Skip to main content

Tetraphenylphosphonium inhibits oxidation of physiological substrates in heart mitochondria

  • Chapter
Detection of Mitochondrial Diseases

Abstract

We show that tetraphenylphosphonium inhibits oxidation of palmitoylcarnitine, pyruvate, malate, 2-oxoglutarate and glutamate in heart mitochondria in the range of concentration (1–5 µM) commonly used for the determination of mitochondrial membrane potential. The inhibition of 2-oxoglutarate (but not other substrate) oxidation by tetraphenylphosphonium is dependent on the concentration of 2-oxoglutarate and on extramitochondrial free calcium, and the kinetic plots are consistent with a mixed type of inhibition. Our results indicate that tetraphenylphosphonium interacts with enzymes, specifically involved in the oxidation of 2-oxoglutarate, most possibly, 2-oxoglutarate dehydrogenase. (Mol Cell Biochem 174: 67-70, 1997)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

TPP+ :

tetraphenylphosphonium

TPMP+ :

triphenylmethylphosphonium

References

  1. Grinius LL, Jasaitis AA, Kadziauskas JP, Liberman EA, Skulachev VP, Topali VP, Tsofina FM, Vladimirova MA: Conversion of biomembrane-produced energy into electric form. I. Submitochondrial particles. Biochim Biophys Acta 216: 1–12, 1970

    Article  PubMed  CAS  Google Scholar 

  2. Bakeeva LE, Grinius LL, Jasaitis AA, Kuliene VV, Levitsky DO, Liberman EA, Severina II, Skulachev VP: Conversion of biomembrane-produced energy into electric form. II. Intact Mitochondria. Biochim Biophys Acta 216: 13–21, 1970

    Article  PubMed  CAS  Google Scholar 

  3. Kashket ER: The protonmotive force in bacteria: a critical assessment of methods. Ann Rev Microbiol 39: 210–242, 1985

    Article  Google Scholar 

  4. Brand MD: Measurement of mitochondrial protonmotive force. In: GC Brown, CE Cooper (eds). Bioenergetics — A Practical Approach. Oxford University Press, Oxford, New York, Tokyo, 1994, pp 39–62

    Google Scholar 

  5. Kamo N, Muragatsu M, Hongoh R, Kotabake YJ: Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105–121, 1979

    Article  PubMed  CAS  Google Scholar 

  6. Wingrove DE, Gunter TE: Kinetics of mitochondrial calcium transport. II. A kinetic description of the sodium-dependent calcium efflux mechanism in liver mitochondria and inhibition by ruthenium red and by tetraphenylphosphonium. J Biol Chem 261: 15166–15171, 1986.

    PubMed  CAS  Google Scholar 

  7. Mildaziene V, Baniene R, Nauciene Z, Bakker BM, Brown GC, Westerhoff HV, Kholodenko BN: Calcium indirectly increases the control exerted by the adenine nucleotide translocator over 2-oxoglutarate oxidation in rat heart mitochondria. Arch Biochem Biophys 324:130–134, 1995

    Article  PubMed  CAS  Google Scholar 

  8. Fabiato A, Fabiato FJ: Calculator programs for multiple metals and ligands. J Physiol (Paris) 75: 463–505, 1979

    CAS  Google Scholar 

  9. Demura M, Kamo N, Kobatake Y: Mitochondrial membrane potential estimated with the correction of probe binding. Biochim Biophys Acta 894: 355–364, 1987

    Article  PubMed  CAS  Google Scholar 

  10. McCormack JG, Denton RM: The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex. Biochem J 180: 533–544, 1979

    PubMed  CAS  Google Scholar 

  11. Panov AV, Scaduto RC: Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles. Arch Biochem Biophys 316:815–820, 1995

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mildaziene, V., Baniene, R., Marcinkeviciute, A., Nauciene, Z., Kalvenas, A., Zimkus, A. (1997). Tetraphenylphosphonium inhibits oxidation of physiological substrates in heart mitochondria. In: Gellerich, F.N., Zierz, S. (eds) Detection of Mitochondrial Diseases. Developments in Molecular and Cellular Biochemistry, vol 21. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6111-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6111-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7800-6

  • Online ISBN: 978-1-4615-6111-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics