Skip to main content
Log in

A relationship between reynolds stresses and viscous dissipation: Implications to red cell damage

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Viscous shearing is examined as a mechanism by which turbulent flows can cause cellular damage. The use of Reynolds stress as an indicator of hemolysis is considered, and an alternative measure based on viscous dissipation is proposed. It is shown that under simple flow conditions the Reynolds stresses can be related to viscous dissipation. Data from the literature show that the instantaneous viscous shear stress at which hemolysis occurs is similar to the shear stress thresholds obtained from laminar flow studies. Also, the Kolmogorov length scales for most of the turbulent hemolysis studies are similar to the size of a red blood cell. These observations indicate that, for the jet and couette experiments examined, viscous shearing is an important mechanism in the destruction of erythrocytes by turbulence. However, pressure fluctuations may also contribute to damage for these cells and for cells of similar or larger size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bacher, P. P., and M. C. Williams, Hemolysis in capillary flow.Lab. Clin. Med. 76:485–496, 1970.

    CAS  Google Scholar 

  2. Baldwin, J. T., S. Deutsch, H. L. Petrie, and J. M. Tarbell. Determination of principal Reynolds stresses in pulsatile flows after elliptical filtering of discrete velocity measurements.J. Biomech. Eng. 115:396–403, 1993.

    CAS  PubMed  Google Scholar 

  3. Blackshear, P. L., and G. L. Blackshear. Mechanical Hemolysis. In: Handbook of Bioengineering, edited by R. I. Skalak, C. Shu. New York: McGraw-Hill, Inc., 1987, pp. 15.1–15.19.

    Google Scholar 

  4. Blackshear, P. L., F. D. Dorman, J. H. Steinbach, E. J. Maybach, A. Singh, and R. E. Collingham. Shear wall interaction and hemolysis.Trans. Am. Soc. Artif. Intern. Organs 12:113–120, 1966.

    PubMed  Google Scholar 

  5. Caro, C. G., T. J. Pedley, R. C. Schroter, and W. A. Seed. The Mechanics of the Circulation. Oxford: Oxford University Press, 1978, 527 pp.

    Google Scholar 

  6. Chew, Y. T., H. T. Low, C. N. Lee, and S. S. Kwa. Laser anemometry measurements of steady flow past aortic valve prostheses.J. Biomech. Eng. 115:290–298, 1993.

    CAS  PubMed  Google Scholar 

  7. Clark, C. Turbulent velocity measurements in a model of aortic stenosis.J. Biomech. 9:677–687, 1976.

    CAS  PubMed  Google Scholar 

  8. Forstrom, R. J. A new measure of erythrocyte membrane strength: the jet fragility test. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, 1969.

    Google Scholar 

  9. Giersiepen, M., U. Krause, E. Knott, H. Reul, and G. Rau. Velocity and shear stress distribution downstream of mechanical heart valves in pulsatile flow.Int. J. Artif. Organs 12:261–269, 1989.

    CAS  PubMed  Google Scholar 

  10. Giersiepen, M., L. J. Wurzinger, R. Opitz, and H. Reul. Estimation of shear stress-related blood damage in heart valve prostheses—in vitro comparison of 25 aortic valves.Int. J. Artif. Organs 13:300–306, 1990.

    CAS  PubMed  Google Scholar 

  11. Hanle, D. D., E. C. Harrison, A. P. Yoganathan, and W. H. Corcoran, Turbulence downstream from the Ionescu-Shiley bioprosthesis in steady and pulsatile flow.Med. Biol. Eng. Comput. 25:645–649, 1987.

    CAS  PubMed  Google Scholar 

  12. Hinze, J. O. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes.AICHE J. 1:289–295, 1955.

    Article  CAS  Google Scholar 

  13. Hinze, J. O. Turbulence. New York: McGraw-Hill, 1975, 790 pp.

    Google Scholar 

  14. Jones, S. A., and A. Fronek. Analysis of break frequencies downstream of a constriction in a circular tube.J. Biomech. 20:319–327, 1987.

    Article  CAS  PubMed  Google Scholar 

  15. Keshaviah, P. R. Hemolysis in the accelerated flow region of an abrupt contraction. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, 1970.

    Google Scholar 

  16. Leverett, L. B., J. D. Hellums, C. P. Alfrey, and E. C. Lynch. Red blood cell damage by shear stress.Biophys. J. 12:257–273, 1972.

    CAS  PubMed  Google Scholar 

  17. Meneveau, C., and K. R. Sreenivasan. The multifractal nature of turbulent energy dissipation.J. Fluid Mech. 224: 429–484, 1991.

    Google Scholar 

  18. Niimi, H., and M. Sugihara. Cyclic loading on the red cell membrane in a shear flow: a possible cause of hemolysis.J. Biomech. Eng. 107:91–95, 1985.

    CAS  PubMed  Google Scholar 

  19. Nygaard, H., M. Giersiepens, J. M. Hasenkam, H. Reul, P. K. Paulsen, P. E. Rovsing, and D. Westphal. Two-dimensional color-mapping of turbulent shear stress distribution downstream of two aortic bioprosthetic valvesin vitro.J. Biomech. 25:429–440, 1992.

    Article  CAS  PubMed  Google Scholar 

  20. Pedley, T. J. Pulmonary fluid dynamics.Ann. Rev. Fluid Mech. 9:229–274, 1977.

    Article  CAS  Google Scholar 

  21. Rooney, J. A. Hemolysis near an ultrasonically pulsating gas bubble.Science 169:869–871, 1970.

    CAS  PubMed  Google Scholar 

  22. Sallam, A. M. An investigation of the effect of Reynolds shear stress on red blood cell hemolysis. Ph.D. Thesis, University of Houston, Houston, TX, 1982.

    Google Scholar 

  23. Sallam, A. M., and N. H. C. Hwang, Human red cell hemolysis in a turbulent shear flow: contribution of Reynolds shear stresses.Biorheology 21:783–797, 1984.

    CAS  PubMed  Google Scholar 

  24. Schima, H., M. R. Müller, S. Tsangaris, G. Gheisder, C. Schlusche, U. Losert, H. Thoma, and E. Wolner. Mechanical blood traumatization by tubing and throttles inin-vitro pump tests: experimental results and implications for hemolysis theory.Artif. Organs 17:164–170, 1993.

    CAS  PubMed  Google Scholar 

  25. Schoephoerster, R. T., and K. B. Chandran. Velocity and turbulence measurements past mitral valve prostheses in a model left ventricle.J. Biomech. 24:549–562, 1991.

    Article  CAS  PubMed  Google Scholar 

  26. Stein, P. D., F. J. Walburn, and H. N. Sabbah. Turbulent stresses in the region of aortic and pulmonary valves.J. Biomech. Eng. 104:238–244, 1982.

    CAS  PubMed  Google Scholar 

  27. Sutera, S. P., and J. H. Joist. Haematological effects of turbulent blood flow. In: Thrombosis, Embolism and Bleeding, edited by E. G. Butchart and E. Bodnar. London: ICR Publishers, 1992, pp. 149–159.

    Google Scholar 

  28. Sutera, S. P., and M. H. Mehrjardi. Deformation and fragmentation of human red blood cells in turbulent shear flow.Biophys. J. 15:1–10, 1975.

    CAS  PubMed  Google Scholar 

  29. Tennekes, H., and J. L. Lumley. A First Course in Turbulence. Cambridge, MA: The MIT Press, 1972, 300 pp.

    Google Scholar 

  30. Townsend, A. A. The Structure of Turbulent Shear Flow. Cambridge: Cambridge University Press, 1976, 429 pp.

    Google Scholar 

  31. White, F. M. Viscous Fluid Flow. New York: McGraw-Hill, 1974, 725 pp.

    Google Scholar 

  32. Williams, A. R., D. E. Hughes, and W. L. Nyborg. Hemolysis near a transversely oscillating wire.Science 169: 871–873, 1970.

    Google Scholar 

  33. Woo, Y-R, and A. P. Yoganathan. Two-component laser Doppler anemometer for measurement of velocity and turbulent shear stress near prosthetic heart valves.Med. Instrumen. 19:224–231, 1985.

    CAS  Google Scholar 

  34. Wurzinger, L. J., R. Opitz, P. Blasberg, and H. Schmid-Schönbein. Platelet and coagulation parameters following millisecond exposure to laminar shear stress.Thrombosis Haemostasis 54:381–386, 1985.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, S.A. A relationship between reynolds stresses and viscous dissipation: Implications to red cell damage. Ann Biomed Eng 23, 21–28 (1995). https://doi.org/10.1007/BF02368297

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368297

Keywords

Navigation