Skip to main content

Oligosaccharide Elicitors in Host-Pathogen Interactions

Generation, Perception, and Signal Transduction

  • Chapter
Plant-Microbe Interactions

Part of the book series: Subcellular Biochemistry ((SCBI,volume 29))

Abstract

Studies of plant-microorganism interactions yielded the first evidence that oligosaccharides could serve as biological signals. Much of this research focused on the synthesis and accumulation of antimicrobial phytoalexins in response to microbial attack. Phytoalexin synthesis and accumulation are observed not only after microbial infection, but also after treatment of plant tissue with cell-free extracts of microbial origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-Goukh, A. A., Greve, L. C., and Labavitch, J. M., 1983, Purification and partial characterization of “Bartlett” pear fruit polygalacturonase inhibitors, Physiol. Plant Pathol. 23:111–122.

    Article  CAS  Google Scholar 

  • Aiba, S., 1994a, Preparation of N-acetylchitooligosaccharides from lysozymatic hydrolysates of partially N-acetylated chitosans, Carbohydr. Res. 261:297–306.

    Article  CAS  Google Scholar 

  • Aiba, S., 1994b, Preparation of N-acetylchitooligosaccharides by hydrolysis of chitosan with chitinase followed by N-acetylation, Carbohydr. Res. 265:323–328.

    Article  PubMed  CAS  Google Scholar 

  • Akiyama, K., Kawazu, K., and Kobayashi, A., 1994, Partially N-deacetylatedchitinelicitor induces antimicrobial flavonoids in pea epicotyls, Z. Naturforsch. 49c:811–818.

    Google Scholar 

  • Akiyama, K., Kawazu, K., and Kobayashi, A., 1995, Partially N-deacetylated chitin oligomers (pentamer to heptamer) are potential elicitors for (+)-pisatin induction in pea epicotyls, Z. Naturforsch. 50c:391–397.

    Google Scholar 

  • Albersheim, P., and Darvill, A. G., 1985, Oligosaccharins, Sci. Am. 253:58–64.

    Article  Google Scholar 

  • Albersheim, P., and Valent, B. S., 1974, Host-pathogen interactions. VII. Plant pathogens secrete proteins which inhibit enzymes of the host capable of attacking the pathogen, Plant Physiol. 53:684–687.

    Article  PubMed  CAS  Google Scholar 

  • Aldington, S., and Fry, S. C., 1993, Oligosaccharins, Adv. Bot. Res. 19:1–101.

    Article  CAS  Google Scholar 

  • Anderson, A. J., and Albersheim, P., 1972, Host-pathogen interactions. V. Comparison of the abilities of proteins isolated from three varieties of Phaseolus vulgaris to inhibit the endopolygalacturonases secreted by three races of Colletotrichum lindemuthianum, Physiol. Plant Pathol. 2:339–346.

    Article  CAS  Google Scholar 

  • Apostol, I., Heinstein, P. F., and Low, P. S., 1989, Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Role in defense and signal transduction, Plant Physiol. 90:109–116.

    Article  PubMed  CAS  Google Scholar 

  • Arlorio, M., Ludwig, A., Boiler, T., and Bonfante, P., 1992, Inhibition of fungal growth by plant chitinases and β-1,3-glucanases. A morphological study, Protoplasma 171:34–43.

    Article  CAS  Google Scholar 

  • Ayers, A. R., Ebel, J., Finelli, F., Berger, N., and Albersheim, P., 1976a, Host-pathogen interactions. IX. Quantitative assays of elicitor activity and characterization of the elicitor present in the extracellular medium of cultures of Phytophthora megasperma var. sojae, Plant Physiol. 57:751–759.

    Article  PubMed  CAS  Google Scholar 

  • Ayers, A. R., Ebel, J., Valent, B., and Albersheim, P., 1976b, Host-pathogen interactions. X. Fractionation and biological activity of an elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae, Plant Physiol. 57:760–765.

    Article  PubMed  CAS  Google Scholar 

  • Ayers, A. R., Valent, B., Ebel, J., and Albersheim, P., 1976c, Host-pathogen interactions. XI. Composition and structure of wall-released elicitor fractions, Plant Physiol. 57:766–774.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin, E. A., and Biggs, R. H., 1988, Cell-wall lysing enzymes and products of cell-wall digestion elicit ethylene in citrus, Physiol. Plant 73:58–64.

    Article  CAS  Google Scholar 

  • Barber, M. S., Bertram, R. E., and Ride, J. P., 1989, Chitin oligosaccharides elicit lignification in wounded wheat leaves, Physiol. Mol. Plant Pathol. 34:3–12.

    Article  CAS  Google Scholar 

  • Bartnicki-Garcia, S., 1968, Cell wall chemistry, morphogenesis, and taxonomy of fungi, Annu. Rev. Microbiol. 22:87–108.

    Article  PubMed  CAS  Google Scholar 

  • Baureithel, K., and Boiler, T., 1995, Characterization and solubilization of a specific binding site for chitin fragments in suspension-cultured tomato cells and microsomal membranes, J. Cell. Biochem. Suppl. 19B:151 (Abstract).

    Google Scholar 

  • Baureithel, K., Felix, G., and Boiler, T., 1994, Specific, high affinity binding of chitin fragments to tomato cells and membranes. Competitive inhibition of binding by derivatives of chitin fragments and a nod factor of Rhizobium, J. Biol. Chem. 269:17931–17938.

    PubMed  CAS  Google Scholar 

  • Baydoun, E. A.-H., and Fry, S. C., 1985, The immobility of pectic substances in injured tomato leaves and its bearing on the identity of the wound hormone, Planta 165:269–276.

    Article  CAS  Google Scholar 

  • Benen, J. A. E., Kester, H. C. M., Parenicová, L., and Visser, J., 1996, Kinetics and mode of action of Aspergillus niger polygalacturonases, in Pectins and Pectinases, Vol. 14 (J. Visser and A. G. J. Voragen, eds.), pp. 221–230, Elsevier, Amsterdam, The Netherlands.

    Chapter  Google Scholar 

  • Benhamou, N., and Lafontaine, P. J., 1995, Ultrastructural and cytochemical characterization of elicitor-induced structural responses in tomato root tissues infected by Fusarium oxysporum f.sp. radicis-lycopersici, Planta 197:89–102.

    Article  CAS  Google Scholar 

  • Benhamou, N., Lafontaine, P. J., and Nicole, M., 1994, Induction of systemic resistance to fusarium crown and root rot in tomato plants by seed treatment with chitosan, Phytopathology 84:1432–1444.

    Article  CAS  Google Scholar 

  • Bergmann, C. W., Ito, Y., Singer, D., Albersheim, P., Darvill, A. G., Benhamou, N., Nuss, L., Salvi, G., Cervone, F., and De Lorenzo, G., 1994, Polygalacturonase-inhibiting protein accumulates in Phaseolus vulgaris L. in response to wounding, elicitors and fungal infection, Plant J. 5:625–634.

    Article  PubMed  CAS  Google Scholar 

  • Bergmann, C. W., Cook, B., Darvill, A. G., Albersheim, P., Bellincampi, D., and Caprari, C., 1995, The effect of glycosylation of endopolygalacturonases and polygalacturonase inhibiting proteins on the production of oligogalacturonides (Abstract), International Symposium on Pectins and Pectinases, Wageningen, The Netherlands.

    Google Scholar 

  • Bhandal, I. S., and Paxton, J. D., 1991, Phytoalexin biosynthesis induced by the fungal glucan polytran L in soybean, pea, and sweet pepper tissues, J. Agric. Food Chem. 39:2156–2157.

    Article  CAS  Google Scholar 

  • Birberg, W., Fügedi, P., Garegg, P. J., and Pilotti, Å., 1989, Syntheses of a heptasaccharide β-linked to an 8-methoxycarbonyl-oct-1-yl linking arm and of a decasaccharide with structures corresponding to the phytoelicitor active glucan of Phytophthora megasperma f.sp. glycinea, J. Carbohydr. Chem. 8:47–57.

    Article  CAS  Google Scholar 

  • Bishop, P. D., Pearce, G., Bryant, J. E., and Ryan, C. A., 1984, Isolation and characterization of the proteinase inhibitor-inducing factor from tomato leaves. Identity and activity of poly-and oligogalacturonide fragments, J. Biol. Chem. 259:13172–13177.

    PubMed  CAS  Google Scholar 

  • Bol, J. F., Linthorst, H. J. M., and Cornelissen, B. J. C., 1990, Plant pathogenesis-related proteins induced by virus infection, Annu. Rev. Phytopathol. 28:113–138.

    Article  CAS  Google Scholar 

  • Boiler, T., 1987, Hydrolytic enzymes in plant disease resistance, in Plant-Microbe Interactions. Molecular and Genetic Perspectives, Vol. 2 (T. Kosuge and E. W. Nester, eds.), pp. 385–413, Macmillan, New York.

    Google Scholar 

  • Boiler, T., 1993, Antimicrobial functions of the plant hydrolases, chitinase and β-1,3-glucanase, in Mechanisms of Plant Defense Responses, Vol. 2 (B. Fritig and M. Legrand, eds.), pp. 391–400, Kluwer, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Bonhoff, A., Loyal, R., Ebel, J., and Grisebach, H., 1986, Race:cultivar-specific induction of enzymes related to phytoalexin biosynthesis in soybean roots following infection with Phytophthora megasperma f. sp. glycinea, Arch. Biochem. Biophys. 246:149–154.

    Article  PubMed  CAS  Google Scholar 

  • Bouquelet, S., and Spik, G., 1978, Properties of four molecules forms of N-acetyl-β-d-hexosaminidase isolated from germinating seeds of fenugreek (Trigonella foenumgraecum), Eur. J. Biochem. 84:551–559.

    Article  PubMed  CAS  Google Scholar 

  • Brady, K. P., Darvill, A. G., and Albersheim, P., 1993, Activation of a tobacco glycine-rich protein gene by a fungal glucan preparation, Plant J. 4:517–524.

    Article  PubMed  CAS  Google Scholar 

  • Broekaert, W. F., and Peumans, W. J., 1988, Pectic polysaccharides elicit chitinase accumulation in tobacco, Physiol. Plant. 74:740–744.

    Article  CAS  Google Scholar 

  • Broglie, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Knowlton, S., Mauvais, C. J., and Broglie, R., 1991, Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani, Science 254:1194–1197.

    Article  PubMed  CAS  Google Scholar 

  • Bruce, R. J., and West, C. A., 1989, Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension-cultures of castor bean, Plant Physiol. 91:889–897.

    Article  PubMed  CAS  Google Scholar 

  • Bugbee, W. M., 1993, A pectin lyase inhibitor protein from cell walls of sugar beet, Phytopathology 83:63–68.

    Article  CAS  Google Scholar 

  • Campbell, A. D., and Labavitch, J. M., 1991, Induction and regulation of ethylene biosynthesis by pectic oligomers in cultured pear cells, Plant Physiol. 97:699–705.

    Article  PubMed  CAS  Google Scholar 

  • Cervone, F., De Lorenzo, G., Salvi, G., Bergmann, C., Hahn, M. G., Ito, Y., Darvill, A., and Albersheim, P., 1989a, Release of phytoalexin elicitor-active oligogalacturonides by microbial pectic enzymes, in Signal Molecules in Plants and Plant-Microbe Interactions NATO ASI Series, Vol. H36 (B. J. J. Lugtenberg, ed.), pp. 85–89, Springer-Verlag, Berlin.

    Google Scholar 

  • Cervone, F., Hahn, M. G., De Lorenzo, G., Darvill, A., and Albersheim, P., 1989b, Host-pathogen interactions. XXXIII. A plant protein converts a fungal pathogenesis factor into an elicitor of plant defense responses, Plant Physiol. 90:542–548.

    Article  PubMed  CAS  Google Scholar 

  • Cervone, F., De Lorenzo, G., Pressey, R., Darvill, A. G., and Albersheim, P., 1990, Can Phaseolus PGIP inhibit pectic enzymes from microbes and plants? Phytochemistry 29:447–449.

    Article  CAS  Google Scholar 

  • Cervone, F., De Lorenzo, G., Caprari, C., Clark, A. J., Desiderio, A., Devoto, A., Leckie, F., Nuss, L., Salvi, G. and Toubart, P., 1993, The interaction between fungal endopolygalacturonase and plant cell wall PGIP (polygalacturonase-inhibiting protein), in Mechanisms of Plant Defense Responses, Vol. 2 (B. Fritig and M. Legrand, eds.), pp. 64–67, Kluwer, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Cervone, F., De Lorenzo, G., Bellincampi, D., Caprari, C., Clark, A. J., Desiderio, A., Devoto, A., Leckie, F., Nuss, L., and Salvi, G., 1994, Accumulation of PGIP, a leucine-rich receptor-like protein, correlates with the hypersensitive response in race-cultivar interactions, in Advances in Molecular Genetics of Plant-Microbe Interactions, Vol. 3 (M. J. Daniels, J. A. Downie, and A. E. Osbourn, eds.), pp. 319–322, Kluwer, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Cervone, F., De Lorenzo, G., Aracri, B., Bellincampi, D., Caprari, C., Devoto, A., Leckie, F., Mattei, B., Nuss, L., and Salvi, G., 1996, The PGIP (polygalacturonase-inhibiting protein) family: Extracellular proteins specialized for recognition, in Biology of Plant-Microbe Interactions (G. Stacey, B. Mullin, and P. M. Gresshoff, eds.), pp. 93–98, International Society for Molecular Plant-Microbe Interactions, St. Paul, Minnesota.

    Google Scholar 

  • Cheong, J.-J., and Hahn, M. G., 1991, A specific, high-affinity binding site for the hepta-β-glucoside elicitor exists in soybean membranes, Plant Cell 3:137–147.

    PubMed  CAS  Google Scholar 

  • Cheong, J.-J., Birberg, W., Fügedi, P., Pilotti, Å., Garegg, P. J., Hong, N., Ogawa, T., and Hahn, M. G., 1991, Structure-activity relationships of oligo-β-glucoside elicitors of phytoalexin accumulation in soybean, Plant Cell 3:127–136.

    PubMed  CAS  Google Scholar 

  • Cheong, J.-J., Alba, R., Côté, F., Enkerli, J., and Hahn, M. G., 1993, Solubilization of functional plasma membrane-localized hepta-β-glucoside elicitor binding proteins from soybean, Plant Physiol. 103:1173–1182.

    Article  PubMed  CAS  Google Scholar 

  • Cline, K., and Albersheim, P., 1981, Host-pathogen interactions. XVII. Hydrolysis of biologically active fungal glucans by enzymes isolated from soybean cells, Plant Physiol. 68:221–228.

    Article  PubMed  CAS  Google Scholar 

  • Cline, K., Wade, W., and Albersheim, P., 1978, Host-pathogen interactions. XV. Fungal glucans which elicit phytoalexin accumulation in soybean also elicit the accumulation of phytoalexins in other plants, Plant Physiol 62:918–921.

    Article  PubMed  CAS  Google Scholar 

  • Collinge, D. B., Kragh, K. M., Mikkelsen, J. D., Nielsen, K. K., Rasmussen, U., and Vad, K., 1993, Plant chitinases, Plant J. 3:31–40.

    Article  PubMed  CAS  Google Scholar 

  • Conrath, U., Domard, A., and Kauss, H., 1989, Chitosan-elicited synthesis of callose and of coumarin derivatives in parsely cell suspension cultures, Plant Cell Rep. 8:152–155.

    Article  CAS  Google Scholar 

  • Cosio, E. G., Pöpped, H., Schmidt, W. E., and Ebel, J., 1988, High-affinity binding of fungal β-glucan fragments to soybean (Glycine max L.) microsomal fractions and protoplasts, Eur. J. Biochem. 175:309–315.

    Article  PubMed  CAS  Google Scholar 

  • Cosio, E. G., Frey, T., and Ebel, J., 1990a, Solubilization of soybean membrane binding sites for fungal β-glucans that elicit phytoalexin accumulation, FEBS Lett. 264:235–238.

    Article  PubMed  CAS  Google Scholar 

  • Cosio, E. G., Frey, T., Verduyn, R., Van Boom, J., and Ebel, J., 1990b, High-affinity binding of a synthetic heptaglucoside and fungal glucan phytoalexin elicitors to soybean membranes, FEBS Lett. 271:223–226.

    Article  PubMed  CAS  Google Scholar 

  • Cosio, E. G., Frey, T., and Ebel, J., 1992, Identification of a high-affinity binding protein for a hepta-β-glucoside phytoalexin elicitor in soybean, Eur. J. Biochem. 204:1115–1123.

    Article  PubMed  CAS  Google Scholar 

  • Côté, F., and Hahn, M. G., 1994, Oligosaccharins: structures and signal transduction, Plant Mol. Biol. 26:1375–1411.

    Article  Google Scholar 

  • Côté, F., Cheong, J.-J., Chen, H., Dhugga, K. S., and Hahn, M. G., 1997, Proteins that co-purify with a glucan elicitor-binding protein complex from soybean react with antisera against callose synthase-associated polypeptides, submitted.

    Google Scholar 

  • Czop, J. K., and Austen, K. F., 1985, A β-glucan inhibitable receptor on human monocytes: Its identity with the phagocytic receptor for particulate activators of the alternative complement pathway, J. Immunol. 134:2588–2593.

    PubMed  CAS  Google Scholar 

  • Dangl, J. L., 1995, Pièce de résistance: Novel classes of plant disease resistance genes, Cell 80:363–366.

    Article  PubMed  CAS  Google Scholar 

  • Darvill, A. G., and Albersheim, P., 1984, Phytoalexins and their elicitors—A defense against microbial infection in plants, Annu. Rev. Plant Physiol. 35:243–275.

    Article  CAS  Google Scholar 

  • Darvill, A., Augur, C., Bergmann, C., Carlson, R. W., Cheong, J.-J., Eberhard, S., Hahn, M. G., Lo, V.-M., Marfà, V., Meyer, B., Mohnen, D., O’Neill, M. A., Spiro, M. D., van Halbeek, H., York, W. S., and Albersheim, P., 1992, Oligosaccharins—Oligosaccharides that regulate growth, development and defense responses in plants, Glycobiology 2:181–198.

    Article  PubMed  CAS  Google Scholar 

  • Davis, D., Merida, J., Legendre, L., Low, P. S., and Heinstein, P., 1993, Independent elicitation of the oxidative burst and phytoalexin formation in cultured plant cells, Phytochemistry 32:607–611.

    Article  CAS  Google Scholar 

  • Davis, K. R., and Hahlbrock, K., 1987, Induction of defense responses in cultured parsley cells by plant cell wall fragments, Plant Physiol. 85:1286–1290.

    Article  Google Scholar 

  • Davis, K. R., Lyon, G. D., Darvill, A. G., and Albersheim, P., 1984, Host-pathogen interactions. XXV. Endopolygalacturonic acid lyase from Erwinia carotovora elicits phytoalexin accumulation by releasing plant cell wall fragments, Plant Physiol. 74:52–60.

    Article  PubMed  CAS  Google Scholar 

  • Davis, K. R., Darvill, A. G., and Albersheim, P., 1986a, Host-pathogen interactions. XXXI. Several biotic and abiotic elicitors act synergistically in the induction of phytoalexin accumulation in soybean, Plant Mol. Biol. 6:23–32.

    Article  CAS  Google Scholar 

  • Davis, K. R., Darvill, A. G., Albersheim, P., and Dell, A., 1986b, Host-pathogen interactions. XXIX. Oligogalacturonides released from sodium polypectate by endopolygalacturonic acid lyase are elicitors of phytoalexins in soybean, Plant Physiol. 80:568–577.

    Article  PubMed  CAS  Google Scholar 

  • Davis, K. R., Darvill, A. G., Albersheim, P., and Dell, A., 1986c, Host-pathogen interactions. XXX. Characterization of elicitors of phytoalexin accumulation in soybean released from soybean cell walls by endopolygalacturonic acid lyase, Z. Naturforsch. 41c:39–48.

    Google Scholar 

  • Deising, H., and Siegrist, J., 1995, Chitin deacetylase activity of the rust Uromyces viciae-fabae is controlled by fungal morphogenesis, FEMS Microbiol. Lett. 127:207–212.

    Article  CAS  Google Scholar 

  • De Lorenzo, G., Ito, Y., D’Ovidio, R., Cervone, F., Albersheim, P., and Darvill, A. G., 1990, Host-pathogen interactions. XXXVII. Abilities of the polygalacturonase-inhibiting proteins from four cultivars of Phaseolus vulgaris to inhibit the endopolygalacturonases from three races of Colletotrichum lindemuthianum, Physiol. Mol. Plant Pathol. 36:421–435.

    Article  Google Scholar 

  • De Lorenzo, G., Cervone, F., Bellincampi, D., Caprari, C., Clark, A. J., Desiderio, A., Devoto, A., Forrest, R., Leckie, F., Nuss, L., and Salvi, G., 1994, Polygalacturonase, PGIP and oligogalacturonides in cell-cell communication, Biochem. Soc. Trans. 22:394–397.

    PubMed  Google Scholar 

  • De Wit, P. J. G. M., 1992, Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens, Annu. Rev. Phytopathol. 30:391–418.

    Article  PubMed  Google Scholar 

  • Dhawale, S., Souciet, G., and Kuhn, D. N., 1989, Increase of chalcone synthase mRNA in pathogen-inoculated soybeans with race-specific resistance is different in leaves and roots, Plant Physiol. 91:911–916.

    Article  PubMed  CAS  Google Scholar 

  • Diekmann, W., Herkt, B., Low, P. S., Nürnberger, T., Scheel, D., Terschüren, C., and Robinson, D. G., 1994, Visualization of elicitor-binding loci at the plant cell surface, Planta 195:126–137.

    Article  CAS  Google Scholar 

  • Dixon, R. A., 1986, The phytoalexin response: Elicitation, signalling and control of host gene expression, Biol. Rev. 61:239–291.

    Article  CAS  Google Scholar 

  • Dixon, R. A., and Lamb, C. J., 1990, Molecular communication in interactions between plants and microbial pathogens, Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:339–367.

    Article  CAS  Google Scholar 

  • Dixon, R. A., Jennings, A. C., Davies, L. A., Gerrish, C., and Murphy, D. L., 1989, Elicitor active components from French bean hypocotyls, Physiol. Mol. Plant Pathol. 34:99–115.

    Article  CAS  Google Scholar 

  • Doares, S. H., Syrovets, T., Weiler, E. W., and Ryan, C. A., 1995, Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway, Proc. Natl. Acad. Sci. USA 92:4095–4098.

    Article  PubMed  CAS  Google Scholar 

  • Ebel, J., 1986, Phytoalexin synthesis: The biochemical analysis of the induction process, Annu. Rev. Phytopathol. 24:235–264.

    Article  CAS  Google Scholar 

  • Ebel, J., and Cosio, E. G., 1994, Elicitors of plant defense responses, Int. Rev. Cytol. 148:1–36.

    Article  CAS  Google Scholar 

  • Ebel, J., Cosio, E. G., Feger, M., Frey, T., Kissel, U., Reinold, S., and Waldmüller, T., 1993, Glucan elicitor-binding proteins and signal transduction in the activation of plant defence, in Advances in Moleclar Genetics of Plant-Microbe Interactions, Vol. 2 (E. W. Nester and D. P. S. Verma, eds.), pp. 477–484, Kluwer, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Ebel, J., Bhagwat, A. A., Cosio, E. G., Feger, M., Kissel, U., Mithöfer, A., and Waldmüller, T., 1995, Elicitor binding proteins and signal transduction in the activation of a phytoalexin defense response, Can. J. Bot. 73:S506–S510.

    Article  CAS  Google Scholar 

  • El Ghaouth, A., Arul, J., Grenier, J., Benhamou, N., Asselin, A., and Bélanger, R., 1994a, Effect of chitosan on cucumber plants: Suppression of Pythium aphanidermatum and induction of defense reactions, Phytopathology 84:313–320.

    Article  CAS  Google Scholar 

  • El Ghaouth, A., Arul, J., Wilson, C., and Benhamou, N., 1994b, Ultrastructural and cytochemical aspects of the effect of chitosan on decay of bell pepper fruit, Physiol. Mol. Plant Pathol. 44:417–432.

    Article  CAS  Google Scholar 

  • English, P. D., Maglothin, A., Keegstra, K., and Albersheim, P., 1972, A cell wall-degrading endopolygalacturonase secreted by Colletotrichum lindemuthianum, Plant Physiol. 49:293–297.

    Article  PubMed  CAS  Google Scholar 

  • Enkerli, K., Hahn, M. G., and Mims, C. W., 1997, Immunogold localization of callose and other plant cell wall components in soybean roots infected with the oomycete Phytophthora sojae, Can. J. Bot. 75:1509–1517.

    Article  CAS  Google Scholar 

  • Farkas, V., 1979, Biosynthesis of cell walls of fungi, Microbiol. Rev. 43:117–144.

    PubMed  CAS  Google Scholar 

  • Farmer, E. E., and Ryan, C. A., 1992, Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors, Plant Cell 4:129–134.

    PubMed  CAS  Google Scholar 

  • Farmer, E. E., Pearce, G., and Ryan, C. A., 1989, In vitro phosphorylation of plant plasma membrane proteins in response to the proteinase inhibitor inducing factor, Proc. Natl. Acad. Sci. USA 86:1539–1542.

    Article  PubMed  CAS  Google Scholar 

  • Farmer, E. E., Moloshok, T. D., and Ryan, C. A., 1990, In vitro phosphorylation in response to oligouronide elicitors: Structural and biological relationships, Curr. Top. Plant Biochem. Physiol. 9:249–258.

    CAS  Google Scholar 

  • Farmer, E. E., Moloshok, T. D., Saxton, M. J., and Ryan, C. A., 1991, Oligosaccharide signaling in plants: Specificity of oligouronide-enhanced plasma membrane protein phosphorylation, J. Biol. Chem. 266:3140–3145.

    PubMed  CAS  Google Scholar 

  • Favaron, F., Alghisi, P., and Marciano, P., 1992, Characterization of two Sclerotinia sclerotiorum polygalacturonases with different abilities to elicit glyceollin in soybean, Plant Sci. 83:7–13.

    Article  CAS  Google Scholar 

  • Felix, G., Regenass, M., and Boiler, T., 1993, Specific perception of subanomolar concentrations of chitin fragments by tomato cells: Induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state, Plant J. 4:307–316.

    Article  CAS  Google Scholar 

  • Flach, J., Pilet, P.-E., and Joliès, P., 1992, What’s new in chitinase research, Experientia 48:701–716.

    Article  PubMed  CAS  Google Scholar 

  • Fliegmann, J., Mithöfer, A., Antelo, L., Lottspeich, F., and Ebel, J., 1997, Molecular characterization of the putative receptor for a β-glucan elicitor in the interaction between soybean and its pathogen Phytophthora sojae, Plant Physiol. 114:279 (abstract).

    Google Scholar 

  • Forrest, R. S., and Lyon, G. D., 1990, Substrate degradation patterns of polygalacturonic acid lyase from Erwinia carotovora and Bacillus polymyxa and release of phytoalexin-eliciting oligosaccharides from potato cell walls, J. Exp. Bot. 41:481–488.

    Article  CAS  Google Scholar 

  • Frediani, M., Cremonini, R., Salvi, G., Caprari, C., Desiderio, A., D’Ovidio, R., Cervone, F., and De Lorenzo, G., 1993, Cytological localization of the PGIP genes in the embryo suspensor cells of Phaseolus vulgaris L., Theor. Appl. Genet. 87:369–373.

    Article  CAS  Google Scholar 

  • Frey, T., Cosio, E. G., and Ebel, J., 1993, Affinity purification and characterization of a binding protein for a hepta-β-glucoside phytoalexin elicitor in soybean, Phytochemistry 32:543–550.

    Article  CAS  Google Scholar 

  • Fry, S. C., Aldington, S., Hetherington, P. R., and Aitken, J., 1993, Oligosaccharides as signals and substrates in the plant cell wall, Plant Physiol. 103:1–5.

    Article  PubMed  CAS  Google Scholar 

  • Fügedi, P., Birberg, W., Garegg, P. J., and Pilotti, A., 1987, Syntheses of a branched heptasaccharide having phytoalexin-elicitor activity, Carbohydr. Res. 164:297–312.

    Article  Google Scholar 

  • Giannini, J. L., Holt, J. S., and Briskin, D. P., 1991, The effect of glyceollin on soybean (Glycine max L.) tonoplast and plasma membrane vesicles, Plant Sci. 74:203–211.

    Article  CAS  Google Scholar 

  • Giannini, J. L., Nelson, M., and Spessard, G. O., 1995, The effect of rishitin on potato tonoplast vesicle and vacuole proton transport, Phytochemistry 40:1655–1658.

    Article  PubMed  CAS  Google Scholar 

  • González, J. E., Reuhs, B. L., and Walker, G C., 1996, Low molecular weight EPS II of Rhizobium meliloti allows nodule invasion in Medicago saliva, Proc. Natl. Acad. Sci. USA 93:8636–8641.

    Article  PubMed  Google Scholar 

  • Grab, D., Feger, M., and Ebel, J., 1989, An endogenous factor from soybean (Glycine max L.) cell cultures activates phosphorylation of a protein which is dephosphorylated in vivo in elicitor-challenged cells, Planta 179:340–348.

    Article  CAS  Google Scholar 

  • Graham, T. L., 1991, Flavonoid and isoflavonoid distribution in developing soybean seedling tissues and in seed and root exudates, Plant Physiol. 95:594–603.

    Article  PubMed  CAS  Google Scholar 

  • Graham, T. L., and Graham, M. Y., 1991, Glyceollin elicitors induce major but distinctly different shifts in isoflavonoid metabolism in proximal and distal soybean cell populations, Mol. Plant-Microbe Interact. 4:60–68.

    Article  CAS  Google Scholar 

  • Graham, T. L., Kim, J. E., and Graham, M. Y., 1990, Role of constitutive isoflavone conjugates in the accumulation of glyceollin in soybean infected with Phytophthora megasperma, Mol. Plant-Microbe Interact. 3:157–166.

    Article  CAS  Google Scholar 

  • Grant, G. T., Morris, E. R., Rees, D. A., Smith, P. J. C., and Thorn, D., 1973, Biological interactions between polysaccharides and divalent cations: The egg-box model, FEBS Lett. 32:195–198.

    Article  CAS  Google Scholar 

  • Grenier, J., and Asselin, A., 1990, Some pathogenesis-related proteins are chitosanases with lytic activity against fungal spores, Mol. Plant-Microbe Interact. 3:401–407.

    Article  CAS  Google Scholar 

  • Grison, R., Grezes-Besset, B., Schneider, M., Lucante, N., Olsen, L., Leguay, J.-J., and Toppan, A., 1996, Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene, Bio/technology 14:643–646.

    Article  CAS  Google Scholar 

  • Grosskopf, D. G., Felix, G., and Boiler, T., 1991, A yeast-derived glycopeptide elicitor and chitosan or digitonin differentially induce ethylene biosynthesis, phenylalanine ammonia-lyase and callose formation in suspension-cultured tomato cells, J. Plant Physiol. 138:741–746.

    Article  CAS  Google Scholar 

  • Gunia, W., Hinderer, W., Wittkampf, U., and Barz, W., 1991, Elicitor induction of cytochrome P-450 monooxygenases in cell suspension cultures of chickpea (Cicer arietinum L.) and their involvement in pterocarpan phytoalexin biosynthesis, Z. Naturforsch. 46c:58–66.

    Google Scholar 

  • Hadwiger, L. A., and Beckman, J. M., 1980, Chitosan as a component of pea-Fusarium solani interactions, Plant Physiol. 66:205–211.

    Article  PubMed  CAS  Google Scholar 

  • Hadwiger, L. A., and Line, R. F., 1981, Hexosamine accumulations are associated with the terminated growth of Puccinia striiformis on wheat isolines, Physiol. Mol. Plant Pathol. 19:249–255.

    CAS  Google Scholar 

  • Hadwiger, L. A., Ogawa, T., and Kuyama, H., 1994, Chitosan polymer sizes effective in inducing phytoalexin accumulation and fungal suppression are verified with synthesized oligomers, Mol. Plant-Microbe Interact. 7:531–533.

    Article  PubMed  CAS  Google Scholar 

  • Hahlbrock, K., and Scheel, D., 1987, Biochemical responses of plants to pathogens, in Innovative Approaches to Plant Disease Control (I. Chet, ed.), pp. 229–254, Wiley, New York.

    Google Scholar 

  • Hahn, M. G., 1989, Animal receptors—Examples of cellular signal perception molecules, in Signal Molecules in Plants and Plant-Microbe Interactions, H36 (B. J. J. Lugtenberg, ed.), pp. 1–26, Springer-Verlag, Berlin.

    Google Scholar 

  • Hahn, M. G., 1996, Microbial elicitors and their receptors in plants, Annu. Rev. Phytopathol. 34:387–412.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, M. G., and Albersheim, P., 1978, Host-pathogen interactions. XIV. Isolation and partial characterization of an elicitor form yeast extract, Plant Physiol. 62:107–111.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, M. G., and Grisebach, H., 1983, Cyclic AMP is not involved as a second messenger in the response of soybean to infection by Phytophthora megasperma f. sp. glycinea, Z. Naturforsch. 38c:578–582.

    CAS  Google Scholar 

  • Hahn, M. G., Darvill, A. G., and Albersheim, P., 1981, Host-pathogen interactions. XIX. The endogenous elicitor, a fragment of a plant cell wall polysaccharide that elicits phytoalexin accumulation in soybeans, Plant Physiol. 68:1161–1169.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, M. G., Bucheli, P., Cervone, F., Doares, S. H., O’Neill, R. A., Darvill, A., and Albersheim, P., 1989a, Roles of cell wall constituents in plant-pathogen interactions, in Plant-Microbe Interactions. Molecular and Genetic Perspectives, Vol. 3 (T. Kosuge and E. W. Nester, eds.), pp. 131–181, McGraw-Hill, New York.

    Google Scholar 

  • Hahn, M. G., Cheong, J.-J., Birberg, W., Fügedi, P., Pilotti, Å., Garegg, P., Hong, N., Nakahara, Y., and Ogawa, T., 1989b, Elicitation of phytoalexins by synthetic oligoglucosides, synthetic oligogalacturonides, and their derivatives, in Signal Molecules in Plants and Plant-Microbe Interactions, H36 (B. J. J. Lugtenberg, ed.), pp. 91–97, Springer-Verlag, Berlin.

    Google Scholar 

  • Hahn, M. G., Darvill, A., Albersheim, P., Bergmann, C., Cheong, J.-J., Koller, A., and Lò, V.-M, 1992, Preparation and characterization of oligosaccharide elicitors of phytoalexin accumulation, in Molecular Plant Pathology. Volume II: A Practical Approach (S. Gurr, M. McPherson, and D. J. Bowles, eds.), pp. 103–147, Oxford University Press, Oxford.

    Google Scholar 

  • Ham, K.-S., Kaufmann, S., Albersheim, P., and Darvill, A. G., 1991, Host-pathogen interactions XXXIX. A soybean pathogenesis-related protein with β-1,3-glucanase activity releases phytoalexin elicitor-active heat-stable fragments from fungal walls, Mol. Plant-Microbe Interact. 4:545–552.

    Article  CAS  Google Scholar 

  • Ham, K.-S., Côté, F., Hahn, M. G., Thurlby, T., Albersheim, P., and Darvill, A., 1996, Soybean β-1,3-glucanases generate, from the walls of Phytophthora, elicitors recognized by the putative receptor of the hepta-β-glucoside elicitor, Plant Physiol. 111:170(Abstract).

    Google Scholar 

  • Ham, K.-S., Darvill, A. G., and Albersheim, P., 1997, Fungal pathogens secrete an inhibitor protein that distinguishes isoforms of plant pathogenesis-related endo-β-1,3-glucanases, Plant J. 11:169–179.

    Article  CAS  Google Scholar 

  • Hargreaves, J. A., and Bailey, J. A., 1978, Phytoalexin production by hypocotyls of Phaseolus vulgaris in response to constitutive metabolites released by damaged bean cells, Physiol. Plant Pathol. 13:89–100.

    Article  CAS  Google Scholar 

  • Hargreaves, J. A., and Shelby, C., 1978, Phytoalexin formation in cell suspensions of Phaseolus vulgaris in response to an extract of bean hypocotyls, Phytochemistry 17:1099–1102.

    Article  CAS  Google Scholar 

  • Hashimoto, H., Abe, Y., Horito, S., and Yoshimura, J., 1989, Synthesis of chitooligosaccharide derivatives by condensation polymerization, J. Carbohydr. Chem. 8:307–311.

    Article  CAS  Google Scholar 

  • Hollenberg, M. D., 1991, Structure-activity relationships for transmembrane signaling: The receptor’s turn, FASEB J. 5:178–186.

    PubMed  CAS  Google Scholar 

  • Hong, N., and Ogawa, T., 1990, Stereocontrolled syntheses of phytoalexin elicitor-active β-d-glucohexaoside and β-d-glucononaoside, Tetrahedron Lett. 31:3179–3182.

    Article  CAS  Google Scholar 

  • Horn, M. A., Heinstein, P. F., and Low, P. S., 1989, Receptor-mediated endocytosis in plant cells, Plant Cell 1:1003–1009.

    PubMed  CAS  Google Scholar 

  • Ishihara, A., Miyagawa, H., Kuwahara, Y., Ueno, T., and Mayama, S., 1996, Involvement of Ca2+ ion in phytoalexin induction in oats, Plant Sci. 115:9–16.

    Article  CAS  Google Scholar 

  • Ito, Y., Kaku, H., and Shibuya, N., 1997, Identification of a high-affinity binding protein for N-acetylchitooligosaccharide elicitor in the plasma membrane of suspension-cultured rice cells by affinity labeling, Plant J. 12:347–356.

    Article  PubMed  CAS  Google Scholar 

  • Jach, G., Görnhardt, B., Munday, J., Logemann, J., Pinsdorf, E., Leah, R., Schell, J., and Maas, C., 1995, Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco, Plant J. 8:97–109.

    Article  PubMed  CAS  Google Scholar 

  • Jann, B., and Jann, K., 1990, Structure and biosynthesis of the capsular antigens of Escherichia coli, Curr. Top. Microbiol. Immunol. 150:19–42.

    Article  PubMed  CAS  Google Scholar 

  • Jin, D. F., and West, C. A., 1984, Characteristics of galacturonic acid oligomers as elicitors of casbene synthetase activity in castor bean seedlings, Plant Physiol. 74:989–992.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, D. J., Ramanathan, V., and Williamson, B., 1993, A protein from immature raspberry fruits which inhibits endopolygalacturonases from Botrytis cinerea and other micro-organisms, J. Exp. Bot. 44:971–976.

    Article  CAS  Google Scholar 

  • Jones, J. D. G., 1996, Plant disease resistance genes: Structure, function and evolution, Curr. Opin. Biotechnol. 7:155–160.

    Article  CAS  Google Scholar 

  • Jones, T. M., Anderson, A. J., and Albersheim, P., 1972, Host-pathogen interactions. IV. Studies on the polysaccharide-degrading enzymes secreted by Fusarium oxysporum f. sp. lycopersici, Physiol. Plant Pathol. 2:153–166.

    Article  CAS  Google Scholar 

  • Jordan, N. D., and Barber, M. S., 1995, Multiple forms of what leaf N-acetyl-β-d-hexosaminidase, Plant Sci. 107:41–48.

    Article  CAS  Google Scholar 

  • Kauss, H., Jeblick, W., and Domard, A., 1989, The degree of polymerization and N-acetylation of chitosan determine its ability to elicit callose formation in suspension cells and protoplasts of Catharanthus roseus, Planta 178:385–392.

    Article  CAS  Google Scholar 

  • Keen, N. T., 1975, Specific elicitors of plant phytoalexin production: Determinants of race specificity in pathogens? Science 187:74–75.

    Article  PubMed  CAS  Google Scholar 

  • Keen, N. T., Yoshikawa, M., and Wang, M. C., 1983, Phytoalexin elicitor activity of carbohydrates from Phytophthora megasperma f. sp. glycinea and other sources, Plant Physiol. 71:466–471.

    Article  PubMed  CAS  Google Scholar 

  • Kendra, D. F., and Hadwiger, L. A., 1984, Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum, Exp. Mycol. 8:276–281.

    Article  CAS  Google Scholar 

  • Kendra, D. F., and Hadwiger, L. A., 1987a, Cell death and membrane leakage not associated with the induction of disease resistance in peas by chitosan or Fusarium solani f. sp. phaseoli, Phytopathology 77:100–106.

    Article  CAS  Google Scholar 

  • Kendra, D. F., and Hadwiger, L. A., 1987b, Calcium and calmodulin may not regulate the disease resistance and pisatin formation responses of Pisum sativum to chitosan or Fusarium solani, Physiol. Mol. Plant Pathol. 31:337–348.

    Article  CAS  Google Scholar 

  • Kendra, D. F., Christian, D., and Hadwiger, L. A., 1989, Chitosan oligomers from Fusarium solani pea interactions, chitinase/β-glucanase digestion of sporelings and from fungal wall chitin actively inhibit fungal growth and enhance disease resistance, Physiol. Mol. Plant Pathol. 35:215–230.

    Article  CAS  Google Scholar 

  • Kobayashi, A., Tai, A., Kanzaki, H., and Kawazu, K., 1993, Elicitor-active oligosaccharides from algal laminaran stimulate the production of antifungal compounds in alfalfa, Z. Naturforsch. 48c:575–579.

    Google Scholar 

  • Kobayashi, A., Akiyama, K., and Kawazu, K., 1994, Partially N-deacetylated chitin fragments are strong elicitors for (+)-pisatin induction in epicotyls of pea, Z. Naturforsch. 49c:302–308.

    Google Scholar 

  • Kobayashi, A., Tai, A., and Kawazu, K., 1995, Structural elucidation of an elicitor-active oligosaccharide, LN-3, prepared from algal laminaran, J. Carbohydr. Chem. 14:819–832.

    Article  CAS  Google Scholar 

  • Kobe, B., and Deisenhofer, J., 1995, A structural basis of the interactions between leucine-rich repeats and protein ligands, Nature 374:183–186.

    Article  PubMed  CAS  Google Scholar 

  • Köhle, H. Young, D. H., and Kauss, H., 1984, Physiological changes in suspension-cultured soybean cells elicited by treatment with chitosan, Plant Sci. Lett. 33:221–230.

    Article  Google Scholar 

  • Köhle, H., Jeblick, W., Poten, F., Blashek, W., and Kauss, H., 1985, Chitosan-elicited callose synthesis in soybean cells as a Ca2+-dependent process, Plant Physiol. 77:544–551.

    Article  PubMed  Google Scholar 

  • Kohn, R., 1975, Ion binding on polyuronates—alginate and pectin, Pure Appl. Chem. 42:371–397.

    Article  CAS  Google Scholar 

  • Kohn, R., 1987, Binding of divalent cations to oligomeric fragments of pectin, Carbohydr. Res. 160:343–353.

    Article  CAS  Google Scholar 

  • Kopp, M., Rouster, J., Fritig, B., Darvill, A., and Albersheim, P., 1989, Host-pathogen interactions. XXXII. A fungal preparation protects Nicotianae against infection by viruses, Plant Physiol. 90:208–216.

    Article  PubMed  CAS  Google Scholar 

  • Kuchitsu, K., Kikuyama, M., and Shibuya, N., 1993, N-Acetylchitooligosaccharides, biotic elictor for phytoalexin production, induce transient membrane depolarization in suspension-cultured rice cells, Protoplasma 174:79–81.

    Article  CAS  Google Scholar 

  • Kuchitsu, K., Kosaka, H., Shiga, T., and Shibuya, N., 1995, EPR evidence for generation of hydroxyl radical triggered by N-acetylchitooligosaccharide elicitor and a protein phosphatase inhibitor in suspension-cultured rice cells, Protoplasma 188:138–142.

    Article  CAS  Google Scholar 

  • Lafitte, C., Barthe, J. P., Montillet, J. L., and Touzé, A., 1984, Glycoprotein inhibitors of Colletotrichum lindemuthianum endopolygalacturonase in near isogenic lines of Phaseolus vulgaris resistant and susceptible to anthracnose, Physiol. Plant Pathol. 25:39–53.

    Article  CAS  Google Scholar 

  • Lamb, C. J., Lawton, M. A., Dron, M., and Dixon, R. A., 1989, Signals and transduction mechanisms for activation of plant defenses against microbial attack, Cell 56:215–224.

    Article  PubMed  CAS  Google Scholar 

  • Legendre, L., Heinstein, P. F., and Low, P. S., 1992, Evidence for participation of GTP-binding proteins in elicitation of the rapid oxidative burst in cultured soybean cells, J. Biol. Chem. 267:20140–20147.

    PubMed  CAS  Google Scholar 

  • Legendre, L., Rueter, S., Heinstein, P. F., and Low, P. S., 1993a, Characterization of the oligogalacturonide-induced oxidative burst in cultured soybean (Glycine max) cells, Plant Physiol. 102:233–240.

    PubMed  CAS  Google Scholar 

  • Legendre, L., Yueh, Y. G., Crain, R., Haddock, N. Heinstein, P. F., and Low, P. S., 1993b, Phospholipase C activation during elicitation of the oxidative burst in cultured plant cells, J. Biol. Chem. 268:24559–24563.

    PubMed  CAS  Google Scholar 

  • Lesney, M. S., 1989, Growth responses and lignin production in cell suspensions of Pinus elliottii ‘elicited’ by chitin, chitosan or mycelium of Cronartium quercum f.sp. fusiforme, Plant Cell Tiss. Organ Cult. 19:23–31.

    Article  CAS  Google Scholar 

  • Lesney, M. S., 1990, Effect of ‘elicitors’ on extracellular peroxidase activity in suspension-cultured slash pine (Pinus elliottii Engelm.), Plant Cell Tiss. Organ Cult. 20:173–175.

    Google Scholar 

  • Levine, A., Tenhaken, R., Dixon, R., and Lamb, C., 1994, H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response, Cell 79:583–593.

    Article  PubMed  CAS  Google Scholar 

  • Li, T., Brzezinski, R., and Beaulieu, C., 1995, Enzymatic production of chitosan oligomers, Plant Physiol. Biochem. 33:599–603.

    CAS  Google Scholar 

  • Lin, W., Anuratha, C. S., Datta, K., Potrykus, I., Muthukrishnan, S., and Datta, S. K., 1995, Genetic engineering of rice for resistance to sheath blight, Bio/technology 13:686–691.

    Article  CAS  Google Scholar 

  • Liners, F., Letesson J.-J., Didembourg, C., and Van Cutsem, P., 1989, Monoclonal antibodies against pectin. Recognition of a conformation induced by calcium, Plant Physiol. 91:14199–1424.

    Article  Google Scholar 

  • Liners, F., Thibault, F.-J., and Van Cutsem, P., 1992, Influence of the degree of polymerization of oligogalacturonates and of esterification pattern of pectin on their recognition by monoclonal antibodies, Plant Physiol. 99:1099–1104.

    Article  PubMed  CAS  Google Scholar 

  • Lorentzen, J. P., Helpap, B., and Lockhoff, O., 1991, Synthese eines elicitoraktiven Heptaglucansaccharides zur Untersuchung pflanzlicher Abwehrmechanismen, Angew. Chem. 103:1731–1732.

    Article  CAS  Google Scholar 

  • Low, P. S., Legendre, L., Heinstein, P. F., and Horn, M. A., 1993, Comparison of elicitor and vitamin receptor-mediated endocytosis in cultured soybean cells, J. Exp. Bot. 44(Suppl.):269–274.

    CAS  Google Scholar 

  • Lucas, W. J., and Gilbertson, R. L., 1994, Plasmodesmata in relation to viral movement within leaf tissues, Annu. Rev. Phytopathol. 32:387–411.

    Article  CAS  Google Scholar 

  • Ludwig, A., and Boiler, T., 1990, A method for the study of fungal growth inhibition by plant proteins, FEMS Microbiol. Lett. 69:61–66.

    Article  CAS  Google Scholar 

  • MacDougall, A. J., Rigby, N. M., Needs, P. W., and Selvendran, R. R., 1992, Movement and metabolism of oligogalacturonide elicitors in tomato shoots, Planta 188:566–574.

    Article  CAS  Google Scholar 

  • MacKintosh, C., Lyon, G. D., and Mackintosh, R. W., 1994, Protein phosphatase inhibitors activate anti-fungal defence responses of soybean cotyledons and cell cultures, Plant J. 5:137–147.

    Article  CAS  Google Scholar 

  • Mankarios, A. T., and Friend, J., 1980, Polysaccharide degrading enzymes of Botrytis allii and Sclerotium cepivorum. Enzyme production in culture and the effect of the enzymes on isolated onion cell walls, Physiol. Plant Pathol. 17:93–104.

    Article  CAS  Google Scholar 

  • Marfà, V., Gollin, D. J., Eberhard, S., Mohnen, D., Darvill, A., and Albersheim, P., 1991, Oligogalacturonides are able to induce flowers to form on tobacco expiants, Plant J. 1:217–225.

    Article  Google Scholar 

  • Masuta, C., Van Den Bulcke, M., Bauw, G., Van Montagu, M., and Caplan, A. B., 1991, Differential effects of elicitors on the viability of rice suspension cells, Plant Physiol. 97:619–629.

    Article  PubMed  CAS  Google Scholar 

  • Mathieu, Y., Kurkdijan, A., Xia, H., Guern, J., Koller, A., Spiro, M., O’Neill, M., Albersheim, P., and Darvill, A., 1991, Membrane responses induced by oligogalacturonides in suspension-cultured tobacco cells, Plant J. 1:333–343.

    Google Scholar 

  • Mauch, F., and Staehelin, L. A., 1989, Functional implications of the subcellular localization of ethylene-induced chitinase and β-1,3-glucanase in bean leaves, Plant Cell 1:447–457.

    PubMed  CAS  Google Scholar 

  • Mauch, F., Mauch-Mani, B., and Boiler, T., 1988, Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase, Plant Physiol. 88:936–942.

    Article  PubMed  CAS  Google Scholar 

  • Messiaen, J., and Van Cutsem, P., 1994, Pectic signal transduction in carrot cells: Membrane, cytosolic and nuclear responses induced by oligogalacturonides, Plant Cell Physiol. 35:677–689.

    CAS  Google Scholar 

  • Messiaen, J., Read, N. D., Van Cutsem, P., and Trewavas, A. J., 1993, Cell wall oligogalacturonides increase cytosolic free calcium in carrot protoplasts, J. Cell Sci. 104:365–371.

    CAS  Google Scholar 

  • Miller, K. J., Hadley, J. A., and Gustine, D. L., 1994, Cyclic β-1,6-1,3 glucans of Bradyrhizobium japonicum USD A 110 elicit isoflavonoid production in the soybean (Glycine max) host, Plant Physiol. 104:917–923.

    PubMed  CAS  Google Scholar 

  • Minami, E., Kuchitsu, K., He, D. Y., Kouchi, H., Midoh, N., Ohtsuki, Y., and Shibuya, N., 1996, Two novel genes rapidly and transiently activated in suspension-cultured rice cells by treatment with N-acetylchitoheptaose, a biotic elicitor for phytoalexin production, Plant Cell Physiol. 37:563–567.

    Article  PubMed  CAS  Google Scholar 

  • Mithöfer, A., Bhagwat, A. A., Feger, M., and Ebel, J., 1996a, Suppression of fungal β-glucan-induced plant defence in soybean (Glycine max L.) by cyclic 1,3-1,6-β-glucans from the symbiont Bradyrhizobium japonicum, Planta 199:270–275.

    Article  Google Scholar 

  • Mithöfer, A., Lottspeich, F., and Ebel, J., 1996b, One-step purification of the β-glucan elicitor-binding protein from soybean (Glycine max L.) roots and characterization of an anti-peptide antiserum, FEBS Lett. 381:203–207.

    Article  PubMed  Google Scholar 

  • Molano, J., Durán, A., and Cabib, E., 1977, A rapid and sensitive assay for chitinase using tritiated chitin, Anal. Biochem. 83:648–656.

    Article  PubMed  CAS  Google Scholar 

  • Moloshok, T., and Ryan, C. A., 1989, Di-and trigalacturonic acid and Delta4,5-di-and Delta4,5-trigalacturonic acids: Inducers of proteinase inhibitor genes in plants, Meth. Enzymol. 179:566–569.

    Article  PubMed  CAS  Google Scholar 

  • Moloshok, T., Pearce, G., and Ryan, C. A., 1992, Oligouronide signaling of proteinase inhibitor genes in plants: Structure-activity relationships of di-and trigalacturonic acids and their derivatives, Arch. Biochem. Biophys. 294:731–734.

    Article  PubMed  CAS  Google Scholar 

  • Morris, E. R., 1986, Molecular interactions in polysaccharide gelation, Br. Polymer J. 18:14–21.

    Article  CAS  Google Scholar 

  • Müller, M., and Gessler, C., 1993, A protein from apple leaves inhibits pectinolytic activity of Venturia inaequalis in vitro, in Mechanisms of Plant Defense Responses (B. Fritig and M. Legrand, eds.), pp. 68–71, Kluwer, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Müller, A., Rice, P. J., Ensley, H. E., Coogan, P. S., Kalbfleisch, J. H. Kelley, J. L., Love, E. J., Portera, C. A., Ha, T., Browder, I. W., and Williams, D. L., 1996, Receptor binding and internalization of a water-soluble (1→3)-β-D-glucan biologic response modifier in two monocyte macrophage cell lines, J. Immunol. 156:3418–3425.

    PubMed  Google Scholar 

  • Nakahara, Y., and Ogawa, T., 1987, Stereocontrolled, total synthesis of α-d-GalA-[(1/4)-α-d-GalA]8-(1/4)-β-d-GalA-1/OPr, a synthetic model for phytoalexin elictor-active oligogalacturonic acids, Carbohydr. Res. 167:c1–c7.

    Article  CAS  Google Scholar 

  • Nakahara, Y., and Ogawa, T., 1989, Total synthesis of galactododecaosiduronic acid, an endogenous phytoalexin elicitor isolated from soybean cell wall, Tetrahedron Lett. 30:87–90.

    Article  CAS  Google Scholar 

  • Nicolaou, K. C., Winssinger, N., Pastor, J., and DeRoose, F., 1997, A general and highly efficient solid phase synthesis of oligosaccharides: Total synthesis of a heptasaccharide phytoalexin elicitor (HPE), J. Am. Chem. Soc. 119:449–450.

    Article  CAS  Google Scholar 

  • Noel, K. D., 1992, Rhizobial polysaccharides required in symbioses with legumes, in Molecular Signals in Plant-Microbe Communications (D. P. S. Verma, ed.), pp. 341–357, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Nojiri, H., Sugimori, M., Yamane, H., Nishimura, Y., Yamada, A., Shibuya, N., Kodama, O., Murofushi, N., and Omori, T., 1996, Involvement of jasmonic acid in elicitor-induced phytoalexin production in suspension-cultured rice cells, Plant Physiol. 110:387–392.

    PubMed  CAS  Google Scholar 

  • Nothnagel, E. A., McNeil, M., Albersheim, P., and Dell, A., 1983, Host-pathogen interactions. XXII. A galacturonic acid oligosaccharide from plant cell walls elicits phytoalexins, Plant Physiol. 71:916–926.

    Article  PubMed  CAS  Google Scholar 

  • Nuss, L., Mahé, A., Clark, A. J., Grisvard, J., Dron, M., Cervone, F., and De Lorenzo, G., 1996, Differential accumulation of PGIP (polygalacturonase-inhibiting protein) mRNA in two near-isogenic lines of Phaseolus vulgaris L. upon infection with Colletotrichum lindemuthianum, Physiol. Mol. Plant Pathol. 48:83–89.

    Article  CAS  Google Scholar 

  • Ohashi, Y., and Ohshima, M., 1992, Stress-induced expression of genes for pathogenesis-related proteins in plants, Plant Cell Physiol. 33:819–826.

    CAS  Google Scholar 

  • Okinaka, Y., Mimori, K., Takeo, K., Kitamura, S., Takeuchi, Y., Yamaoka, N., and Yoshikawa, M., 1995, A structural model for the mechanisms of elicitor release from fungal cell walls by plant β-1,3-endoglucanase, Plant Physiol. 109:839–845.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill, M., Albersheim, P., and Darvill, A., 1990, The pectic polysaccharides of primary cell walls, in Methods in Plant Biochemistry, Vol. 2 (P. M. Dey, ed.), pp. 415–441, Academic Press, London.

    Chapter  Google Scholar 

  • Ossowski, P., Pilotti, Å, Garegg, P. J., and Lindberg, B., 1984, Synthesis of a glucoheptaose and a glucooctaose that elicit phytoalexin accumulation in soybean, J. Biol. Chem. 259:11337–11340.

    PubMed  CAS  Google Scholar 

  • Parker, J. E., Hahlbrock, K., and Scheel, D., 1988, Different cell-wall components from Phytophthora megasperma f. sp. glycinea elicit phytoalexin production in soybean and parsley, Planta 176:75–82.

    Article  CAS  Google Scholar 

  • Parker, J. E., Schulte, W., Hahlbrock, K., and Scheel, D., 1991, An extracellular glycoprotein from Phytophthora megasperma f. sp. glycinea elicits phytoalexin synthesis in cultured parsley cells and protoplasts, Mol. Plant-Microbe Interact. 4:19–27.

    Article  CAS  Google Scholar 

  • Peña-Cortes, H., Sanchez-Serrano, J., Rocha-Sosa, M., and Willmitzer, L., 1988, Systemic induction of proteinase-inhibitor-II gene expression in potato plants by wounding, Planta 174:84–89.

    Article  Google Scholar 

  • Peters, B. M., Cribbs, D. H., and Stelzig, D. A., 1978, Agglutination of plant protoplasts by fungal cell wall glucans, Science 201:364–365.

    Article  PubMed  CAS  Google Scholar 

  • Pitson, S. M., Seviour, R. J., and McDougall, B. M., 1993, Noncellulolytic fungal β-glucanases: Their physiology and regulation, Enzyme Microb. Technol. 15:178–192.

    Article  PubMed  CAS  Google Scholar 

  • Pospieszny, H., and Atabekov, J. G., 1989, Effect of chitosan on the hypersensitive reaction of bean to alfalfa mosaic virus, Plant Sci. 62:29–31.

    Article  CAS  Google Scholar 

  • Pospieszny, H., Chirkov, S., and Atabekov, J., 1991, Induction of antiviral resistance in plants by chitosan, Plant Sci. 79:63–68.

    Article  CAS  Google Scholar 

  • Powell, D. A., Morris, E. R., Gidley, M. J., and Rees, D. A., 1982, Conformations and interactions of pectins II. Influence of residue sequence on chain association in calcium pectate gels, J. Mol. Biol. 155:517–531.

    Article  PubMed  CAS  Google Scholar 

  • Pressey, R., 1991, Oxidized oligogalacturonides activate the oxidation of indoleacetic acid by peroxidase, Plant Physiol. 96:1167–1170.

    Article  PubMed  CAS  Google Scholar 

  • Pressey, R., 1993, Uronic acid oxidase in orange fruit and other plant tissues, Phytochemistry 32:1375–1379.

    Article  CAS  Google Scholar 

  • Punja, Z. K., and Raharjo, S. H. T., 1996, Response of transgenic cucumber and carrot plants expressing different chitinase enzymes to inoculation with fungal pathogens, Plant Dis. 80:999–1005.

    Article  CAS  Google Scholar 

  • Raetz, C. R. H., 1990, Biochemistry of endotoxins, Annu. Rev. Biochem. 59:129–170.

    Article  PubMed  CAS  Google Scholar 

  • Ren, Y.-Y., and West, C. A., 1992, Elicitation of diterpene biosynthesis in rice (Oryza sativa L.) by chitin, Plant Physiol. 99:1169–1178.

    Article  PubMed  CAS  Google Scholar 

  • Reuhs, B. L., Carlson, R. W., and Kim, J. S., 1993, Rhizobium fredii and Rhizobium meliloti produce 3-deoxy-d-manno-2-octulosonic acid-containing polysaccharides that are structurally analogous to group II K antigens (capsular polysaccharides) found in Escherichia coli, J. Bacteriol. 175:3570–3580.

    PubMed  CAS  Google Scholar 

  • Reymond, P., Kunz, B., Paul-Pletzer, K., Grimm, R., Eckerskorn, C., and Farmer, E. E., 1996, Cloning of a cDNA encoding a plasma membrane-associated, uronide binding phosphoprotein with physical properties similar to viral movement proteins, Plant Cell 8:2265–2276.

    PubMed  CAS  Google Scholar 

  • Ride, J. P., and Barber, M. S., 1987, The effects of various treatments on induced lignification and the resistance of wheat to fungi, Physiol. Mol. Plant Pathol. 31:349–360.

    Article  CAS  Google Scholar 

  • Ride, J. P., and Barber, M. S., 1990, Purification and characterization of multiple forms of endochitinase from wheat leaves, Plant Sci. 71:185–197.

    Article  CAS  Google Scholar 

  • Ridley, B. L., Spiro, M. D., Glushka, J., Albersheim, P., Darvill, A., and Mohnen, D., 1997, A method for biotin labeling of biologically active oligogalacturonides using a chemically stable hydrazide linkage, Anal. Biochem. 249:10–19.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, K., 1990, Structures at the plant cell surface, Curr. Opin. Cell Biol. 2:920–928.

    Article  PubMed  CAS  Google Scholar 

  • Robertsen, B., 1986, Elicitors of the production of lignin-like compounds in cucumber hypocotyls, Physiol. Mol. Plant Pathol. 28:137–148.

    Article  CAS  Google Scholar 

  • Robertsen, B., 1987, Endo-polygalacturonase from Cladosporium cucumerinum elicits lignification in cucumber hypocotyls, Physiol. Mol. Plant Pathol. 31:361–374.

    Article  CAS  Google Scholar 

  • Robertsen, B., 1989, Pectate lyase from Cladosporium cucumerinum, purification, biochemical properties and ability to induce lignification in cucumber hypocotyls, Mycol. Res. 94:595–602.

    Article  Google Scholar 

  • Roby, D., Toppan, A., and Esquerré-Tugayé, M.-T., 1985, Cell surfaces in plant-microorganism interactions V. Elicitors of fungal and of plant origin trigger the synthesis of ethylene and of cell wall hydroxyproline-rich glycoprotein in plants, Plant Physiol. 77:700–704.

    Article  PubMed  CAS  Google Scholar 

  • Rong, L., Carpita, N. C., Mort, A., and Gelvin, S. B., 1994, Soluble cell wall compounds from carrot roots induce the picA and pgl loci of Agrobacterium tumefaciens, Mol. Plant-Microbe Interact. 7:6–14.

    Article  CAS  Google Scholar 

  • Rouet-Mayer, M.-A., Mathieu, Y., Cazalé, A.-C., Guern, J., and Laurière, C., 1997, Extracellular alkalinization and oxidative burst induced by fungal pectin lyase in tobacco cells are not due to the perception of oligogalacturonide fragments, Plant Physiol. Biochem. 35:321–330.

    CAS  Google Scholar 

  • Rouhier, P., Kopp, M., Begot, V., Bruneteau, M., and Fritig, B., 1995, Structural features of fungal β-d-glucans for the efficient inhibition of the initiation of virus infection on Nicotiana tabacum, Phytochemistry 39:57–62.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Herrera, J., 1991, Fungal Cell Wall: Structure, Synthesis, and Assembly, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Ryan, C. A., 1988, Oligosaccharides as recognition signals for the expression of defensive genes in plants, Biochemistry 27:8879–8883.

    Article  CAS  Google Scholar 

  • Ryan, C. A., 1994, Oligosaccharide signals: From plant defense to parasite offense, Proc. Natl. Acad. Sci. USA 91:1–2.

    Article  PubMed  CAS  Google Scholar 

  • Ryan, C. A., and Farmer, E. E., 1991, Oligosaccharide signals in plants: A current assessment, Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:651–674.

    Article  CAS  Google Scholar 

  • Scheel, D., and Parker, J. E., 1990, Elicitor recognition and signal transduction in plant defense gene activation, Z. Naturforsch. 45c:569–575.

    Google Scholar 

  • Schlumbaum, A., Mauch, F., Vögeli, U., and Boiler, T., 1986, Plant chitinases are potent inhibitors of fungal growth, Nature 324:365–367.

    Article  CAS  Google Scholar 

  • Schmidt, W. E., and Ebel, J., 1987, Specific binding of a fungal glucan phytoalexin elicitor to membrane fractions from soybean Glycine max, Proc. Natl. Sci. USA 84:4117–4121.

    Article  CAS  Google Scholar 

  • Sembdner, G., and Parthier, B., 1993, The biochemistry and the physiological and molecular actions of jasmonates, Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:569–589.

    Article  CAS  Google Scholar 

  • Sharma, P., Borja, D., Stougaard, P., and Lönneborg, A., 1993, PR-proteins accumulating in spruce roots infected with a pathogenic Pythium sp. isolate include chitinases, chitosanases and β-1,3-glucanases, Physiol. Mol. Plant Pathol. 43:57–67.

    Article  CAS  Google Scholar 

  • Sharp, J. K., Albersheim, P., Ossowski, P., Pilotti, Å., Garegg, P. J., and Lindberg, B., 1984a, Comparison of the structures and elicitor activities of a synthetic and a mycelial-wall-derived hexa(β-d-glucopyranosyl)-d-glucitol, J. Biol. Chem. 259:11341–11345.

    PubMed  CAS  Google Scholar 

  • Sharp, J. K., McNeil, M., and Albersheim, P., 1984b, The primary structures of one elicitor-active and seven elicitor-inactive hexa(β-d-glucopyranosyl)-d-glucitols isolated from the mycelial walls of Phytophthora megasperma f. sp. glycinea, J. Biol. Chem. 259:11321–11336.

    PubMed  CAS  Google Scholar 

  • Sharp, J. K., Valent, B., and Albersheim, P., 1984c, Purification and partial characterization of a β-glucan fragment that elicits phytoalexin accumulation in soybean, J. Biol. Chem. 259:11312–11320.

    PubMed  CAS  Google Scholar 

  • Shibuya, N., Kaku, H., Kuchitsu, K., and Maliarik, M. J., 1993, Identification of a novel high-affinity binding site for N-acetylchitooligosaccharide elicitor in the membrane fraction from suspension-cultured rice cells, FEBS Lett. 329:75–78.

    Article  PubMed  CAS  Google Scholar 

  • Shibuya, N., Ebisu, N., Kamada, Y., Kaku, H., Cohn, J., and Ito, Y., 1996a, Localization and binding characteristics of a high-affinity binding site for N-acetylchitooligosaccharide elicitor in the plasma membrane from suspension-cultured rice cells suggest a role as a receptor for the elicitor signal at the cell surface, Plant Cell Physiol. 37:894–898.

    Article  CAS  Google Scholar 

  • Shibuya, N., Ito, Y., and Kaku, H., 1996b, Perception of oligochitin (N-acetylchitooligosaccharide) elicitor signal in rice, in Biology of Plant-Microbe Interactions (G. Stacey, B. Mullin, and P. M. Gresshoff, eds.), pp. 83–88, International Society for Molecular Plant-Microbe Interactions, St. Paul, Minnesota.

    Google Scholar 

  • Spaink, H. P., and Lugtenberg, B. J. J., 1994, Role of rhizobial lipo-chitin oligosaccharide signal molecules in root nodule organogenesis, Plant Mol. Biol. 26:1413–1422.

    Article  PubMed  CAS  Google Scholar 

  • Spessard, G. O., Hanson, C., Halvorson, J. S., and Giannini, J. L., 1994, Effects of phaseollin on membrane leakage in red beet vacuoles and tonoplast vesicles, Phytochemistry 35:43–47.

    Article  CAS  Google Scholar 

  • Spiro, M. D., Kates, K. A., Koller, A. L., O’Neill, M. A., Albersheim, P., and Darvill, A. G., 1993, Purification and characterization of biologically active 1,4-linked α-d-oligogalacturonides after partial digestion of polygalacturonic acid with endopolygalacturonase, Carbohydr. Res. 247:9–20.

    Article  CAS  Google Scholar 

  • Spiro, M. D., Ridley, B. L., Glushka, J., Darvill, A. G., and Abersheim, P., 1996, Synthesis and characterization of tyramine-derivatized 1→4-linked α-d-oligogalacturonides, Carbohydr. Res. 290:147–157.

    Article  PubMed  CAS  Google Scholar 

  • Stäb, M. R., and Ebel, J., 1987, Effects of Ca2+ on phytoalexin induction by fungal elicitor in soybean cells, Arch. Biochem. Biophys. 257:416–423.

    Article  PubMed  Google Scholar 

  • Staehelin, C., Granado, J., Müller, J., Wiemken, A., Mellor, R. B., Felix, G., Regenass, M., Broughton, W. J., and Boiler, T., 1994, Perception of Rhizobium nodulation factors by tomato cells and inactivation by root chitinases, Proc. Natl. Acad. Sci. USA 91:2196–2200.

    Article  PubMed  CAS  Google Scholar 

  • Staskawicz, B. J., Ausubel, F. M., Baker, B. J., Ellis, J. G., and Jones, J. D. G., 1995, Molecular genetics of plant disease resistance, Science 268:661–667.

    Article  PubMed  CAS  Google Scholar 

  • Steffens, M., Ettl, F., Kranz, D., and Kindl, H., 1989, Vanadate mimics effects of fungal cell wall in eliciting gene activation in plant cell cultures, Planta 177:160–168.

    Article  CAS  Google Scholar 

  • Stintzi, A., Heitz, T., Prasad, V., Wiedemann-Merdinoglu, S., Kauffmann, S., Geoffroy, P., Legrand, M., and Fritig, B., 1993, Plant ‘pathogenesis-related’ proteins and their role in defense against pathogens, Biochimie 75:687–706.

    Article  PubMed  CAS  Google Scholar 

  • Stotz, H. U., Bergmann, C. W., Powell, A. L. T., Contos, J. J., Albersheim, P., Darvill, A. G., and Labavitch, J. M., 1994a, Structural and functional comparison of polygalacturonase inhibitor proteins from pear, tomato, and bean (Abstract), 7th International Symposium on Molecular Plant-Microbe Interactions, Edinburgh, U.K.

    Google Scholar 

  • Stotz, H. U., Contos, J. J. A., Powell, A. L. T., Bennett, A. B., and Labavitch, J. M., 1994b, Structure and expression of an inhibitor of fungal polygalacturonases from tomato, Plant Mol. Biol. 25:607–617.

    Article  PubMed  CAS  Google Scholar 

  • Strasser, H., Hoffmann, C., Grisebach, H., and Matern, U., 1986, Are polyphosphoinositides involved in signal transduction of elicitor-induced phytoalexin synthesis in cultured plant cells? Z. Naturforsch. 41c:717–724.

    Google Scholar 

  • Takeuchi, Y., Yoshikawa, M., and Horino, O., 1990a, Immunological evidence that β-1,3-endoglucanase is the major elicitor-releasing factor in soybean, Ann. Phytopath. Soc. Japan 56:523–531.

    Article  CAS  Google Scholar 

  • Takeuchi, Y., Yoshikawa, M., Takeba, G., Tanaka, K., Shibata, D., and Horino, O., 1990b, Molecular cloning and ethylene induction of mRNA encoding a phytoalexin elicitor-releasing factor, β-1,3-endoglucanase, in soybean, Plant Physiol. 93:673–682.

    Article  PubMed  CAS  Google Scholar 

  • Tani, M., Fukui, H., Shimomura, M., and Tabata, M., 1992, Structure of endogenous oligogalacturonides inducing shikonin biosynthesis in Lithospermum cell cultures, Phytochemistry 31:2719–2723.

    Article  CAS  Google Scholar 

  • Tepper, C. S., and Anderson, A. J., 1990, Interactions between pectic fragments and extracellular components from the fungal pathogen Colletotrichum lindemuthianum, Physiol. Mol. Plant Pathol. 36:147–158.

    Article  CAS  Google Scholar 

  • Thain, J. F., Doherty, H. M., Bowles, D. J., and Wildon, D. C., 1990, Oligosaccharides that induce proteinase inhibitor activity in tomato plants cause depolarization of tomato leaf cells, Plant Cell Environ. 13:569–574.

    Article  CAS  Google Scholar 

  • Thain, J. F., Gubb, I. R., and Wildon, D. C., 1995, Depolarization of tomato leaf cells by oligogalacturonide elicitors, Plant Cell Environ. 18:211–214.

    Article  CAS  Google Scholar 

  • Thornton, B. P., Vetvicka, V., Pitman, M., Goldman, R. C., and Ross, G. D., 1996, Analysis of the sugar specificity and molecular location of the β-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18), J. Immunol. 156:1235–1246.

    PubMed  CAS  Google Scholar 

  • Toubart, P., Desiderio, A., Salvi, G., Cervone, F., Daroda, L., De Lorenzo, G., Bergmann, C., Darvill, A. G., and Albersheim, P., 1992, Cloning and characterization of the gene encoding the endopolygalacturonase-inhibiting protein (PGIP) of Phaseolus vulgaris L., Plant J. 2:367–373.

    PubMed  CAS  Google Scholar 

  • Umemoto, N., Kakitani, M., Iwamatsu, A., Yoshikawa, M., Yamaoka, N., and Ishida, I., 1997, The structure and function of a soybean β-glucan-elicitor-binding protein, Proc. Natl. Acad. Sci. USA 94:1029–1034.

    Article  PubMed  CAS  Google Scholar 

  • Velupillai, P., and Harn, D. A., 1994, Oligosaccharide-specific induction of interleukin 10 production by B220+ cells from schistosome-infected mice: A mechanism for regulation of CD4+ T-cell subsets, Proc. Natl. Acad. Sci. USA 91:18–22.

    Article  PubMed  CAS  Google Scholar 

  • Verduyn, R., Douwes, M., Van der Klein, P. A. M., Mösinger, E. M., Van der Marel, G. A., and van Boom, J. H., 1993, Synthesis of a methyl heptaglucoside: Analogue of the phytoalexin elicitor from Phytophtora megasperma, Tetrahedron 49:7301–7316.

    Article  CAS  Google Scholar 

  • Vierheilig, H., Alt, M., Neuhaus, J.-M., Boiler, T., and Wiemken, A., 1993, Colonization of transgenic Nicotiana sylvestris plants, expressing different forms of Nicotiana tabacum chitinase, by the root pathogen Rhizoctonia solani and by the mycorrhizal symbiont Glomus mosseae, Mol. Plant-Microbe Interact. 6:261–264.

    Article  CAS  Google Scholar 

  • Vögeli, U., Meins, F., Jr., and Boiler, T., 1988, Co-ordinated regulation of chitinase and β-1,3-glucanase in bean leaves, Planta 174:364–372.

    Article  Google Scholar 

  • Vreeland, V., Morse, S. R., Robichaux, R. H., Miller, K. L., Hua, S.-S. T., and Laetsch, W. M., 1989, Pectate distribution and esterification in Dubautia leaves and soybean nodules, studied with a fluorescent hybridization probe, Planta 177:435–446.

    Article  CAS  Google Scholar 

  • Waldmann, T., Jeblick, W., and Kauss, H., 1988, Induced net Ca2+ uptake and callose biosynthesis in suspension-cultured plant cells, Planta 173:88–95.

    Article  CAS  Google Scholar 

  • Waldmüller, T., Cosio, E. G., Grisebach, H., and Ebel, J., 1992, Release of highly elicitor-active glucans by germinating zoospores of Phytophthora megasperma f. sp. glycinea, Planta 188:498–505.

    Article  Google Scholar 

  • Walker-Simmons, M., and Ryan, C. A., 1984, Proteinase inhibitor synthesis in tomato leaves. Induction by chitosan oligomers and chemically modified chitosan and chitin, Plant Physiol. 76:787–790.

    Article  PubMed  CAS  Google Scholar 

  • Walker-Simmons, M., Hadwiger, L., and Ryan, C. A., 1983, Chitosans and pectic polysaccharides both induce the accumulation of the antifungal phytoalexin pisatin in pea pods and antinutrient proteinase inhibitors in tomato leaves, Biochem. Biophys. Res. Commun. 110:194–199.

    Article  PubMed  CAS  Google Scholar 

  • Walker-Simmons, M., Jin, D., West, C. A., Hadwiger, L., and Ryan, C. A., 1984, Comparison of proteinase inhibitor-inducing activities and phytoalexin elicitor activities of a pure fungal endopolygalacturonase, pectic fragments, and chitosan, Plant Physiol. 76:833–836.

    Article  PubMed  CAS  Google Scholar 

  • Ward, E. R., Payne, G. B., Moyer, M. B., Williams, S. C., Dincher, S. S., Sharkey, K. C., Beck, J. J., Taylor, H. T., Ahl-Goy, P., Meins, F., Jr., and Ryals, J. A., 1991a, Differential regulation of β-1,3-glucanse messenger RNAs in response to pathogen infection, Plant Physiol. 96:390–397.

    Article  PubMed  CAS  Google Scholar 

  • Ward, E. R., Uknes, S. J., Williams, S. C., Dincher, S. S., Widerhold, D. L., Alexander, D. C., Ahl-Goy, P., Métraux, J.-P., and Ryals, J. A., 1991b, Coordinate gene activity in response to agents that induce systemic acquired resistance, Plant Cell 3:1085–1094.

    PubMed  CAS  Google Scholar 

  • Xu, H., and Mendgen, K., 1994, Endocytosis of 1,3-β-glucans by broad bean cells at the penetration site of the cowpea rust fungus (haploid stage), Planta 195:282–290.

    Article  CAS  Google Scholar 

  • Yamada, A., Shibuya, N., Kodama, O., and Akatsuka, T., 1993, Induction of phytoalexin formation in suspension-cultured rice cells by N-acetylchitooligosaccharides, Biosci. Biotech. Biochem. 57:405–409.

    Article  CAS  Google Scholar 

  • Yao, C. L., Conway, W. S., and Sams, C. E., 1995, Purification and characterization of a polygalacturonase-inhibiting protein from apple fruit, Phytopathology 85:1373–1377.

    Article  CAS  Google Scholar 

  • Yoder, M. D., and Jurnak, F., 1995, The refined three-dimensional structure of pectate lyase C from Erwinia chrysanthemi at 2.2 Ångstrom resolution. Implications for an enzymatic mechanism, Plant Physiol. 107:349–364.

    PubMed  CAS  Google Scholar 

  • Yoshikawa, M., and Sugimoto, K., 1993, A specific binding site on soybean membranes for a phytoalexin elicitor released from fungal cell walls by β-1,3-endoglucanase, Plant Cell Physiol. 34:1229–1237.

    CAS  Google Scholar 

  • Yoshikawa, M., Keen, N. T., and Wang, M.-C., 1983, A receptor on soybean membranes for a fungal elicitor of phytoalexin accumulation, Plant Physiol. 73:497–506.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa, M., Takeuchi, Y., and Horino, O., 1990, A mechanism for ethylene-induced disease resistance in soybean: Enhanced synthesis of an elicitor-releasing factor, β-1,3-endoglucanase, Physiol. Mol. Plant Pathol. 37:367–376.

    Article  CAS  Google Scholar 

  • Young, D. H., and Kauss, H., 1983, Release of calcium from suspension-cultured Glycine max cells by chitosan, other polycations, and poly amines in relation to effects on membrane permeability, Plant Physiol. 73:698–702.

    Article  PubMed  CAS  Google Scholar 

  • Young, D. H., Köhle, H., and Kauss, H., 1982, Effect of chitosan on membrane permeability of suspension-cultured Glycine max and Phaseolus vulgaris cells, Plant Physiol. 70:1449–1454.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Q., Maher, E. A., Masoud, S., Dixon, R. A., and Lamb, C. J., 1994, Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco, Bio/technology 12:807–812.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Côté, F., Ham, KS., Hahn, M.G., Bergmann, C.W. (1998). Oligosaccharide Elicitors in Host-Pathogen Interactions. In: Biswas, B.B., Das, H.K. (eds) Plant-Microbe Interactions. Subcellular Biochemistry, vol 29. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1707-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1707-2_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1709-6

  • Online ISBN: 978-1-4899-1707-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics