Skip to main content

Mechanical Loading of Blood Cells in Turbulent Flow

  • Conference paper
  • First Online:
Computational Biomechanics for Medicine

Abstract

Blood cells are subjected to turbulent flow in some disease states and in cardiovascular devices. In general, the details of the microscale flow and stress on cells are unknown for these flows. This chapter is a discussion and review of efforts to identify simple parameters that can quantify the effects of turbulence on cells. It is shown that Reynolds stress and Kolmogorov scale alone are not adequate descriptors of the turbulent flow. The energy spectrum of turbulence must be considered also, so that cell loading at all length scales is properly represented. A deeper quantitative model will require understanding of two-phase flow effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe H, Kawamura H, Matsuo Y (2001) Direct numerical simulation of a fully developed turbulent channel flow with respect to the Reynolds number dependence. Trans ASME J Fluids Eng 123:382–393

    Article  Google Scholar 

  2. Antiga L, Steinman DA (2009) Rethinking turbulence in blood. Biorheology 46:77–81

    Google Scholar 

  3. Bacher RP, Williams MC (1970) Hemolysis in capillary flow. J Lab Clin Med 76:485–496

    Google Scholar 

  4. Bellofiore A, Quinlan NJ (2011) High-Resolution measurement of the unsteady velocity field to evaluate blood damage induced by a mechanical heart valve. Ann Biomed Eng 39:2417–2429

    Article  Google Scholar 

  5. Blackshear PL, Dorman FD, Steinbach JH, Maybach EJ, Singh A, Collingham RE (1966) Shear wall interaction and hemolysis. Trans Am Soc Artif Intern Organs 12:113–120

    Google Scholar 

  6. Bradshaw P (1971) An introduction to turbulence and its measurement. Pergamon Press, Oxford

    MATH  Google Scholar 

  7. Davidson P (2004) A turbulence: an introduction for scientists and engineers. Oxford University Press, Oxford

    Google Scholar 

  8. De Tullio MD, Cristallo A, Balaras E, Verzicco R (2009) Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J Fluid Mech 622:259–290

    Article  MATH  Google Scholar 

  9. Dooley PN, Quinlan NJ (2009) Effect of eddy length scale on mechanical loading of blood cells in turbulent flow. Ann Biomed Eng 37:2449–2458

    Article  Google Scholar 

  10. Ellis JT, Wick TM, Yoganathan AP (1998) Prosthesis-induced hemolysis: mechanisms and quantification of shear stress. J Heart Valve Dis 7:376–386

    Google Scholar 

  11. Fischer TM (1978) The red cell as a fluid droplet: tank tread-Like motion of the human erythrocyte membrane in shear flow. Science 202:894–896

    Article  Google Scholar 

  12. Forstrom RJ (1969) A new measure of erythrocyte membrane strength: the jet fragility test. Ph.D. Thesis, University of Minnesota

    Google Scholar 

  13. Ge L, Dasi LP, Sotiropoulos F, Yoganathan AP (2008) Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann Biomed Eng 36:276–297

    Article  Google Scholar 

  14. Giersiepen M, Wurzinger LJ, Opitz R, Reul H (1990) Estimation of shear stress-related blood damage in heart valve prostheses–in vitro comparison of 25 aortic valves. Int J Artif Organs 13:300–306

    Google Scholar 

  15. Girdhar G, Xenos M, Alemu Y, Chiu WC, Lynch BE, Jesty J, Einav S, Slepian MJ, Bluestein D (2012) Device thrombogenicity emulation: a novel method for optimizing mechanical circulatory support device thromboresistance. PLoS One 7:e32463

    Article  Google Scholar 

  16. Grigioni M, Caprari P, Tarzia A, D’Avenio G (2005) Prosthetic heart valves’ mechanical loading of red blood cells in patients with hereditary membrane defects. J Biomech 38:1557–1565

    Article  Google Scholar 

  17. Hellums JD, Brown CH (1977) Blood cell damage by mechanical forces. In: Hwang NHC, Normann NA (eds) Cardiovascular flow dynamics and measurements. University Park Press, Baltimore

    Google Scholar 

  18. Hund SJ, Antaki JF, Massoudi M (2010) On the representation of turbulent stresses for computing blood damage. Int J Eng Sci 48:1325–1331

    Article  MATH  Google Scholar 

  19. Heuser G, Opitz R (1980) A Coutte viscometer for short time shearing of blood. Biorheology 17:17–24

    Google Scholar 

  20. Jones SA (1995) A relationship between Reynolds stresses and viscous dissipation: implications to red cell damage. Ann Biomed Eng 23:21–28

    Article  Google Scholar 

  21. Kameneva MV, Burgreen GW, Kono K, Repko B Antaki JF, Umezu M (2004) Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis. Am Soc Artif Intern Organs J 50:418–423

    Article  Google Scholar 

  22. Landau LD, Lifshitz EM (1959) Fluid mechanics. Pergamon Press, Oxford

    Google Scholar 

  23. Lee SE, Lee SW, Fischer PF, Bassiouny HS, Loth F (2008) Direct numerical simulation of transitional flow in a stenosed carotid bifurcation. J Biomech 41:2551–2561

