Skip to main content

MicroRNAs in the Development and Progression of Kidney Cancer

  • Chapter
  • First Online:
MicroRNA in Development and in the Progression of Cancer

Abstract

Renal cell carcinoma (RCC), a genetically and histopathologically heterogeneous disorder, is the most lethal of all genitourinary cancers and is generally refractory to current treatment regimens, including chemotherapy and radiation therapy. Targeted therapies against critical signaling pathways associated with RCC pathogenesis, such as von Hippel–Lindau (VHL) tumor suppressor, vascular endothelial growth factor (VEGF), and mammalian target of rapamycin (mTOR), have shown limited efficacy so far. Therefore, there has been much interest in identifying novel biomarkers for early diagnosis, risk assessment, and the design of novel therapeutic interventions for the disease. MicroRNAs (miRNAs) have been shown to be differentially expressed in RCC and play an important role in RCC pathogenesis. Studies have analyzed global miRNA expression profiles and the functional role of specific miRNAs in RCC. Here, we review our current understanding about the role of miRNAs in RCC by summarizing findings from various studies. Several miRNA-profiling studies have been conducted to identify specific miRNA signatures capable of distinguishing tumor from normal tissue, identifying RCC subtypes and the potential use of miRNAs in prognosis. Specific miRNAs have been found to be associated with key signaling pathways implicated in RCC pathogenesis (including pVHL-HIF, VEGF, mTOR signaling). Although current knowledge of the role of miRNAs in RCC pathogenesis is far from complete, key future challenges await in the use of miRNAs as novel biomarkers for improved diagnosis, prognosis, and the development of novel therapies for improved clinical management of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics. CA: a Cancer J Clin. 2012;62(1):10–29. Epub 13 Jan 2012.

    Google Scholar 

  2. Rini BI, Campbell SC, Escudier B. Renal cell carcinoma. Lancet. 2009;373(9669):1119–32. Epub 10 Mar 2009.

    Article  PubMed  CAS  Google Scholar 

  3. Linehan WM. Genetic basis of kidney cancer: Role of genomics for the development of disease-based therapeutics. Genome Res. 2012;22(11):2089–100. Epub 6 Oct 2012.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Linehan WM, Walther MM, Zbar B. The genetic basis of cancer of the kidney. J Urol. 2003;170(6 Pt 1):2163–72. Epub 25 Nov 2003.

    Article  PubMed  CAS  Google Scholar 

  5. Linehan WM, Zbar B. Focus on kidney cancer. Cancer Cell. 2004;6(3):223–8. Epub 24 Sept 2004.

    Article  PubMed  CAS  Google Scholar 

  6. Reuter VE, Presti JC Jr. Contemporary approach to the classification of renal epithelial tumors. Semin Oncol. 2000;27(2):124–37. Epub 18 Apr 2000.

    PubMed  CAS  Google Scholar 

  7. Zambrano NR, Lubensky IA, Merino MJ, Linehan WM, Walther MM. Histopathology and molecular genetics of renal tumors toward unification of a classification system. J Urol. 1999;162(4):1246–58. Epub 24 Sept 1999.

    Article  PubMed  CAS  Google Scholar 

  8. Kovacs G, Akhtar M, Beckwith BJ, Bugert P, Cooper CS, Delahunt B, et al. The Heidelberg classification of renal cell tumours. J Pathol. 1997;183(2):131–3. Epub 9 Dec 1997.

    Article  PubMed  CAS  Google Scholar 

  9. Thoenes W, Storkel S, Rumpelt HJ. Histopathology and classification of renal cell tumors (adenomas, oncocytomas and carcinomas). The basic cytological and histopathological elements and their use for diagnostics. Pathol Res Pract. 1986;181(2):125–43. Epub 1 May 1986.

    Article  PubMed  CAS  Google Scholar 

  10. Motzer RJ, Bander NH, Nanus DM. Renal-cell carcinoma. New Engl J Med. 1996;335(12):865–75. Epub 19 Sept 1996.

    Article  PubMed  CAS  Google Scholar 

  11. van Spronsen DJ, Mulders PF, De Mulder PH. Novel treatments for metastatic renal cell carcinoma. Crit Rev Oncol Hematol. 2005;55(3):177–91. Epub 28 June 2005.

    Article  PubMed  CAS  Google Scholar 

  12. Dondeti VR, Wubbenhorst B, Lal P, Gordan JD, D’Andrea K, Attiyeh EF, et al. Integrative genomic analyses of sporadic clear cell renal cell carcinoma define disease subtypes and potential new therapeutic targets. Cancer Res. 2012;72(1):112–21. Epub 19 Nov 2011.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Teloken PE, Thompson RH, Tickoo SK, Cronin A, Savage C, Reuter VE, et al. Prognostic impact of histological subtype on surgically treated localized renal cell carcinoma. J Urol. 2009;182(5):2132–6. Epub 18 Sept 2009.

    Article  PubMed  Google Scholar 

  14. Delahunt B, Bethwaite PB, Thornton A. Prognostic significance of microscopic vascularity for clear cell renal cell carcinoma. Brit J Urol. 1997;80(3):401–4. Epub 6 Oct 1997.

    Article  PubMed  CAS  Google Scholar 

  15. Leroy X, Zini L, Leteurtre E, Zerimech F, Porchet N, Aubert JP, et al. Morphologic subtyping of papillary renal cell carcinoma: correlation with prognosis and differential expression of MUC1 between the two subtypes. Mod Pathol. 2002;15(11):1126–30. Epub 14 Nov 2002.

    Article  PubMed  Google Scholar 

  16. Arai E, Kanai Y. Genetic and epigenetic alterations during renal carcinogenesis. Int J Clin Exp Pathol. 2010;4(1):58–73. Epub 14 Jan 2011.

    PubMed Central  PubMed  Google Scholar 

  17. Sukov WR, Lohse CM, Leibovich BC, Thompson RH, Cheville JC. Clinical and pathological features associated with prognosis in patients with papillary renal cell carcinoma. J Urol. 2012;187(1):54–9. Epub 18 Nov 2011.

    Article  PubMed  Google Scholar 

  18. Rini BI, Rathmell WK, Godley P. Renal cell carcinoma. Curr Opin Oncol. 2008;20(3):300–6. Epub 9 Apr 2008.

    Article  PubMed  Google Scholar 

  19. Pantuck AJ, Zisman A, Belldegrun AS. The changing natural history of renal cell carcinoma. J Urol. 2001;166(5):1611–23. Epub 5 Oct 2001.

    Article  PubMed  CAS  Google Scholar 

  20. Sonpavde G, Choueiri TK, Escudier B, Ficarra V, Hutson TE, Mulders PF, et al. Sequencing of agents for metastatic renal cell carcinoma: can we customize therapy? Eur Urol. 2012;61(2):307–16. Epub 8 Nov 2011.

    Article  PubMed  CAS  Google Scholar 

  21. Takahashi M, Kahnoski R, Gross D, Nicol D, Teh BT. Familial adult renal neoplasia. J Med Genet. 2002;39(1):1–5. Epub 5 Feb 2002.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Linehan WM, Pinto PA, Bratslavsky G, Pfaffenroth E, Merino M, Vocke CD, et al. Hereditary kidney cancer: unique opportunity for disease-based therapy. Cancer. 2009;115(10 Suppl):2252–61. Epub 30 Apr 2009.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Maher ER. Genomics and epigenomics of renal cell carcinoma. Semin Cancer Biol. 2013;23(1):10–7. Epub 4 July 2012.

    Google Scholar 

  24. Kaelin WG, Jr. The von Hippel-Lindau tumor suppressor protein and clear cell renal carcinoma. Clin Cancer Res. 2007;13(2 Pt 2):680s–4s. Epub 27 Jan 2007.

    Article  PubMed  CAS  Google Scholar 

  25. Kim WY, Kaelin WG. Role of VHL gene mutation in human cancer. J Clin Oncol. 2004;22(24):4991–5004. Epub 22 Dec 2004.

    Article  PubMed  CAS  Google Scholar 

  26. Linehan WM, Rubin JS, Bottaro DP. VHL loss of function and its impact on oncogenic signaling networks in clear cell renal cell carcinoma. Int J Biochem Cell Biol. 2009;41(4):753–6. Epub 28 Oct 2008.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Cairns P. Renal cell carcinoma. Cancer Biomarkers: Sect A of disease markers. 2010;9(1–6):461–73. Epub 25 Nov 2011.

    Google Scholar 

  28. Wiesener MS, Munchenhagen PM, Berger I, Morgan NV, Roigas J, Schwiertz A, et al. Constitutive activation of hypoxia-inducible genes related to overexpression of hypoxia-inducible factor-1alpha in clear cell renal carcinomas. Cancer Res. 2001;61(13):5215–22. Epub 30 June 2001.

    PubMed  CAS  Google Scholar 

  29. Young AP, Schlisio S, Minamishima YA, Zhang Q, Li L, Grisanzio C, et al. VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. Nat Cell Biol. 2008;10(3):361–9. Epub 26 Feb 2008.

    Article  PubMed  CAS  Google Scholar 

  30. Schmidt L, Duh FM, Chen F, Kishida T, Glenn G, Choyke P, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet. 1997;16(1):68–73. Epub 1 May 1997.

    Article  PubMed  CAS  Google Scholar 

  31. Tomlinson IP, Alam NA, Rowan AJ, Barclay E, Jaeger EE, Kelsell D, et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet. 2002;30(4):406–10. Epub 28 Feb 2002.

    Article  PubMed  CAS  Google Scholar 

  32. Nickerson ML, Warren MB, Toro JR, Matrosova V, Glenn G, Turner ML, et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube syndrome. Cancer Cell. 2002;2(2):157–64. Epub 3 Sept 2002.

    Article  PubMed  CAS  Google Scholar 

  33. Toro JR, Nickerson ML, Wei MH, Warren MB, Glenn GM, Turner ML, et al. Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am J Hum Genet. 2003;73(1):95–106. Epub 29 May 2003.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Vocke CD, Yang Y, Pavlovich CP, Schmidt LS, Nickerson ML, Torres-Cabala CA, et al. High frequency of somatic frameshift BHD gene mutations in Birt-Hogg-Dube-associated renal tumors. J Natl Cancer Inst. 2005;97(12):931–5. Epub 16 June 2005.

    Article  PubMed  CAS  Google Scholar 

  35. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33. Epub 27 Jan 2009.

    Article  CAS  Google Scholar 

  36. Schickel R, Boyerinas B, Park SM, Peter ME. MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene. 2008;27(45):5959–74. Epub 7 Oct 2008.

    Article  PubMed  CAS  Google Scholar 

  37. Ventura A, Jacks T. MicroRNAs and cancer: short RNAs go a long way. Cell. 2009;136(4):586–91. Epub 26 Feb 2009.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66. Epub 25 Oct 2006.

    Article  PubMed  CAS  Google Scholar 

  39. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8. Epub 10 June 2005.

    Article  PubMed  CAS  Google Scholar 

  40. Gottardo F, Liu CG, Ferracin M, Calin GA, Fassan M, Bassi P, et al. Micro-RNA profiling in kidney and bladder cancers. Urol Oncol. 2007;25(5):387–92. Epub 11 Sept 2007.

    Article  PubMed  CAS  Google Scholar 

  41. Huang Y, Dai Y, Yang J, Chen T, Yin Y, Tang M, et al. Microarray analysis of microRNA expression in renal clear cell carcinoma. Eur J Surg Oncol. 2009;35(10):1119–23. Epub 16 May 2009.

    Article  PubMed  CAS  Google Scholar 

  42. Juan D, Alexe G, Antes T, Liu H, Madabhushi A, Delisi C, et al. Identification of a microRNA panel for clear-cell kidney cancer. Urology. 2010;75(4):835–41. Epub 29 Dec 2009.

    Article  PubMed  Google Scholar 

  43. Jung M, Mollenkopf HJ, Grimm C, Wagner I, Albrecht M, Waller T, et al. MicroRNA profiling of clear cell renal cell cancer identifies a robust signature to define renal malignancy. J Cell Mol Med. 2009;13(9B):3918–28. Epub 21 Feb 2009.

    Article  PubMed  Google Scholar 

  44. Bartels CL, Tsongalis GJ. MicroRNAs: novel biomarkers for human cancer. Clin Chem. 2009;55(4):623–31. Epub 28 Feb 2009.

    Article  PubMed  CAS  Google Scholar 

  45. Verghese ET, Hanby AM, Speirs V, Hughes TA. Small is beautiful: microRNAs and breast cancer-where are we now? J Pathol. 2008;215(3):214–21. Epub 1 May 2008.

    Article  PubMed  CAS  Google Scholar 

  46. Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, Zepeniuk M, et al. MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol. 2008;26(4):462–9. Epub 26 March 2008.

    Article  PubMed  CAS  Google Scholar 

  47. Ribal MJ. Molecular profiling of renal cancer: the journey to clinical application. Eur Urol. 2011;59(5):731–3. Epub 8 Feb 2011.

    Article  PubMed  Google Scholar 

  48. Schaefer A, Jung M, Kristiansen G, Lein M, Schrader M, Miller K, et al. MicroRNAs and cancer: current state and future perspectives in urologic oncology. Urol Oncol. 2010;28(1):4–13. Epub 2 Jan 2009.

    Article  PubMed  CAS  Google Scholar 

  49. Nakada C, Matsuura K, Tsukamoto Y, Tanigawa M, Yoshimoto T, Narimatsu T, et al. Genome-wide microRNA expression profiling in renal cell carcinoma: significant down-regulation of miR-141 and miR-200c. J Pathol. 2008;216(4):418–27. Epub 18 Oct 2008.

    Article  PubMed  CAS  Google Scholar 

  50. Yi Z, Fu Y, Zhao S, Zhang X, Ma C. Differential expression of miRNA patterns in renal cell carcinoma and nontumorous tissues. J Cancer Res Clin Oncol. 2010;136(6):855–62. Epub 19 Nov 2009.

    Article  PubMed  CAS  Google Scholar 

  51. White NM, Bao TT, Grigull J, Youssef YM, Girgis A, Diamandis M, et al. miRNA profiling for clear cell renal cell carcinoma: biomarker discovery and identification of potential controls and consequences of miRNA dysregulation. J Urol. 2011;186(3):1077–83. Epub 26 July 2011.

    Article  PubMed  CAS  Google Scholar 

  52. Chow TF, Youssef YM, Lianidou E, Romaschin AD, Honey RJ, Stewart R, et al. Differential expression profiling of microRNAs and their potential involvement in renal cell carcinoma pathogenesis. Clin Biochem. 2010;43(1–2):150–8. Epub 04 Aug 2009.

    Article  PubMed  CAS  Google Scholar 

  53. Liu H, Brannon AR, Reddy AR, Alexe G, Seiler MW, Arreola A, et al. Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell Renal Cell Carcinoma. BMC Syst Biol. 2010;4:51. Epub 28 Apr 2010.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Weng L, Wu X, Gao H, Mu B, Li X, Wang JH, et al. MicroRNA profiling of clear cell renal cell carcinoma by whole-genome small RNA deep sequencing of paired frozen and formalin-fixed, paraffin-embedded tissue specimens. J Pathol. 2010;222(1):41–51. Epub 2 July 2010.

    PubMed  CAS  Google Scholar 

  55. Osanto S, Qin Y, Buermans HP, Berkers J, Lerut E, Goeman JJ, et al. Genome-wide microRNA expression analysis of clear cell renal cell carcinoma by next generation deep sequencing. PloS One. 2012;7(6):e38298. Epub 30 June 2012.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997–1006. Epub 4 Sept 2008.

    Article  PubMed  CAS  Google Scholar 

  57. Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D, et al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol. 2010;28(6):655–61. Epub 21 Apr 2009.

    Article  PubMed  CAS  Google Scholar 

  58. Wulfken LM, Moritz R, Ohlmann C, Holdenrieder S, Jung V, Becker F, et al. MicroRNAs in renal cell carcinoma: diagnostic implications of serum miR-1233 levels. PloS One. 2011;6(9):e25787. Epub 11 Oct 2011.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Redova M, Poprach A, Nekvindova J, Iliev R, Radova L, Lakomy R, et al. Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J Transl Med. 2012;10:55. Epub 24 Mar 2012.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Hauser S, Wulfken LM, Holdenrieder S, Moritz R, Ohlmann CH, Jung V, et al. Analysis of serum microRNAs (miR-26a-2*, miR-191, miR-337–3p and miR-378) as potential biomarkers in renal cell carcinoma. Cancer Epidemiol. 2012;36(4):391–4. Epub 1 May 2012.

    Article  PubMed  CAS  Google Scholar 

  61. Petillo D, Kort EJ, Anema J, Furge KA, Yang XJ, Teh BT. MicroRNA profiling of human kidney cancer subtypes. Int J Oncol. 2009;35(1):109–14. Epub 11 June 2009.

    Article  PubMed  CAS  Google Scholar 

  62. Catto JW, Alcaraz A, Bjartell AS, De Vere White R, Evans CP, Fussel S, et al. MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur Urol. 2011;59(5):671–81. Epub 8 Feb 2011.

    Article  PubMed  CAS  Google Scholar 

  63. Fridman E, Dotan Z, Barshack I, David MB, Dov A, Tabak S, et al. Accurate molecular classification of renal tumors using microRNA expression. J Mol Diagn. 2010;12(5):687–96. Epub 3 July 2010.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Youssef YM, White NM, Grigull J, Krizova A, Samy C, Mejia-Guerrero S, et al. Accurate molecular classification of kidney cancer subtypes using microRNA signature. Euro Urol. 2011;59(5):721–30. Epub 29 Jan 2011.

    Article  CAS  Google Scholar 

  65. Maj M, Wagner L. Molecular approaches to classify adult renal epithelial neoplasms. Expert Rev Mol Diagn. 2011;11(8):803–6. Epub 26 Oct 2011.

    Article  PubMed  CAS  Google Scholar 

  66. Powers MP, Alvarez K, Kim HJ, Monzon FA. Molecular classification of adult renal epithelial neoplasms using microRNA expression and virtual karyotyping. Diagn Mol pathol: Am J Surg Pathol, Part B. 2011;20(2):63–70. Epub 3 May 2011.

    Article  Google Scholar 

  67. White NM, Fatoohi E, Metias M, Jung K, Stephan C, Yousef GM. Metastamirs: a stepping stone towards improved cancer management. Nat Rev Clin Oncol. 2011;8(2):75–84. Epub 4 Nov 2010.

    Article  PubMed  CAS  Google Scholar 

  68. Zhang J, Ma L. MicroRNA control of epithelial-mesenchymal transition and metastasis. Cancer Metast Rev. 2012;31(3–4):653–62. Epub 12 June 2012.

    Article  CAS  Google Scholar 

  69. Heinzelmann J, Henning B, Sanjmyatav J, Posorski N, Steiner T, Wunderlich H, et al. Specific miRNA signatures are associated with metastasis and poor prognosis in clear cell renal cell carcinoma. World J Urol. 2011;29(3):367–73. Epub 14 Jan 2011.

    Article  PubMed  CAS  Google Scholar 

  70. White NM, Khella HW, Grigull J, Adzovic S, Youssef YM, Honey RJ, et al. miRNA profiling in metastatic renal cell carcinoma reveals a tumour-suppressor effect for miR-215. Br J Cancer. 2011;105(11):1741–9. Epub 29 Oct 2011.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Khella HW, White NM, Faragalla H, Gabril M, Boazak M, Dorian D, et al. Exploring the role of miRNAs in renal cell carcinoma progression and metastasis through bioinformatic and experimental analyses. Tumour Biol: J Int Soc Oncodev Biol Med. 2012;33(1):131–40. Epub 17 Nov 2011.

    Article  CAS  Google Scholar 

  72. Wu X, Weng L, Li X, Guo C, Pal SK, Jin JM, et al. Identification of a 4-microRNA signature for clear cell renal cell carcinoma metastasis and prognosis. PloS One. 2012;7(5):e35661. Epub 25 May 2012.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Wotschofsky Z, Liep J, Meyer HA, Jung M, Wagner I, Disch AC, et al. Identification of Metastamirs as Metastasis-associated MicroRNAs in Clear Cell Renal Cell Carcinomas. Int J Biol Sci. 2012;8(10):1363–74. Epub 10 Nov 2012.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Lopez-Lago MA, Thodima VJ, Guttapalli A, Chan T, Heguy A, Molina AM, et al. Genomic deregulation during metastasis of renal cell carcinoma implements a myofibroblast-like program of gene expression. Cancer Res. 2010;70(23):9682–92. Epub 19 Oct 2010.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Slaby O, Redova M, Poprach A, Nekvindova J, Iliev R, Radova L, et al. Identification of MicroRNAs associated with early relapse after nephrectomy in renal cell carcinoma patients. Genes Chromosome Canc. 2012;51(7):707–16. Epub 12 Apr 2012.

    Article  CAS  Google Scholar 

  76. Turner KJ, Moore JW, Jones A, Taylor CF, Cuthbert-Heavens D, Han C, et al. Expression of hypoxia-inducible factors in human renal cancer: relationship to angiogenesis and to the von Hippel-Lindau gene mutation. Cancer Res. 2002;62(10):2957–61. Epub 23 May 2002.

    PubMed  CAS  Google Scholar 

  77. Beasley NJ, Leek R, Alam M, Turley H, Cox GJ, Gatter K, et al. Hypoxia-inducible factors HIF-1alpha and HIF-2alpha in head and neck cancer: relationship to tumor biology and treatment outcome in surgically resected patients. Cancer Res. 2002;62(9):2493–7. Epub 1 May 2002.

    PubMed  CAS  Google Scholar 

  78. Hutchison GJ, Valentine HR, Loncaster JA, Davidson SE, Hunter RD, Roberts SA, et al. Hypoxia-inducible factor 1alpha expression as an intrinsic marker of hypoxia: correlation with tumor oxygen, pimonidazole measurements, and outcome in locally advanced carcinoma of the cervix. Clin Cancer Res. 2004;10(24):8405–12. Epub 30 Dec 2004.

    Article  PubMed  CAS  Google Scholar 

  79. Fischer U, Radermacher J, Mayer J, Mehraein Y, Meese E. Tumor hypoxia: Impact on gene amplification in glioblastoma. Int J Oncol. 2008;33(3):509–15. Epub 13 Aug 2008.

    PubMed  CAS  Google Scholar 

  80. Kirkpatrick JP. Tumor hypoxia and prognosis in human gliomas. Cancer J. 2006;12(6):451–4. Epub 9 Jan 2007.

    Article  PubMed  Google Scholar 

  81. Vaupel P. The role of hypoxia-induced factors in tumor progression. Oncology. 2004;9 (Suppl 5):10–7. Epub 14 Dec 2004.

    Article  CAS  Google Scholar 

  82. Vaupel P, Mayer A, Hockel M. Tumor hypoxia and malignant progression. Meth Enzymol. 2004;381:335–54. Epub 6 Apr 2004.

    Article  PubMed  CAS  Google Scholar 

  83. Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ, et al. A microRNA signature of hypoxia. Mol Cell Biol. 2007;27(5):1859–67. Epub 30 Dec 2006.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Gee HE, Camps C, Buffa FM, Patiar S, Winter SC, Betts G, et al. hsa-mir-210 is a marker of tumor hypoxia and a prognostic factor in head and neck cancer. Cancer. 2010;116(9):2148–58. Epub 27 Feb 2010.

    PubMed  Google Scholar 

  85. Ho AS, Huang X, Cao H, Christman-Skieller C, Bennewith K, Le QT, et al. Circulating miR-210 as a Novel Hypoxia Marker in Pancreatic Cancer. Transl Oncol. 2010;3(2):109–13. Epub 3 Apr 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  86. McCormick R, Buffa FM, Ragoussis J, Harris AL. The role of hypoxia regulated microRNAs in cancer. Curr Top Microbiol Immunol. 2010;345:47–70. Epub 16 June 2010.

    PubMed  CAS  Google Scholar 

  87. Camps C, Buffa FM, Colella S, Moore J, Sotiriou C, Sheldon H, et al. hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res. 2008;14(5):1340–8. Epub 5 March 2008.

    Article  PubMed  CAS  Google Scholar 

  88. Fendler A, Stephan C, Yousef GM, Jung K. MicroRNAs as regulators of signal transduction in urological tumors. Clin Chem. 2011;57(7):954–68. Epub 3 June 2011.

    Article  PubMed  CAS  Google Scholar 

  89. Chow TF, Mankaruos M, Scorilas A, Youssef Y, Girgis A, Mossad S, et al. The miR-17–92 cluster is over expressed in and has an oncogenic effect on renal cell carcinoma. J Urol. 2010;183(2):743–51. Epub 22 Dec 2009.

    Article  PubMed  CAS  Google Scholar 

  90. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20. Epub 18 Jan 2005.

    Article  PubMed  CAS  Google Scholar 

  91. Valera VA, Walter BA, Linehan WM, Merino MJ. Regulatory effects of microRNA-92 (miR-92) on VHL gene expression and the hypoxic activation of miR-210 in clear cell renal cell carcinoma. J Cancer. 2011;2:515–26. Epub 2 Nov 2011.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Neal CS, Michael MZ, Rawlings LH, Van der Hoek MB, Gleadle JM. The VHL-dependent regulation of microRNAs in renal cancer. BMC Med. 2010;8:64. Epub 23 Oct 2010.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  93. White NM, Yousef GM. MicroRNAs: exploring a new dimension in the pathogenesis of kidney cancer. BMC Med. 2010;8:65. Epub 23 Oct 2010.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  94. Redova M, Poprach A, Besse A, Iliev R, Nekvindova J, Lakomy R, et al. MiR-210 expression in tumor tissue and in vitro effects of its silencing in renal cell carcinoma. Tumour Biol. 2013;34(1):481–91. Epub 15 Nov 2012.

    Google Scholar 

  95. Lichner Z, Mejia-Guerrero S, Ignacak M, Krizova A, Bao TT, Girgis AH, et al. Pleiotropic action of renal cell carcinoma-dysregulated miRNAs on hypoxia-related signaling pathways. Am J Pathol. 2012;180(4):1675–87. Epub 14 Feb 2012.

    Article  PubMed  CAS  Google Scholar 

  96. Mikhaylova O, Stratton Y, Hall D, Kellner E, Ehmer B, Drew AF, et al. VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell. 2012;21(4):532–46. Epub 21 Apr 2012.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  97. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer cell. 2006;10(1):51–64. Epub 18 July 2006.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  98. Jin S, White E. Role of autophagy in cancer: management of metabolic stress. Autophagy. 2007;3(1):28–31. Epub 14 Sept 2006.

    PubMed Central  PubMed  CAS  Google Scholar 

  99. Liu W, Zabirnyk O, Wang H, Shiao YH, Nickerson ML, Khalil S, et al. miR-23b targets proline oxidase, a novel tumor suppressor protein in renal cancer. Oncogene. 2010;29(35):4914–24. Epub 22 June 2010.

    Article  PubMed  CAS  Google Scholar 

  100. Zhang A, Liu Y, Shen Y, Xu Y, Li X. miR-21 modulates cell apoptosis by targeting multiple genes in renal cell carcinoma. Urology. 2011;78(2):474 e13–9. Epub 9 Aug 2011.

    Article  Google Scholar 

  101. Zaman MS, Shahryari V, Deng G, Thamminana S, Saini S, Majid S, et al. Up-regulation of microRNA-21 correlates with lower kidney cancer survival. PloS One. 2012;7(2):e31060. Epub 22 Feb 2012.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  102. Liu LZ, Li C, Chen Q, Jing Y, Carpenter R, Jiang Y, et al. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1alpha expression. PloS One. 2011;6(4):e19139. Epub 6 May 2011.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  103. Song T, Zhang X, Wang C, Wu Y, Cai W, Gao J, et al. MiR-138 suppresses expression of hypoxia-inducible factor 1alpha (HIF-1alpha) in clear cell renal cell carcinoma 786-O cells. Asian Pac J Cancer Prev. 2011;12(5):1307–11. Epub 31 Aug 2011.

    PubMed  Google Scholar 

  104. Cha ST, Chen PS, Johansson G, Chu CY, Wang MY, Jeng YM, et al. MicroRNA-519c suppresses hypoxia-inducible factor-1alpha expression and tumor angiogenesis. Cancer Res. 2010;70(7):2675–85. Epub 18 March 2010.

    Article  PubMed  CAS  Google Scholar 

  105. Lei Z, Li B, Yang Z, Fang H, Zhang GM, Feng ZH, et al. Regulation of HIF-1alpha and VEGF by miR-20b tunes tumor cells to adapt to the alteration of oxygen concentration. PloS One. 2009;4(10):e7629. Epub 7 Nov 2009.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  106. Yamakuchi M, Yagi S, Ito T, Lowenstein CJ. MicroRNA-22 regulates hypoxia signaling in colon cancer cells. PloS One. 2011;6(5):e20291. Epub 2 June 2011.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  107. Kerbel RS. Tumor angiogenesis. N Eng J Med. 2008;358(19):2039–49. Epub 9 May 2008.

    Article  CAS  Google Scholar 

  108. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669–76. Epub 5 June 2003.

    Article  PubMed  CAS  Google Scholar 

  109. van der Veldt AA, Haanen JB, van den Eertwegh AJ, Boven E. Targeted therapy for renal cell cancer: current perspectives. Disc Med. 2010;10(54):394–405. Epub 3 Dec 2010.

    Google Scholar 

  110. Sinha S, Dutta S, Datta K, Ghosh AK, Mukhopadhyay D. Von Hippel-Lindau gene product modulates TIS11B expression in renal cell carcinoma: impact on vascular endothelial growth factor expression in hypoxia. J Biol Chem. 2009;284(47):32610–8. Epub 6 Oct 2009.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  111. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18(16):1926–45. Epub 18 Aug 2004.

    Article  PubMed  CAS  Google Scholar 

  112. Hudes GR. Targeting mTOR in renal cell carcinoma. Cancer. 2009;115(10 Suppl):2313–20. Epub 30 Apr 2009.

    Article  PubMed  CAS  Google Scholar 

  113. Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F, et al. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol. 2002;22(20):7004–14. Epub 21 Sept 2002.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  114. Pantuck AJ, Seligson DB, Klatte T, Yu H, Leppert JT, Moore L, et al. Prognostic relevance of the mTOR pathway in renal cell carcinoma: implications for molecular patient selection for targeted therapy. Cancer. 2007;109(11):2257–67. Epub 19 Apr 2007.

    Article  PubMed  CAS  Google Scholar 

  115. Robb VA, Karbowniczek M, Klein-Szanto AJ, Henske EP. Activation of the mTOR signaling pathway in renal clear cell carcinoma. J Urol. 2007;177(1):346–52. Epub 13 Dec 2006.

    Article  PubMed  Google Scholar 

  116. Cully M, You H, Levine AJ, Mak TW. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer. 2006;6(3):184–92. Epub 3 Feb 2006.

    Article  PubMed  CAS  Google Scholar 

  117. Gan B, Lim C, Chu G, Hua S, Ding Z, Collins M, et al. FoxOs enforce a progression checkpoint to constrain mTORC1-activated renal tumorigenesis. Cancer Cell. 2010;18(5):472–84. Epub 16 Nov 2010.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  118. Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci U S A. 2009;106(9):3207–12. Epub 10 Feb 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  119. Zhou L, Yin B, Liu Y, Hong Y, Zhang C, Fan J. Mechanism and function of decreased FOXO1 in renal cell carcinoma. J Surg Oncol. 2012;105(8):841–7. Epub 4 Jan 2012.

    Article  PubMed  CAS  Google Scholar 

  120. Cui L, Zhou H, Zhao H, Zhou Y, Xu R, Xu X, et al. MicroRNA-99a induces G1-phase cell cycle arrest and suppresses tumorigenicity in renal cell carcinoma. BMC Cancer. 2012;12:546. Epub 24 Nov 2012.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  121. Fornari F, Milazzo M, Chieco P, Negrini M, Calin GA, Grazi GL, et al. MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. 2010;70(12):5184–93. Epub 27 May 2010.

    Article  PubMed  CAS  Google Scholar 

  122. Saini S, Yamamura S, Majid S, Shahryari V, Hirata H, Tanaka Y, et al. MicroRNA-708 induces apoptosis and suppresses tumorigenicity in renal cancer cells. Cancer Res. 2011;71(19):6208–19. Epub 20 Aug 2011.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  123. Majid S, Saini S, Dar AA, Hirata H, Shahryari V, Tanaka Y, et al. MicroRNA-205 inhibits Src-mediated oncogenic pathways in renal cancer. Cancer Res. 2011;71(7):2611–21. Epub 19 Feb 2011.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  124. Zhai Q, Zhou L, Zhao C, Wan J, Yu Z, Guo X, et al. Identification of miR-508–3p and miR-509–3p that are associated with cell invasion and migration and involved in the apoptosis of renal cell carcinoma. Biochem Biophys Res Commun. 2012;419(4):621–6. Epub 01 March 2012.

    Article  PubMed  CAS  Google Scholar 

  125. Yamada Y, Hidaka H, Seki N, Yoshino H, Yamasaki T, Itesako T, et al. Tumor-suppressive microRNA-135a inhibits cancer cell proliferation by targeting the c-MYC oncogene in renal cell carcinoma. Cancer Sci. 2013;104(3):304–12. Epub 28 Nov 2012.

    Google Scholar 

  126. Pichler M, Hutterer GC, Chromecki TF, Jesche J, Groselj-Strele A, Kampel-Kettner K, et al. Prognostic value of the Leibovich prognosis score supplemented by vascular invasion for clear cell renal cell carcinoma. J Urol. 2012;187(3):834–9. Epub 17 Jan 2012.

    Article  PubMed  Google Scholar 

  127. Sakurai T, Bilim VN, Ugolkov AV, Yuuki K, Tsukigi M, Motoyama T, et al. The enhancer of zeste homolog 2 (EZH2), a potential therapeutic target, is regulated by miR-101 in renal cancer cells. Biochem Biophys Res Commun. 2012;422(4):607–14. Epub 23 May 2012.

    Article  PubMed  CAS  Google Scholar 

  128. Liu Y, Yin B, Zhang C, Zhou L, Fan J. Hsa-let-7a functions as a tumor suppressor in renal cell carcinoma cell lines by targeting c-myc. Biochem Biophys Res Commun. 2012;417(1):371–5. Epub 14 Dec 2011.

    Article  PubMed  CAS  Google Scholar 

  129. Hidaka H, Seki N, Yoshino H, Yamasaki T, Yamada Y, Nohata N, et al. Tumor suppressive microRNA-1285 regulates novel molecular targets: aberrant expression and functional significance in renal cell carcinoma. Oncotarget. 2012;3(1):44–57. Epub 2 Feb 2012.

    PubMed Central  PubMed  Google Scholar 

  130. Kawakami K, Enokida H, Chiyomaru T, Tatarano S, Yoshino H, Kagara I, et al. The functional significance of miR-1 and miR-133a in renal cell carcinoma. Eur J Cancer. 2012;48(6):827–36. Epub 13 July 2011.

    Article  PubMed  CAS  Google Scholar 

  131. Al-Ali BM, Ress AL, Gerger A, Pichler M. MicroRNAs in renal cell carcinoma: implications for pathogenesis, diagnosis, prognosis and therapy. Anticancer Res. 2012;32(9):3727–32. Epub 21 Sept 2012.

    PubMed  CAS  Google Scholar 

  132. Faragalla H, Youssef YM, Scorilas A, Khalil B, White NM, Mejia-Guerrero S, et al. The clinical utility of miR-21 as a diagnostic and prognostic marker for renal cell carcinoma. J Mol Diagn. 2012;14(4):385–92. Epub 15 May 2012.

    Article  PubMed  Google Scholar 

  133. von Brandenstein M, Pandarakalam, Braun G, et al. MicroRNA 15a, inversely correlated to PKCalpha, is a potential marker to differentiate between benign and malignant renal tumors in biopsy and urine samples. Am J Pathol. 2012;180(5):1787–97. Epub 21 March 2012.

    Article  CAS  Google Scholar 

  134. Li S, Chen T, Zhong Z, Wang Y, Li Y, Zhao X. microRNA-155 silencing inhibits proliferation and migration and induces apoptosis by upregulating BACH1 in renal cancer cells. Mol Med Rep. 2012;5(4):949–54. Epub 7 Feb 2012.

    PubMed Central  PubMed  CAS  Google Scholar 

  135. Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ. 2010;17(2):193–9. Epub 23 May 2009.

    Article  PubMed  CAS  Google Scholar 

  136. Medina PP, Slack FJ. microRNAs and cancer: an overview. Cell Cycle. 2008;7(16):2485–92. Epub 23 Aug 2008.

    Article  PubMed  CAS  Google Scholar 

  137. Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Korner H, et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 2008;7(16):2591–600. Epub 23 Aug 2008.

    Article  PubMed  CAS  Google Scholar 

  138. Vogt M, Munding J, Gruner M, Liffers ST, Verdoodt B, Hauk J, et al. Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Archiv. 2011;458(3):313–22. Epub 13 Jan 2011.

    Article  PubMed  Google Scholar 

  139. Wirsing A, Senkel S, Klein-Hitpass L, Ryffel GU. A systematic analysis of the 3’UTR of HNF4A mRNA reveals an interplay of regulatory elements including miRNA target sites. PloS One. 2011;6(11):e27438. Epub 6 Dec 2011.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  140. Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA. A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res. 2007;13(23):7003–11. Epub 7 Dec 2007.

    Article  PubMed  CAS  Google Scholar 

  141. Bracken CP, Gregory PA, Khew-Goodall Y, Goodall GJ. The role of microRNAs in metastasis and epithelial-mesenchymal transition. Cell Mol Life Sci. 2009;66(10):1682–99. Epub 21 Jan 2009.

    Article  PubMed  CAS  Google Scholar 

  142. Kang Y, Massague J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell. 2004;118(3):277–9. Epub 6 Aug 2004.

    Article  PubMed  CAS  Google Scholar 

  143. Zhang J, Ma L. MicroRNA control of epithelial-mesenchymal transition and metastasis. Cancer Metastasis Rev. 2012;31(3-4):653–62. Epub 12 June 2012.

    Google Scholar 

  144. Gregory PA, Bracken CP, Bert AG, Goodall GJ. MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle. 2008;7(20):3112–8. Epub 18 Oct 2008.

    Article  PubMed  CAS  Google Scholar 

  145. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601. Epub 1 Apr 2008.

    Article  PubMed  CAS  Google Scholar 

  146. Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, Andersen H, et al. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res. 2005;33(20):6566–78. Epub 30 Nov 2005.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  147. Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell. 2001;7(6):1267–78. Epub 30 June 2001.

    Article  PubMed  CAS  Google Scholar 

  148. Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M. Stem cells and cancer; the polycomb connection. Cell. 2004;118(4):409–18. Epub 19 Aug 2004.

    Article  PubMed  CAS  Google Scholar 

  149. Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C, et al. Epigenetic stem cell signature in cancer. Nat Genet. 2007;39(2):157–8. Epub 4 Jan 2007.

    Article  PubMed  CAS  Google Scholar 

  150. Chiba T, Miyagi S, Saraya A, Aoki R, Seki A, Morita Y, et al. The polycomb gene product BMI1 contributes to the maintenance of tumor-initiating side population cells in hepatocellular carcinoma. Cancer Res. 2008;68(19):7742–9. Epub 3 Oct 2008.

    Article  PubMed  CAS  Google Scholar 

  151. Leung C, Lingbeek M, Shakhova O, Liu J, Tanger E, Saremaslani P, et al. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature. 2004;428(6980):337–41. Epub 19 March 2004.

    Article  PubMed  CAS  Google Scholar 

  152. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A. 2007;104(3):973–8. Epub 11 Jan 2007.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  153. Yang MH, Hsu DS, Wang HW, Wang HJ, Lan HY, Yang WH, et al. Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol.12(10):982–92. Epub 8 Sept 2010.

    Google Scholar 

  154. Du R, Sun W, Xia L, Zhao A, Yu Y, Zhao L, et al. Hypoxia-induced down-regulation of microRNA-34a promotes EMT by targeting the Notch signaling pathway in tubular epithelial cells. PloS One. 2012;7(2):e30771. Epub 1 March 2012.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  155. Yamasaki T, Seki N, Yamada Y, Yoshino H, Hidaka H, Chiyomaru T, et al. Tumor suppressive microRNA138 contributes to cell migration and invasion through its targeting of vimentin in renal cell carcinoma. Int J Oncol. 2012;41(3):805–17. Epub 7 July 2012.

    PubMed Central  PubMed  CAS  Google Scholar 

  156. Yamamura S, Saini S, Majid S, Hirata H, Ueno K, Chang I, et al. MicroRNA-34a suppresses malignant transformation by targeting c-Myc transcriptional complexes in human renal cell carcinoma. Carcinogenesis. 2012;33(2):294–300. Epub 14 Dec 2011.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  157. Ueno K, Hirata H, Shahryari V, Chen Y, Zaman MS, Singh K, et al. Tumour suppressor microRNA-584 directly targets oncogene Rock-1 and decreases invasion ability in human clear cell renal cell carcinoma. Br J Cancer. 2011;104(2):308–15. Epub 2 Dec 2010.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  158. Slaby O, Jancovicova J, Lakomy R, Svoboda M, Poprach A, Fabian P, et al. Expression of miRNA-106b in conventional renal cell carcinoma is a potential marker for prediction of early metastasis after nephrectomy. J Exp Clin Cancer Res. 2010;29:90. Epub 9 July 2010.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  159. Hildebrandt MA, Gu J, Lin J, Ye Y, Tan W, Tamboli P, et al. Hsa-miR-9 methylation status is associated with cancer development and metastatic recurrence in patients with clear cell renal cell carcinoma. Oncogene. 2010;29(42):5724–8. Epub 3 Aug 2010.

    Article  PubMed  CAS  Google Scholar 

  160. Metias SM, Lianidou E, Yousef GM. MicroRNAs in clinical oncology: at the crossroads between promises and problems. J Clin Pathol. 2009;62(9):771–6. Epub 8 Sept 2009.

    Article  PubMed  CAS  Google Scholar 

  161. Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids–the mix of hormones and biomarkers. Nat Rev Clin Oncol. 2011;8(8):467–77. Epub 8 June 2011.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  162. Tong AW, Nemunaitis J. Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy? Cancer Gene Ther. 2008;15(6):341–55. Epub 29 March 2008.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Roger Erickson for his support and assistance with the preparation of the manuscript. The work in Dr. Dahiyas’s lab is supported by Grants RO1CA130860, RO1CA111470, RO1CA138642 from the NIH, VA Program Project, and Merit Review grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajvir Dahiya Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saini, S., Arora, S., Majid, S., Hirata, H., Dahiya, R. (2014). MicroRNAs in the Development and Progression of Kidney Cancer. In: Singh, S., Rameshwar, P. (eds) MicroRNA in Development and in the Progression of Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8065-6_12

Download citation

Publish with us

Policies and ethics