Skip to main content
Log in

Carbon fibre compressive strength and its dependence on structure and morphology

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The axial compressive strength of carbon fibres varies with the fibre tensile modulus and precursor material. While the development of tensile modulus and strength in carbon fibres has been the subject of numerous investigations, increasing attention is now being paid to the fibre and the composite compressive strength. In the present investigation, pitch- and PAN-based carbon fibres with wide-ranging moduli and compressive strengths were chosen for a study of fibre structure and morphology. A rayon-based carbon fibre was also included in this study. Structural parameters (L c, La(0), L a(90), orientation parameter Z, and the spacing between graphitic planes d(00, 2)) were determined from wide angle X-ray spectroscopy (WAXS). Fibre morphology was characterized using high-resolution scanning electron microscopy (HRSEM) of fractured fibre cross-sections. The mechanical properties of the fibres, including compressive strength, the structural parameters from WAXS, and the morphology determined from HRSEM are reported. The influence of structure and morphology on the fibre compressive strength is discussed. This study suggests that the width of the graphitic sheets, the crystallite size perpendicular to the fibre axis (L c and L a(0)), and crystal anisotropy play significant roles in accounting for the large differences in compressive strengths of various carbon fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kumar and T. E. Helminiak, in “The Materials Science and Engineering of Rigid Rod Polymers”, edited by W. W. Adams, R. K. Eby and D. E. McLemore Materials Research Society Symposium Proceedings 134 (MRS, Pittsburgh, 1989) p. 363.

    Google Scholar 

  2. J. H. Greenwood and P. G. Rose, J. Mater. Sci. 9 (1974) 1809.

    Google Scholar 

  3. H. M. Hawthorne and E. Teghtsoonian, ibid. 10 (1975) 41.

    Google Scholar 

  4. H. T. Hahn and M. M. Sohi, Compos. Sci. Technol. 27 (1986) 25.

    Google Scholar 

  5. T. Norita, A. Kitano and K. Noguchi, in “Proceedings of the IVth Japan-US Conference on Composite Materials” (Technomic, 1988).

  6. H. T. Hahn and J. G. Williams, NASA technical memorandum 85834, August 1984.

  7. H. T. Hahn, M. Sohi and S. Moon, NASA contract report 3988, June 1986.

  8. S. Kumar, W. W. Adams and T. E. Helminiak, J. Reinf. Plast. 7 (1988) 108.

    Google Scholar 

  9. A. Crasto and D. P. Anderson, Proc. Amer. Soc. Comp. 5 (1990) 809.

    Google Scholar 

  10. Y. Matsuhisa, M. Washiyama, T. Hiramatsu, H. Fujino and G. Katagiri, “Proceedings of the 20th Bienniel Carbon Conference” Santa Barbara (1991) p. 226.

  11. J. G. DaSilva and D. J. Johnson, J. Mater. Sci. 19 (1984) 3201.

    Google Scholar 

  12. W. R. Jones and J.W. Johnson, Carbon 9 (1991) 645.

    Google Scholar 

  13. W. S. Williams, D. A. Steffens and R. Bacon, J. Appl. Phys. 41 (1970) 4893.

    Google Scholar 

  14. E. Tsushima, in “34th International, SAMPE Symposium”, May 1989, p. 2042.

  15. S. Fidan, Air Force Institute of Technology, MS Thesis, AFIT-GAE-AA-88D-14 (1988).

  16. K. Kubomura and N. Tsuji, in “36th SAMPE International Symposium Proceedings” (1991).

  17. A. Crasto and R. Kim, ibid. (1991) p. 1649.

  18. S. Kawabata, J. Textile Inst. 81 (1990) 432.

    Google Scholar 

  19. D. L. Vezie and W. W. Adams, J. Mater Sci. Lett. 9 (1990) 883.

    Google Scholar 

  20. M. Endo, J. Mater. Sci. 23 (1988) 598.

    Google Scholar 

  21. T. Norita, Toray, private communication.

  22. S. Kumar and R. Kim, unpublished results.

  23. A. G. Evans and W. F. Adler, Acta Metall. 26 (1978).

  24. SAMPE reference for M60J, and M40J

  25. D. Sinclair, J. Appl. Phys. 21 (1950) 380.

    Google Scholar 

  26. S. J. DeTeresa, R. S. Porter and R. J. Farris, J. Mater. Sci. 23 (1988) 1886.

    Google Scholar 

  27. S. Allen, ibid. 22 (1987) 853.

    Google Scholar 

  28. A. S. Crasto and R. Y. Kim, SAMPE Q. April (1991) 29.

  29. S. J. DeTeresa, in “14th Annual Mechanics of Composites Review” Dayton, OH (1989).

  30. A. Crasto and S. Kumar, in“35th International SAMPE Symposium” (1990) p. 318.

  31. S. Kumar, ibid. 2224.

  32. C. Herinckx, R. Perret and W. Ruland, Nature 220 (1968) 63.

    Google Scholar 

  33. Idem., Carbon 10 (1972) 711.

    Google Scholar 

  34. P. Ehrburger, J. J. Herque and J. B. Donnet, in “5th London International Carbon and Graphite Conference, 1”, (Society Industries, London, 1978).

    Google Scholar 

  35. F. L. Vogel, Carbon 14 (1976) 175.

    Google Scholar 

  36. M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain and H. A. Goldberg, “Graphite Fibres and Filament” (Springer, New York, 1988) p. 244.

    Google Scholar 

  37. D. A. Jaworske, R. D. Vannucci and R. Zinolabedini, J. Compos. Mater. 21 (1987) 580.

    Google Scholar 

  38. D. A. Jaworske, J. R. Gaier, C. C. Hung and B. A. Banks, SAMPE Q. 18 (1986) 9.

    Google Scholar 

  39. D. P. Anderson and S. Kumar, in “Annual Technical Conference Society of Plastics Engineers”, May 1990, p. 1248.

  40. M. Inagaki, J. Mater. Res. 4 (1989) 1560.

    Google Scholar 

  41. D. P. Anderson, WRDC-TR-90-4137 (1991).

  42. P. M. Dewolff, J. Polym. Sci. 60 (1962) S34.

    Google Scholar 

  43. P. Scherrer, Gottinger Nachrichten 2 (1918) 98.

    Google Scholar 

  44. R. Hosemann, Z. Physik 128 (1950) 1.

    Google Scholar 

  45. Idem, ibid. 128 (1950) 464.

    Google Scholar 

  46. D. R. Buchanan, R. I. McCullough and R. L. Miller, Acta Crystallogr. 20 (1966) 922.

    Google Scholar 

  47. W. Ruland, ibid. 22 (1967) 615.

    Google Scholar 

  48. Idem, in “Chemistry and Physics of Carbon”, edited by P. L. Walker Jr, (Marcel Dekker, New York, 1968) 1.

    Google Scholar 

  49. B. E. Warren and P. Bodenstein, Acta Crystallogr. 20 (1966) 602.

    Google Scholar 

  50. B. E. Warren, Phys. Rev. 59 (1941) 693.

    Google Scholar 

  51. G. Northolt and H. A. Stuut, J. Polym. Sci. Polym. Phys. Ed. 16 (1978) 939.

    Google Scholar 

  52. Idemitsu Fiber Bulletin Tokyo-100, Japan.

  53. K. J. Chen and R. J. Diefendorf, in “Progress in Science and Engineering of Composites“, edited by T. Hayashi, K. Kawata and S. Umekawa, ICCM-IV, Tokyo (1982) 97.

    Google Scholar 

  54. P. J. Goodhew, A. J. Clarke and J. E. Bailey, Mater. Sci. Engng 17 (1975) 3.

    Google Scholar 

  55. M. G. Northolt, J. Mater. Sci. 16 (1981) 2025.

    Google Scholar 

  56. W. H. Smith and D. H. Leeds, in “Modern Materials—Advances in Development and Applications”, Vol. 7, edited by B. W. Gonser (Academic Press, 1970) p. 166.

  57. A. Fourdeux, R. Perret and W. Ruland, J. Appl. Crystallogr. 1 (1968) 252.

    Google Scholar 

  58. S. Chwastiak and R. Bacon, Polym. Prep. (ACS) 22 (2) August (1981) 222.

    Google Scholar 

  59. R. J. Diefendorf and E. Tokarsky, Polym. Engr. Sci. 15 (1975) 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Anderson, D.P. & Crasto, A.S. Carbon fibre compressive strength and its dependence on structure and morphology. JOURNAL OF MATERIALS SCIENCE 28, 423–439 (1993). https://doi.org/10.1007/BF00357820

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00357820

Keywords

Navigation