    Article  Google Scholar 

  24. Leverett LB, Hellums JD, Alfrey CP, Lynch EC (1972) Red blood cell damage by shear stress. Biophys J 12:257–273

    Article  Google Scholar 

  25. Liu JS, Lu PC, Chu SH (2000) Turbulence characteristics downstream of bileaflet aortic valve prostheses. J Biomech Eng 122:118–124

    Article  Google Scholar 

  26. Lu PC, Lai HC, Liu JS (2001) A reevaluation and discussion on the threshold limit for hemolysis in a turbulent shear flow. J Biomech 34:1361–1364

    Article  Google Scholar 

  27. Monaghan JJ (2012) Smoothed particle hydrodynamics and its diverse applications. Ann Rev Fluid Mech 44:323–346

    Article  MathSciNet  Google Scholar 

  28. Monty JP, Hutchins N, Ng HCH, Marusic I, Chong MS (2009) A comparison of turbulent pipe, channel and boundary layer flows. J Fluid Mech 632:431–442

    Article  MATH  Google Scholar 

  29. Nestor RM, Basa M, Lastiwka M, Quinlan NJ (2009) Extension of the finite volume particle method to viscous flow. J Comput Phys 228:1733–1749

    Article  MATH  MathSciNet  Google Scholar 

  30. Nevaril CG, Lynch EC, Alfrey CP, Hellums JD (1968) Erythrocyte damage and destruction induced by shearing stress. J Lab Clin Med 71:784–790

    Google Scholar 

  31. Patrick M, Chen CY, Frakes D, Dur O, Pekkan K (2011) Cellular-level near-wall unsteadiness of high-hematocrit erythrocyte flow using confocal μPIV. Exp Fluids 50:887–904

    Article  Google Scholar 

  32. Peters A, Melchionna S, Kaxiras E, Lätt J, Sircar J, Bernaschi M, Bison M, Succi S (2010) Multiscale simulation of cardiovascular flows on the IBM Bluegene/P: full heart-circulation system at red-blood cell resolution. In: Proceedings of the 2010 ACM/IEEE international conference for high performance computing, networking, storage and analysis. IEEE Computer Society, Washington, DC

    Google Scholar 

  33. Paul R, Apel J, Klaus S, Schügner F, Schwindke P, Reul H (2003) Shear stress related blood damage in laminar Couette flow. Artif Organs 27:517–529

    Article  Google Scholar 

  34. Quinlan NJ, Dooley PN (2007) Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow. Ann Biomed Eng 35:1347–1356

    Article  Google Scholar 

  35. Rahimian A, Lashuk I, Veerapaneni S, Chandramowlishwaran A, Malhotra D, Moon L, Sampath R, Shringarpure A, Vetter J, Vuduc R, Zorin D, Biros G (2010) Petascale direct numerical simulation of blood flow on 200K cores and heterogeneous architectures. In: Proceedings of the 2010 ACM/IEEE international conference for high performance computing, networking, storage and analysis. IEEE Computer Society, Washington, DC

    Google Scholar 

  36. Rooney JA (1970) Hemolysis near an ultrasonically pulsating gas bubble. Science 169: 869–871

    Article  Google Scholar 

  37. Sallam AM, Hwang NHC (1984) Human red blood cells in a turbulent shear flow: contribution of Reynolds shear stresses. Biorheology 21:783–797

    Google Scholar 

  38. Sutera SP, Joist JH (1992) Haematological effects of turbulent blood flow. In: Butchart EC, Bodnar E (eds) Thrombosis, embolism and bleeding. ICR Publishers, London

    Google Scholar 

  39. Sutera SP, Mehrjardi MH (1975) Deformation and fragmentation of human red blood cells in turbulent shear flow. Biophys J 15:1–10

    Article  Google Scholar 

  40. Tran-Son-Tay R, Sutera SP, Zahalak GI, Rao PR (1987) Membrane stress and internal pressure in a red blood cell freely suspended in a shear flow. Biophys J 51:915–924

    Article  Google Scholar 

  41. Travis BR, Leo HL, Shah PA, Frakes DH, Yoganathan AP (2002) An analysis of turbulent shear stresses in leakage flow through a bileaflet mechanical prostheses. J Biomech Eng 124:155–165

    Article  Google Scholar 

  42. Williams AR, Hughes DE, Nyborg WL (1970) Hemolysis near a transversely oscillating wire. Science 169:871–873

    Article  Google Scholar 

  43. Wurzinger LJ, Opitz R, Eckstein (1986) Mechanical bloodtrauma. An overview. Angéiologie 38:81–97

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan J. Quinlan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Quinlan, N.J. (2014). Mechanical Loading of Blood Cells in Turbulent Flow. In: Doyle, B., Miller, K., Wittek, A., Nielsen, P. (eds) Computational Biomechanics for Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0745-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0745-8_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0744-1

  • Online ISBN: 978-1-4939-0745-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics