Skip to main content

The Role of miRNAs in the Development of Normal Pancreas and Pancreatic Cancer, and Their Roles in Tumor Progression

  • Chapter
  • First Online:
MicroRNA in Development and in the Progression of Cancer
  • 1100 Accesses

Abstract

The microRNAs (miRNAs) have been shown to play important roles in the control of many normal biological processes including cell differentiation and organogenesis. During the development of normal pancreas, several miRNAs including miR-375, miR-7, miR-124, etc. have been shown to regulate exocrine and endocrine cell differentiation. These regulations could in part be mediated through the miRNA-mediated deregulation of transforming growth factor-β, Notch, and Hedgehog signaling, which are the signal transduction pathways that are critically involved in organogenesis during normal development. However, deregulated expression of miRNAs could also lead to the development and progression of pancreatic cancer. Moreover, miRNAs are also known to regulate the development and maintenance of pancreatic cancer stem cells and epithelial-to-mesenchymal transition phenotypic cells, which are typically responsible for drug resistance, tumor recurrence, and metastasis. Therefore, targeting specific miRNAs by oligonucleotide/nanoparticle vector delivery or regulation of miRNAs by natural agents could become novel strategies for the treatment of pancreatic cancer with better treatment outcome in combination with conventional therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    Article  PubMed  CAS  Google Scholar 

  2. Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–6.

    Article  PubMed  CAS  Google Scholar 

  3. Vandenboom Ii TG, Li, Philip PA, et al. MicroRNA and Cancer: tiny molecules with major implications. Curr Genomics. 2008;9:97–109.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Kasinski AL, Slack FJ. Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer. 2011;11(12):849–64.

    Article  PubMed  CAS  Google Scholar 

  5. Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13(4):271–82.

    PubMed  CAS  Google Scholar 

  6. Pellettieri J, Sanchez AA. Cell turnover and adult tissue homeostasis: from humans to planarians. Annu Rev Genet. 2007;41:83–105.

    Article  PubMed  CAS  Google Scholar 

  7. Rando TA. Stem cells, ageing and the quest for immortality. Nature. 2006;441(7097):1080–86.

    Article  PubMed  CAS  Google Scholar 

  8. Peter ME. Regulating cancer stem cells the miR way. Cell Stem Cell. 2010;6(1):4–6.

    Article  PubMed  CAS  Google Scholar 

  9. Shimono Y, Zabala M, Cho RW, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 2009;138(3):592–603.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Zheng T, Wang J, Chen X, et al. Role of microRNA in anticancer drug resistance. Int J Cancer. 2010;126(1):2–10.

    Article  PubMed  CAS  Google Scholar 

  11. Li Y, Vandenboom TG, Kong D, et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 2009;69(16):6704–12.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Lynn FC, Skewes-Cox P, Kosaka Y, et al. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes. 2007;56(12):2938–45.

    Article  PubMed  CAS  Google Scholar 

  13. Massague J, Chen YG. Controlling TGF-beta signaling. Genes Dev. 2000;14(6):627–44.

    PubMed  CAS  Google Scholar 

  14. Schonrock N, Humphreys DT, Preiss T, et al. Target gene repression mediated by miRNAs miR-181c and miR-9 both of which are down-regulated by amyloid-beta. J Mol Neurosci. 2012;46(2):324–35.

    Article  PubMed  CAS  Google Scholar 

  15. Altmae S, Martinez-Conejero JA, Esteban FJ, et al. MicroRNAs miR-30b, miR-30d, and miR-494 Regulate Human Endometrial Receptivity. Reprod Sci. 2013;20(3):308–17.

    Article  PubMed  Google Scholar 

  16. Gaedcke J, Grade M, Camps J, et al. The rectal cancer microRNAome—microRNA Expression in rectal cancer and matched normal mucosa. Clin Cancer Res. 2012;18(18):4919–30.

    Article  PubMed  CAS  Google Scholar 

  17. Gradwohl G, Dierich A, LeMeur M, et al. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A. 2000;97(4):1607–11.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Apelqvist A, Li H, Sommer L, et al. Notch signalling controls pancreatic cell differentiation. Nature. 1999;400(6747):877–81.

    Article  PubMed  CAS  Google Scholar 

  19. Jensen J, Pedersen EE, Galante P, et al. Control of endodermal endocrine development by Hes-1. Nat Genet. 2000;24(1):36–44.

    Article  PubMed  CAS  Google Scholar 

  20. Schwitzgebel VM, Scheel DW, Conners JR, et al. Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development. 2000;127(16):3533–42.

    PubMed  CAS  Google Scholar 

  21. Knuckles P, Vogt MA, Lugert S, et al. Drosha regulates neurogenesis by controlling neurogenin 2 expression independent of microRNAs. Nat Neurosci. 2012;15(7):962–9.

    Article  PubMed  CAS  Google Scholar 

  22. Jee MK, Jung JS, Im YB, et al. Silencing of miR20a is crucial for Ngn1-mediated neuroprotection in injured spinal cord. Hum Gene Ther. 2012;23(5):508–20.

    Article  PubMed  CAS  Google Scholar 

  23. Hebrok M, Kim SK, St JB, et al. Regulation of pancreas development by hedgehog signaling. Development. 2000;127(22):4905–13.

    PubMed  CAS  Google Scholar 

  24. Chen JS, Pedro MS, Zeller RW. miR-124 function during Ciona intestinalis neuronal development includes extensive interaction with the Notch signaling pathway. Development. 2011;138(22):4943–53.

    Article  PubMed  CAS  Google Scholar 

  25. Li Y, Zhang D, Chen C, et al. MicroRNA-212 displays tumor-promoting properties in non-small cell lung cancer cells and targets the hedgehog pathway receptor PTCH1. Mol Biol Cell. 2012;23(8):1423–34.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Northcott PA, Fernandez L, Hagan JP, et al. The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors. Cancer Res. 2009;69(8):3249–55.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Hornstein E, Mansfield JH, Yekta S, et al. The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature. 2005;438(7068):671–74.

    Article  PubMed  CAS  Google Scholar 

  28. Baroukh N, Ravier MA, Loder MK, et al. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem. 2007;282(27):19575–88.

    Article  PubMed  CAS  Google Scholar 

  29. Joglekar MV, Parekh VS, Mehta S, et al. MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3. Dev Biol. 2007;311(2):603–12.

    Article  PubMed  CAS  Google Scholar 

  30. Simion A, Laudadio I, Prevot PP, et al. MiR-495 and miR-218 regulate the expression of the Onecut transcription factors HNF-6 and OC-2. Biochem Biophys Res Commun. 2010;391(1):293–98.

    Article  PubMed  CAS  Google Scholar 

  31. Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432(7014):226–30.

    Article  PubMed  CAS  Google Scholar 

  32. El Ouaamari A, Baroukh N, Martens GA, et al. miR-375 targets 3†²-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes. 2008;57(10):2708–17.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Joglekar MV, Joglekar VM, Hardikar AA. Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns. 2009;9(2):109–13.

    Article  PubMed  CAS  Google Scholar 

  34. Dumortier O, Van Obberghen E. MicroRNAs in pancreas development. Diabetes Obes Metab. 2012;14 Suppl 3:22–8.

    Article  Google Scholar 

  35. Wang C, Yao N, Lu CL, et al. Mouse microRNA-124 regulates the expression of Hes1 in P19 cells. Front Biosci (Elite Ed). 2010;2:127–32.

    Article  Google Scholar 

  36. Plaisance V, Abderrahmani A, Perret-Menoud V, et al. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem. 2006;281(37):26932–42.

    Article  PubMed  CAS  Google Scholar 

  37. Tang X, Muniappan L, Tang G, et al. Identification of glucose-regulated miRNAs from pancreatic {beta} cells reveals a role for miR-30d in insulin transcription. RNA. 2009;15(2):287–93.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.

    Article  PubMed  CAS  Google Scholar 

  39. Jamieson NB, Morran DC, Morton JP, et al. MicroRNA molecular profiles associated with diagnosis, clinicopathologic criteria, and overall survival in patients with resectable pancreatic ductal adenocarcinoma. Clin Cancer Res. 2012;18(2):534–45.

    Article  PubMed  CAS  Google Scholar 

  40. Dillhoff M, Liu J, Frankel W, et al. MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J Gastrointest Surg. 2008;12(12):2171–76.

    Article  PubMed  Google Scholar 

  41. Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601.

    Article  PubMed  CAS  Google Scholar 

  42. Ji Q, Hao X, Zhang M, et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One. 2009;4(8):e6816.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Nalls D, Tang SN, Rodova M, et al. Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS One. 2011;6(8):e24099.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Yu J, Li A, Hong SM, et al. MicroRNA alterations of pancreatic intraepithelial neoplasias. Clin Cancer Res. 2012;18(4):981–92.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Wang J, Sen S. MicroRNA functional network in pancreatic cancer: from biology to biomarkers of disease. J Biosci. 2011;36(3):481–91.

    Article  PubMed  CAS  Google Scholar 

  46. Szafranska AE, Davison TS, John J, et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene. 2007;26(30):4442–52.

    Article  PubMed  CAS  Google Scholar 

  47. Chang TC, Wentzel EA, Kent OA, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007;26(5):745–52.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Vogt M, Munding J, Gruner M, et al. Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch. 2011;458(3):313–22.

    Article  PubMed  Google Scholar 

  49. Lodygin D, Tarasov V, Epanchintsev A, et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 2008;7(16):2591–600.

    Article  PubMed  CAS  Google Scholar 

  50. Liu C, Kelnar K, Liu B, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17(2):211–15.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Srivastava SK, Bhardwaj A, Singh S, et al. MicroRNA-150 directly targets MUC4 and suppresses growth and malignant behavior of pancreatic cancer cells. Carcinogenesis. 2011;32(12):1832–39.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Ribas J, Ni X, Haffner M, et al. miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res. 2009;69(18):7165–69.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Seike M, Goto A, Okano T, et al. MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci U S A. 2009;106(29):12085–90.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Si ML, Zhu S, Wu H, et al. miR-21-mediated tumor growth. Oncogene. 2007;26(19):2799–803.

    Article  PubMed  CAS  Google Scholar 

  55. Habbe N, Koorstra JB, Mendell JT, et al. MicroRNA miR-155 is a biomarker of early pancreatic neoplasia. Cancer Biol Ther. 2009;8(4):340–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Moriyama T, Ohuchida K, Mizumoto K, et al. MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance. Mol Cancer Ther. 2009;8(5):1067–74.

    Article  PubMed  CAS  Google Scholar 

  57. Park JK, Lee EJ, Esau C, et al. Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas. 2009;38(7):e190–9.

    Article  PubMed  CAS  Google Scholar 

  58. Basu A, Alder H, Khiyami A, et al. MicroRNA-375 and microRNA-221: potential noncoding RNAs associated with antiproliferative activity of benzyl isothiocyanate in pancreatic cancer. Genes Cancer. 2011;2(2):108–19.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Lee EJ, Gusev Y, Jiang J, et al. Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer. 2007;120(5):1046–54.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Greither T, Grochola LF, Udelnow A, et al. Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival. Int J Cancer. 2010;126(1):73–80.

    Article  PubMed  CAS  Google Scholar 

  61. Gironella M, Seux M, Xie MJ, et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci U S A. 2007;104(41):16170–75.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Gibbons DL, Lin W, Creighton CJ, et al. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev. 2009;23(18):2140–51.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Ji J, Yamashita T, Budhu A, et al. Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology. 2009;50(2):472–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Jung DE, Wen J, Oh T, et al. Differentially expressed microRNAs in pancreatic cancer stem cells. Pancreas. 2011;40(8):1180–87.

    Article  PubMed  CAS  Google Scholar 

  65. Ji Q, Hao X, Zhang M, et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One. 2009;4(8):e6816.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Hamada S, Satoh K, Masamune A, et al. Regulators of epithelial mesenchymal transition in pancreatic cancer. Front Physiol. 2012;3:254.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Bao B, Wang Z, Ali S, et al. Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. J Cell Biochem. 2011;112(9):2296–306.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Bao B, Wang Z, Ali S, et al. Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Lett. 2011;307(1):26–36.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Bao B, Ali S, Banerjee S, et al. Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res. 2012;72(1):335–45.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Raponi M, Dossey L, Jatkoe T, et al. MicroRNA classifiers for predicting prognosis of squamous cell lung cancer. Cancer Res. 2009;69(14):5776–783.

    Article  PubMed  CAS  Google Scholar 

  71. Wang QZ, Xu W, Habib N, et al. Potential uses of microRNA in lung cancer diagnosis, prognosis, and therapy. Curr Cancer Drug Targets. 2009;9(4):572–94.

    Article  PubMed  CAS  Google Scholar 

  72. Nakata K, Ohuchida K, Mizumoto K, et al. MicroRNA-10b is overexpressed in pancreatic cancer, promotes its invasiveness, and correlates with a poor prognosis. Surgery. 2011;150(5):916–22.

    Article  PubMed  Google Scholar 

  73. Papaconstantinou IG, Manta A, Gazouli M, et al. Expression of microRNAs in patients with pancreatic cancer and its prognostic significance. Pancreas. 2012;42(1):67–71.

    Article  Google Scholar 

  74. Yu J, Ohuchida K, Mizumoto K, et al. MicroRNA miR-17–5p is overexpressed in pancreatic cancer, associated with a poor prognosis, and involved in cancer cell proliferation and invasion. Cancer Biol Ther. 2010;10(8):748–57.

    Article  PubMed  CAS  Google Scholar 

  75. Yu J, Ohuchida K, Mizumoto K, et al. MicroRNA, hsa-miR-200c, is an independent prognostic factor in pancreatic cancer and its upregulation inhibits pancreatic cancer invasion but increases cell proliferation. Mol Cancer. 2010;9:169.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Bloomston M, Frankel WL, Petrocca F, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA. 2007;297(17):1901–08.

    Article  PubMed  CAS  Google Scholar 

  77. Roldo C, Missiaglia E, Hagan JP, et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol. 2006;24(29):4677–84.

    Article  PubMed  CAS  Google Scholar 

  78. Nagao Y, Hisaoka M, Matsuyama A, et al. Association of microRNA-21 expression with its targets, PDCD4 and TIMP3, in pancreatic ductal adenocarcinoma. Mod Pathol. 2012;25(1):112–21.

    Article  PubMed  CAS  Google Scholar 

  79. Babar IA, Cheng CJ, Booth CJ, et al. Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci U S A. 2012;109(26):E1695–704.

    Article  Google Scholar 

  80. Sureban SM, May R, Mondalek FG, et al. Nanoparticle-based delivery of siDCAMKL-1 increases microRNA-144 and inhibits colorectal cancer tumor growth via a Notch-1 dependent mechanism. J Nanobiotechnology. 2011;9:40.

    Article  CAS  Google Scholar 

  81. Fonsato V, Collino F, Herrera MB, et al. Human liver stem cell-derived microvesicles inhibit hepatoma growth in SCID mice by delivering antitumor microRNAs. Stem Cells. 2012;30(9):1985–98.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438(7068):685–9.

    Article  PubMed  Google Scholar 

  83. Pramanik D, Campbell NR, Karikari C, et al. Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Mol Cancer Ther. 2011;10(8):1470–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Li Y, VandenBoom TG, Kong D, et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 2009;69(16):6704–12.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  85. Sun M, Estrov Z, Ji Y, et al. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther. 2008;7(3):464–73.

    Article  PubMed  CAS  Google Scholar 

  86. Melkamu T, Zhang X, Tan J, et al. Alteration of microRNA expression in vinyl-carbamate-induced mouse lung tumors and modulation by the chemopreventive agent indole-3-carbinol. Carcinogenesis. 2010;31(2):252–8.

    Article  PubMed  CAS  Google Scholar 

  87. Tsang WP, Kwok TT. Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J Nutr Biochem. 2010;21(2):140–6.

    Article  PubMed  CAS  Google Scholar 

  88. Li Y, Vandenboom TG, Wang Z, et al. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res. 2010;70(4):1486–95.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  89. Sun M, Estrov Z, Ji Y, et al. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther. 2008;7(3):464–73.

    Article  PubMed  CAS  Google Scholar 

  90. Bao B, Ali S, Kong D, et al. Anti-tumor activity of a novel compound-CDF is mediated by regulating miR-21, miR-200, and PTEN in pancreatic cancer. PLoS One. 2011;6(3):e17850.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Ali S, Ahmad A, Banerjee S, et al. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res. 2010;70(9):3606–17.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Soubani O, Ali AS, Logna F, et al. Re-expression of miR-200 by novel approaches regulates the expression of PTEN and MT1-MMP in pancreatic cancer. Carcinogenesis. 2012;33(8):1563–71.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors’ work cited in this review article was funded by grants from the National Cancer Institute, NIH (5R01CA083695, 5R01CA108535, 5R01CA131151, 5R01CA132794, 5R01CA154321, and 1R01CA164318 awarded to FHS). We also thank Puschelberg and Guido foundations for their generous contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazlul H. Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, Y., Kong, D., Ahmad, A., Bao, B., Sarkar, F. (2014). The Role of miRNAs in the Development of Normal Pancreas and Pancreatic Cancer, and Their Roles in Tumor Progression. In: Singh, S., Rameshwar, P. (eds) MicroRNA in Development and in the Progression of Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8065-6_10

Download citation

Publish with us

Policies and ethics