Skip to main content

Microlocal Analysis of Singularities from Directional Multiscale Representations

  • Conference paper
  • First Online:
Approximation Theory XIV: San Antonio 2013

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 83))

Abstract

The classical wavelet transform is a remarkably effective tool for the analysis of pointwise regularity of functions and distributions. During the last decade, the emergence of a new generation of multiscale representations has extended the classical wavelet approach leading to the introduction of a class of generalized wavelet transforms—most notably the shearlet transform—which offers a much more powerful framework for microlocal analysis. In this paper, we show that the shearlet transform enables a precise geometric characterization of the set of singularities of a large class of multidimensional functions and distributions, going far beyond the capabilities of the classical wavelet transform. This paper generalizes and extends several results that previously appeared in the literature and provides the theoretical underpinning for advanced applications from image processing and pattern recognition including edge detection, shape classification, and feature extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the distributional Fourier transform of \(f\) is \(\hat{f}(\xi ) = \frac{1}{2}\delta (\xi ) + \frac{1}{2\pi i} \text {p.v.} \frac{1}{\xi }\), but the term \(\frac{1}{2}\delta (\xi )\) gives no contribution in the computation for \(\langle f , \psi _{a,t} \rangle \) since \(\hat{\psi }(0)=0\).

References

  1. Antoine, J.-P., Murenzi, R.: Two-dimensional directional wavelets and the scale-angle representation. Signal Process. 52, 259–281 (1996)

    Article  MATH  Google Scholar 

  2. Candès, E.J., Donoho, D.L.: Ridgelets: a key to higher-dimensional intermittency? Philos. Trans. R. Soc. Lond. A 357, 2495–2509 (1999)

    Article  MATH  Google Scholar 

  3. Candès, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with \(C^2\) singularities. Commun. Pure Appl. Math. 56, 219–266 (2004)

    Article  Google Scholar 

  4. Candès, E.J., Donoho, D.L.: Continuous curvelet transform. I: Resolution of the wavefront set. Appl. Comput. Harmon. Anal. 19, 162–197 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chan, T., Shen, J.: Image Processing and Analysis. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  6. Dahlke, S., Kutyniok, G., Maass, P., Sagiv, C., Stark, H.-G., Teschke, G.: The uncertainty principle associated with the continuous shearlet transform. Int. J. Wavelets Multiresolut. Inf. Process. 6, 157–181 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dahlke, S., Steidl, G., Teschke, G.: The continuous shearlet transform in arbitrary space dimensions. J. Fourier Anal. Appl. 16(3), 340–364 (2009)

    MathSciNet  Google Scholar 

  8. Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13, 891–906 (1991)

    Article  Google Scholar 

  9. Guo, K., Labate, D.: Optimally sparse multidimensional representation using shearlets. SIAM J. Math. Anal. 39, 298–318 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Guo, K., Labate, D.: Characterization and analysis of edges using the continuous shearlet transform. SIAM J. Imaging Sci. 2, 959–986 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Guo, K., Labate, D.: Analysis and detection of surface discontinuities using the 3D continuous shearlet transform. Appl. Comput. Harmon. Anal. 30, 231–242 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Guo, K., Labate, D.: Characterization of piecewise-smooth surfaces using the 3D continuous shearlet transform. J. Fourier Anal. Appl. 18, 488–516 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Guo, K., Labate, D.: Analysis and identification of multidimensional singularities using the continuous shearlet transform. In: Kutyniok, G., et al. (eds.) Shearlets, pp. 69–103. Birkhuser/Springer, New York (2012)

    Google Scholar 

  14. Guo, K., Labate, D., Lim, W.: Edge analysis and identification using the continuous shearlet transform. Appl. Comput. Harmon. Anal. 27, 24–46 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Herz, C.S.: Fourier transforms related to convex sets. Ann. Math. 75, 81–92 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  16. Holschneider, M.: Wavelets: Analysis Tool. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  17. Jaffard, S., Meyer, Y.: Wavelet methods for pointwise regularity and local oscillations of functions. Memoirs AMS 123(587), 1–110 (1996)

    Google Scholar 

  18. Jaffard, S.: Pointwise smoothness, two-microlocalization and wavelet coefficients. Publications Matematiques 35, 155–168 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kutyniok, G., Labate, D.: Resolution of the wavefront set using continuous shearlets. Trans. Am. Math. Soc. 361, 2719–2754 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Labate, D., Lim, W., Kutyniok, G., Weiss, G.: Sparse multidimensional representation using shearlets. Wavelets XI (San Diego, CA, 2005). In: Proceedings of SPIE, vol. 5914, pp. 254–262, Bellingham, WA (2005)

    Google Scholar 

  21. Laugesen, R.S., Weaver, N., Weiss, G., Wilson, E.: A characterization of the higher dimensional groups associated with continuous wavelets. J. Geom. Anal. 12, 89–102 (2001)

    Article  MathSciNet  Google Scholar 

  22. Meyer, Y.: Wavelets and operators. Cambridge studies in advanced mathematics, vol. 37. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  23. Perona, P.: Steerable-scalable kernels for edge detection and junction analysis. Image Vis. Comput. 10, 663–672 (1992)

    Article  Google Scholar 

  24. Weiss, G., Wilson, E.: The mathematical theory of wavelets. In: Proceeding of the NATO-ASI Meeting, Harmonic Analysis 2000: A Celebration, Kluwer (2001)

    Google Scholar 

  25. Yi, S., Labate, D., Easley, G.R., Krim, H.: A shearlet approach to edge analysis and detection. IEEE Trans. Image Process. 18, 929–941 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are partially supported by NSF grant DMS 1008900/1008907. DL is also partially supported by NSF grant DMS 1005799.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanghui Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Guo, K., Houska, R., Labate, D. (2014). Microlocal Analysis of Singularities from Directional Multiscale Representations. In: Fasshauer, G., Schumaker, L. (eds) Approximation Theory XIV: San Antonio 2013. Springer Proceedings in Mathematics & Statistics, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-319-06404-8_10

Download citation

Publish with us

Policies and ethics