630

    Article  PubMed  CAS  Google Scholar 

  63. Tonkin CJ, Roos DS, McFadden GI (2006) N-terminal positively charged amino acids, but not their exact position, are important for apicoplast transit peptide fidelity in Toxoplasma gondii. Mol Biochem Parasitol 150:192–200

    Article  PubMed  CAS  Google Scholar 

  64. Tonkin CJ, Kalanon M, McFadden GI (2008) Protein targeting to the malaria parasite plastid. Traffic 9:166–175

    PubMed  CAS  Google Scholar 

  65. van Dooren GG, Tomova C, Agrawal S, Humbel BM, Striepen B (2008) Toxoplasma gondii Tic20 is essential for apicoplast protein import. Proc Natl Acad Sci U S A 105:13574–13579

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Villarejo A et al (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat Cell Biol 7:1224–1231

    Article  PubMed  Google Scholar 

  67. Woehle C, Dagan T, Martin WF, Gould SB (2011) Red and problematic green phylogenetic signals among thousands of nuclear genes from the photosynthetic and apicomplexa-related Chromera velia. Genome Biol Evol 3:1220–1230

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Wunder T, Martin R, Loffelhardt W, Schleiff E, Steiner JM (2007) The invariant phenylalanine of precursor proteins discloses the importance of Omp85 for protein translocation into cyanelles. BMC Evol Biol 7:236

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe-G Maier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hempel, F., Bolte, K., Klingl, A., Zauner, S., Maier, UG. (2014). Protein Transport into Plastids of Secondarily Evolved Organisms. In: Theg, S., Wollman, FA. (eds) Plastid Biology. Advances in Plant Biology, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1136-3_11

Download citation

Publish with us

Policies and ethics