Skip to main content

Reinforcements

  • Chapter
  • First Online:
Metal Matrix Composites

Abstract

Reinforcement materials for metal matrix composites can be produced in the form of continuous fibers, short fibers, whiskers, or particles. The parameter that allows us to distinguish between these different forms of reinforcements is called the aspect ratio. Aspect ratio is nothing but the ratio of length to diameter (or thickness) of the fiber, particle, or whisker. Thus, continuous fibers have an aspect ratio approaching infinity while perfectly equiaxed particles have an aspect ratio of around one. Table 2.1 lists some important reinforcements available in different forms for metallic matrix materials. Ceramic reinforcements combine high strength and elastic modulus with high-temperature capability. Continuous ceramic fibers are also, however, more expensive than ceramic particulate reinforcements.

Portions of this chapter are taken from Chawla (2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Birchall JD, Bradbury JAA, Dinwoodie J (1985) in Strong Fibres, Handbook of Composites, vol. 1. North Holland, Amsterdam, p. 115.

    Google Scholar 

  • Chawla, K.K. (1998) Fibrous Materials, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Chawla, K.K. (2012) Composite Materials, 3rd ed., Springer, New York.

    Book  Google Scholar 

  • Chawla, N., M. Kerr, and K.K. Chawla (2005) J. Am. Ceram. Soc., 88, 101.

    Article  CAS  Google Scholar 

  • DeBolt, H.E., V.J. Krukonis, and F.E. Wawner (1974) in Silicon Carbide 1973, University of South Carolina Press, Columbia, SC, p. 168.

    Google Scholar 

  • Deurbergue, A., and A. Oberlin (1991) Carbon, 29, 691.

    Article  Google Scholar 

  • DiCarlo, J.A. (June 1985) J. of Metals, 37, 44.

    CAS  Google Scholar 

  • Diefendorf, R.J., and E. Tokarsky (1975) Polymer Eng. Sci., 15, 150.

    Article  CAS  Google Scholar 

  • Dresher, W.H. (April 1969) J. of Metals, 21, 17.

    Google Scholar 

  • Ezekiel, H.N., and R. G. Spain (1967) J. Polymer Sci. C., 19, 271.

    Google Scholar 

  • Gasson, D.G., and B. Cockayne (1970) J. Mater. Sci., 5, 100.

    Article  CAS  Google Scholar 

  • Haggerty, J.S. (May 1972) NASA-CR-120948.

    Google Scholar 

  • Hurley, G.F., and J.T.A. Pollack (1972) Metall. Trans., 7, 397.

    Google Scholar 

  • Ichikawa, H. (2000) Ann. Chim. Sci. Mat., 25, 523.

    Article  CAS  Google Scholar 

  • Johnson, D.J., and C.N. Tyson (1969) Brit. J. App. Phys., 2, 787.

    Google Scholar 

  • Kerr, M., N. Chawla, and K.K. Chawla (2005) JOM, 57, 67.

    Article  CAS  Google Scholar 

  • Kumagai, M., and G.L. Messing (1985) J. Am. Ceram. Soc., 68, 500.

    Article  CAS  Google Scholar 

  • Kumar, S., D.P. Anderson, and A.S. Crasto (1993) J. Mater. Sci., 28, 423.

    Article  CAS  Google Scholar 

  • LaBelle, H.E., and A.I. Mlavsky (1967) Nature, 216, 574.

    Article  CAS  Google Scholar 

  • LaBelle, H.E. (1971) Mater. Res. Bull., 6, 581.

    Article  CAS  Google Scholar 

  • Laffon, C., A.M. Flank, P. Lagarde (1989) J. Mater. Sci., 24, 1503.

    Article  CAS  Google Scholar 

  • Lee, J.-G., and I.B. Cutler (1975) Am. Ceram. Soc. Bull., 54, 195.

    CAS  Google Scholar 

  • Lara-Curzio, E., and S. Sternstein (1993) Composites Sci. & Tech., 46, 265.

    Article  CAS  Google Scholar 

  • Lindemanis A (1983) in Emergent Process Methods for High Technology Ceramics, Plenum Press, New York

    Google Scholar 

  • Mann, A.B., M. Balooch, J.H. Kinney, and T.P. Weihs (1999) J. Amer. Ceram. Soc., 82, 111.

    Article  CAS  Google Scholar 

  • Milewski, J.V., F.D. Gac, J.J. Petrovic, and S.R. Skaggs (1985) J. Mater. Sci., 20, 1160.

    Article  CAS  Google Scholar 

  • Milewski, J.V., J.L. Sandstrom, and W.S. Brown (1974) in Silicon Carbide-1973, University of South Carolina Press, Columbia, SC, p. 634.

    Google Scholar 

  • Peebles, L.H. (1995) Carbon Fibers, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Petrovic, J.J., J.V. Milewski. D.L. Rohr, and F.D. Gac (1985) J. Mater. Sci., 20, 1167.

    Article  Google Scholar 

  • Pollack, J.T.A. (1972) J. Mater. Sci., 7, 787.

    Article  Google Scholar 

  • Riggs JP (1985) in Encyclopedia of Polymer Science & Engineering, 2nd ed., vol. 2. John Wiley & Sons, New York, p. 640.

    Google Scholar 

  • Sayir, A., and S.C. Farmer (1995) in Ceramic Matrix Composites, MRS proceedings, Mater. Res. Soc., Pittsburgh, vol. 365, p. 11.

    Google Scholar 

  • Sayir, A., S.C. Farmer, P.O. Dickerson, and H.M. Yun (1995) in Ceramic Matrix Composites, MRS proceedings, Mater. Res. Soc., Pittsburgh, vol. 365, p. 21.

    Google Scholar 

  • Simon, G., and A. R. Bunsell (1984) J. Mater. Sci., 19, 3649.

    Article  CAS  Google Scholar 

  • Singer, L. (1979) in Ultra-High Modulus Polymers, Applied Sci. Pub., Essex, England, p. 251.

    Google Scholar 

  • Singer, L. (1981) Fuel, 60, 839-841.

    Article  CAS  Google Scholar 

  • Suwa Y, Roy R, Komarneni S (1985) J. Am. Ceram. Soc., 68, C-238.

    Article  Google Scholar 

  • Towata, A., H.J. Hwang, M. Yasuoka, M. Sando, and K. Niihara (2001) Composites A, 32A, 1127.

    Article  CAS  Google Scholar 

  • Watt, W. (1970) Proc. Roy. Soc., A319, 5.

    Google Scholar 

  • Watt W, Johnson W (1969) App. Polymer Symposium, 9, 215.

    Google Scholar 

  • Wax, S.G. (1985) Amer. Cer. Soc. Bull., 64, 1096.

    Google Scholar 

  • Weber, J. K. R., J. J. Felten, B. Cho, and P. C. Nordine (1998) Nature, 393, 769.

    Article  CAS  Google Scholar 

  • Weibull, W. (1951) J. App. Mech., 18, 293.

    Google Scholar 

  • Wilson, D.M. (1990) in Proc. 14th Conf. On Metal Matrix, Carbon, and Ceramic Matrix Composites, NASA Conference Publication, No. 3097, Part I, pp. 105-117.

    Google Scholar 

  • Wilson, D.M., and L.R. Visser (2001) Composites A, 32A, 1143.

    Article  CAS  Google Scholar 

  • Yajima, S., K. Okamura, J. Hayashi, and M. Omori (1976) J. Amer. Ceram. Soc., 59, 324.

    Article  CAS  Google Scholar 

  • Yajima S (1980) Phil. Trans., R., Soc., London, A294, 419.

    Article  Google Scholar 

  • Yamamura, T., T. Ishirkawa, M. Shibuya, T. Hiasyuki, and K. Okamura (1988) J. Mater. Sci., 23, 2589.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chawla, N., Chawla, K.K. (2013). Reinforcements. In: Metal Matrix Composites. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9548-2_2

Download citation

Publish with us

Policies and ethics