Skip to main content

Entropy Scale-Space

  • Chapter
Visual Form

Abstract

We introduce a novel notion of scale for signals which we illustrate for shape. It is based on the notion of entropy and a view of shocks as “black holes of information”. We propose that to properly place features in a hierarchy, we need both linear, global, and instantaneously propagated smoothing (e.g. Gaussian smoothing), as well as non-linear, local smoothing (e.g., certain morphological operators) that propagate information with finite speed. Both of these types of processes are brought together in the entropy scale space. The scheme is illustrated for shape, is intuitive and robust, and applicable in other areas of vision.5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Babaud, A. P. Witkin, M. Baudin, and R. O. Duda. Uniqueness of the gaussian kernel for scale-space filtering. PAMI, 8(1):26–33, January 1986.

    Article  MATH  Google Scholar 

  2. F. W. Campbell and J. G. Robson. Applications of fourier analysis to the visibility of gratings. J. Physiol. (London), 197:551–556, 1968.

    Google Scholar 

  3. M.-H. Chen and P.-F. Yan. A multiscale approach based on morphological filtering. PAMI, 11(7):694–700, July 1989.

    Article  MATH  Google Scholar 

  4. P. Garabedian. Partial Differential Equations. John Wiley and Sons, 1964.

    Google Scholar 

  5. E. Hopf. The partial differential equation u t + uu x = eu x x. Comm. Pure Appl. Math., 3:201–230, 1950.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Hummel, B. B. Kimia, and S. W. Zucker. Deblurring gaussian blur. Computer Vision, Graphics, and Image Processing, 38:66–80, 1987.

    Article  MATH  Google Scholar 

  7. B. B. Kimia. Conservation laws and a theory of shape. Ph.D. dissertation, McGill Centre for Intelligent Machines, McGill University, Montreal, Canada, 1990.

    Google Scholar 

  8. B. B. Kimia, A. Tannenbaum, and S. W. Zucker. On the evolution of curves via a function of curvature, I: The classical case. JMAA, To appear, 1991.

    Google Scholar 

  9. J. J. Koenderink. The structure of images. Biol. Cybernetics, 50:363–370, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. J. Koenderink and A. J. van Dooran. Visual detection of spatial contrast: Influence of location in the visual field, target extent and illuminance level. Biological Cybernetics, 30:157–167, 1978.

    Article  Google Scholar 

  11. J. J. Koenderink and A. J. van Doom. Dynamic shape. Biol. Cyber., 53:383–396, 1986.

    Article  MATH  Google Scholar 

  12. P. D. Lax. Shock Waves and Entropy, pages 603–634. Academic Press, New York, 1971.

    Google Scholar 

  13. P. D. Lax. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. SIAM Regional Conference series in Applied Mathematics, Philadelphia, 1973.

    Google Scholar 

  14. P. D. Lax. Shock waves, increase of entropy and loss of information. Technical Report DOE/ER/03077-240, Courant Mathematics and Computing Library-R&D Report, 1984.

    Google Scholar 

  15. F. Leymarie and M. D. Levine. Shape features using curvature morphology. In Proceedings of the SPIE “Intelligent Robots and Computer Vision VIII: Algorithms and Techniques” Conference, volume 1192, part 2, pages 536-547, Philadelphia, Penn., USA, November 1989.

    Google Scholar 

  16. P. Maragos. Pattern spectrum and multiscale shape representation. PAMI, 11(7):701–716, July 1989.

    Article  MATH  Google Scholar 

  17. D. Marr and E. Hildreth. Theory of edge detection. Technical Report MIT AI Memo 518, MIT AI Lab, 1979.

    Google Scholar 

  18. F. Mokhtarian and A. Mackworth. Scale-based description of planar curves and two-dimensional shapes. PAMI, 8:34–43, 1986.

    Article  Google Scholar 

  19. O. Oleinik. Discontinuous solutions of nonlinear differential equations. Amer. Math. Soc. Transl. Ser. 2, 26:95–172, 1957.

    Google Scholar 

  20. P. Perona and J. Malik. Scale-space and edge detection using anistroopic diffusion. PAMI, 12(7):629–639, July 1990.

    Article  Google Scholar 

  21. W. Richards, B. Benjamin, and D. Whittington. Encoding contour shape by curvature extrema. JOSA A, 3(9):1483–1489, 1986.

    Article  Google Scholar 

  22. A. Rosenfeld and M. Thurston. Edge and curve detection for visual scene analysis. IEEE Trans. Comput., C-20:562–569, 1971.

    Article  Google Scholar 

  23. J. Smoller. Shock Waves and Reaction-Diffusion Equations. Springer-Verlag, New York, 1983.

    Book  MATH  Google Scholar 

  24. D. Widder. The Heat Equation. Academic Press, 1975.

    Google Scholar 

  25. H. R. Wilson and J. R. Bergen. A four mechanism model for threshold spatial vision. Vision Research, 19(1):19–32, 1979.

    Article  Google Scholar 

  26. A. P. Witkin. Scale-space filtering. In Proceedings of the 8 th International Joint Conference on Artificial Intelligence, pages 1019-1022, Karlsruhe, West Germany, Aug. 1983.

    Google Scholar 

  27. A. L. Yuille and T. A. Poggio. Scaling theorems for zero crossings. PAMI, 8(1):15–25, January 1986.

    Article  MATH  Google Scholar 

  28. S. W. Zucker and R. Hummel. Receptive fields and the representation of visual information. Human Neurobiology, 5:121–128, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kimia, B.B., Tannenbaum, A., Zucker, S.W. (1992). Entropy Scale-Space. In: Arcelli, C., Cordella, L.P., di Baja, G.S. (eds) Visual Form. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0715-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0715-8_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0717-2

  • Online ISBN: 978-1-4899-0715-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics