Skip to main content
Log in

MicroRNA functional network in pancreatic cancer: From biology to biomarkers of disease

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

MicroRNAs (miRs), the 17- to 25-nucleotide-long non-coding RNAs, regulate expression of approximately 30% of the protein-coding genes at the post-transcriptional level and have emerged as critical components of the complex functional pathway networks controlling important cellular processes, such as proliferation, development, differentiation, stress response' and apoptosis. Abnormal expression levels of miRs, regulating critical cancer-associated pathways, have been implicated to play important roles in the oncogenic processes, functioning both as oncogenes and as tumour suppressor genes. Elucidation of the genetic networks regulated by the abnormally expressing miRs in cancer cells is proving to be extremely significant in understanding the role of these miRs in the induction of malignant-transformation-associated phenotypic changes. As a result, the miRs involved in the oncogenic transformation process are being investigated as novel biomarkers of disease detection and prognosis as well as potential therapeutic targets for human cancers. In this \article, we review the existing literature in the field documenting the significance of aberrantly expressed miRs in human pancreatic cancer and discuss how the oncogenic miRs may be involved in the genetic networks regulating functional pathways deregulated in this malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

3′UTR:

3′ untranslated region

CLL:

chronic lymphocytic leukemia

CP:

chronic pancreatitis

IGF-IR:

insulin-like growth factor type I receptor

INSR:

insulin receptor

IPA:

Ingenuity Pathway Analysis

IPMN:

intraductal papillary neoplasms

miR:

microRNAs

mRNAs:

messenger RNAs

mTOR:

mammalian target of rapamycin

PDAC:

pancreatic ductal adenocarcinoma

PDCD4:

programmed cell death 4

pre-miR:

precursor miRNA

pri-miRNA:

primary RNA

PTEN:

phosphatase and tensin homologue 2

RISC:

RNA-induced silencing complex

TIMP3:

tissue inhibitor of metalloproteinase 3

TP53INP1:

tumour protein p53-induced nuclear protein 1

References

  • Ambros V 2004 The functions of animal microRNAs. Nature (London) 431 350–355

    Article  CAS  Google Scholar 

  • Asangani LA, Rasheed SAK, Nikolova DA, Leupold JH, Colburn NH, Post S and Allgayer H 2008 MicroRNA-21 (miR-21) post-transcriptionally downregulates Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27 2128–2136

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP 2004 MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116 281–297

    Article  PubMed  CAS  Google Scholar 

  • Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, Liu CG, Bhatt D, et al. 2007 MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297 1901–1908

    Article  PubMed  CAS  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, et al. 2002 Frequent deletions and down-regulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 99 15524–15529

    Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, et al. 2004 Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA 101 2999–3004

    Google Scholar 

  • Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, et al. 2007 Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 26 745–752

    Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Ageilan RI, et al. 2005 MiR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA 102 13944–13949

    Google Scholar 

  • Esquela-Kerscher A and Slack FJ 2006 Oncomirs – microRNAs with a role in cancer. Nat. Rev. Cancer 6 259–269

    Google Scholar 

  • Gregory RI, Chendrimada TP, Cooch N and Shiekhattar R 2005 Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123 631–640

    Article  PubMed  CAS  Google Scholar 

  • Greither T, Grochola LF, Udelnow A, Lautenschläger C, Würl P and Taubert H 2010 Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival. Int. J. Cancer 126 73–80

    Google Scholar 

  • Habbe N, Koorstra JB, Mendell JT, Offerhaus GJ, Ryu JK, Feldmann G, Mullendore ME, Goggins MG, et al. 2009 MicroRNA miR-155 is a biomarker of early pancreatic neoplasia. Cancer Biol. Ther. 8 340–346

    Google Scholar 

  • Hayat MJ, Howlader N, Reichman ME and Edwards BK 2007 Cancer statistics, trends and multiple primary cancer analyses from the surveillance, epidemiology and end results. (SEER) program. Oncologist 12 20–37

    Article  PubMed  Google Scholar 

  • He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, Calin GA, Liu CG, et al. 2005 The role of microRNA genes in papillary thyroid carcinoma. Proc. Natl. Acad. Sci. USA 10219075–19080

  • He L and Hannon GJ 2004 MicroRNAs: small RNAs with a big role in gene regulation. Natl. Rev. Genet. 5 522–531

    Article  CAS  Google Scholar 

  • Hill R, Calvopina JH, Kim C, Wang Y, Dawson DW, Donahue TR, Dry S and Wu H 2010 PTEN loss accelerates KrasG12D-induced pancreatic cancer development. Cancer Res. 70 7114–7124

  • Iorio MV, Piovan C and Croce CM 2010 Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim. Biophys. Acta 1799 694–701

    Google Scholar 

  • Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, Xiang D, Desano JT, et al. 2009 MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One 4 e6816

  • Jiang S, Zhang HW, Lu MH, He XH, Li Y, Gu H, Liu MF and Wang ED 2010 MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res. 70 3119–3127

    Google Scholar 

  • Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, et al. 2005 Combinatorial microRNA target predictions. Nat. Genet. 37 495–500

    Article  PubMed  CAS  Google Scholar 

  • Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL, Morgan DL, Postier RG, et al. 2007 Expression profiling identifies microRNA signature in pancreatic cancer. Int. J. Cancer 120 1046–1054

    Google Scholar 

  • Lee RC, Feinbaum RL and Ambros V 1993 The C elegans heterochronic gene lin-4 encodes small RNAs with antisense complementary to lin-14. Cell 75 843–854

    Article  PubMed  CAS  Google Scholar 

  • Li M, Marin-Muller C, Bharadwaj U, Chow KH, Yao Q and Chen C 2009 MicroRNAs: control and loss of control in human physiology and disease. World J. Surg. 33 667–684

    Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, et al. 2005 MicroRNA expression profiles classify human cancers. Nature (London) 435 834–838

    Article  CAS  Google Scholar 

  • McManus MT 2003 MicroRNAs and cancer. Semin. Cancer Biol. 13 253–258

  • Mees ST, Mardin WA, Wendel C, Baeumer N, Willscher E, Senninger N, Schleicher C, Colombo-Benkmann M, et al. 2010 EP300-a miRNA-regulated metastasis suppressor gene in ductal adenocarcinomas of the pancreas. Int. J. Cancer 126 114–124

  • Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST and Patel T 2007 MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133 647–658

    Article  PubMed  CAS  Google Scholar 

  • Moriyama T, Ohuchida K, Mizumoto K, Yu J, Sato N, Nabae T, Takahata S, Toma H, et al. 2009 MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance. Mol Cancer Ther. 8 1067–1074

    Google Scholar 

  • Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T and Shimotohno K 2006 Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25 2537–2545

    Article  PubMed  CAS  Google Scholar 

  • Nelson KM and Weiss GJ 2008 MicroRNAs and cancer: past, present and potential future. Mol. Cancer Ther. 7 3655–3660

    Google Scholar 

  • Park JK, Lee EJ, Esau C and Schmittgen TD 2009 Antisense inhibition of microRNA-21 or −221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas 38 e190–e199

    Article  PubMed  CAS  Google Scholar 

  • Rachagani S, Kumar S and Batra SK 2010 MicroRNA in pancreatic cancer: pathological, diagnostic and therapeutic implications. Cancer Lett. 292 8–16

    Google Scholar 

  • Rodriguez A, Griffiths-Jones S, Ashurst JL and Bradley A 2004 Identification of mammalian microRNA host genes and transcription units. Genome Res. 14 1902–1910

    Google Scholar 

  • Roldo C, Missiaglia E, Hagan JP, Falconi M, Capelli P, Bersani S, Calin GA, Volinia S, et al. 2006 MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J. Clin. Oncol. 24 4677–4684

    Article  PubMed  CAS  Google Scholar 

  • Szafranska AE, Davison TS, John J, Cannon T, Sipos B, Maghnouj A, Labourier E and Hahn SA 2007 MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 26 4442–4452

    Article  PubMed  CAS  Google Scholar 

  • Szafranska AE, Doleshal M, Edmunds HS, Gordon S, Luttges J, Munding JB, Barth RJ Jr, Gutmann EJ, et al. 2008 Analysis of microRNAs in pancreatic fine-needle aspirates can classify benign and malignant tissues. Clin Chem. 54 1716–1724

  • Thomson JM, Newman M. Parker JS, Morin-Kensicki EM, Wright T and Hammond SM 2006 Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 20 2202–2207

  • Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B , Fabbri M, Alder H, Liu CG, et al. 2007 Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J. Immunol. 179 5082–5089

    PubMed  CAS  Google Scholar 

  • Torrisani J, Bournet B, du Rieu MC, Bouisson M, Souque A, Escourrou J, Buscail L and Cordelier P 2009 Let-7 microRNA transfer in pancreatic cancer-derived cells inhibits in vitro cell proliferation but fails to alter tumor progression. Hum. Gene Ther. 20 831–844

    Google Scholar 

  • Wang J, Chen J, Chang P, LeBlanc A, Li D, Abbruzzesse JL, Frazier ML, Killary AM and Sen S 2009 MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev. Res. (Phila). 2 807–813

    Google Scholar 

  • Wong HH and Lemoine NR 2009 Pancreatic cancer: molecular pathogenesis and new therapeutic targets. Nat. Rev. Gastroenterol. Hepatol. 6 412–422

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y 2006 Principles of microRNA production and maturation. Oncogene 25 6156–6162

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Li M, Wang H, Fisher WE, Lin PH, Yao Q and Chen C 2009 Profiling of 95 MicroRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis. World J. Surg. 33 698–709

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the help of Ms Barbara Sadeghi in the preparation of this manuscript. The biomarker discovery work in SS’s laboratory is supported by a grant from the Early Detection Research Network of the National Cancer Institute/National Institutes of Health, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Sen.

Additional information

[Wang J and Sen S 2011 MicroRNA functional network in pancreatic cancer: From biology to biomarkers of disease. J. Biosci. 36 481–491] DOI 10.1007/s12038-011-9083-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Sen, S. MicroRNA functional network in pancreatic cancer: From biology to biomarkers of disease. J Biosci 36, 481–491 (2011). https://doi.org/10.1007/s12038-011-9083-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-011-9083-4

Keywords

Navigation