Skip to main content

Clinical Application of NIRS

  • Chapter
  • First Online:
Application of Near Infrared Spectroscopy in Biomedicine

Part of the book series: Handbook of Modern Biophysics ((HBBT,volume 4))

Abstract

Near-infrared spectroscopy (NIRS) has several significant advantages over existing radiological techniques in clinical application. Humans do face any accumulation of deleterious x-rays. Unlike ultrasound methods, NIRS does not lead to excess heat, can differentiate between human tissues with varying optical absorption or scatter, can provide functional information, and can measure oxygenation in human tissues without the use of radioisotopes or other contrast agents. However, NIRS has some disadvantages. Quantifying changes with NIRS requires the use of magnetic resonance (MR) or computed tomography (CT) data. Converting measured optical density to Hb/Mb saturation requires the use of complex formulas. Due to their complexity, the formulas will yield inaccurate measurements arising from even small signal interferences.

As Erratum to this chapter is available at http://dx.doi.org/10.1007/978-1-4614-6252-1_10

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4614-6252-1_10

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jöbsis FF (1977) Non-invasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267

    Article  PubMed  Google Scholar 

  2. Hebden JC, Delpy DT (1997) Diagnostic imaging with light. Br J Radiol 70:S206–S214

    PubMed  Google Scholar 

  3. Watkin SL, Spencer SA, Dimmock PW, Wickramasinghe YA, Rolfe P (1999) A comparison of pulse oximetry and near infrared spectroscopy (NIRS) in the detection of hypoxaemia occurring with pauses in nasal airflow in neonates. J Clin Monit Comput 15(7–8):441–447

    Article  PubMed  CAS  Google Scholar 

  4. Chance B, Nioka S, Kent J, McCully K, Fountain M, Greenfeld R, Holtom G (1988) Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle. Anal Biochem 174(2):698–707

    Article  PubMed  CAS  Google Scholar 

  5. Cope M, Delpy DT (1988) System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infrared transillumination. Med Biol Eng Comput 26(3):289–294

    Article  PubMed  CAS  Google Scholar 

  6. Suzuki S, Takasaki S, Ozaki T, Kobayashi Y (1999) Tissue oxygenation monitor using NIR spatially resolved spectroscopy. Proc SPIE 3597:582–592

    Article  CAS  Google Scholar 

  7. Miwa M, Ueda Y, Chance B (1995) Development of time-resolved spectroscopy system for quantitative noninvasive tissue measurement. Proc SPIE 2389:142–149

    Article  Google Scholar 

  8. Duncan A, Whitlock TL, Cope M, Delpy DT (1993) Multiwavelength, wideband, intensity-modulated optical spectrometer for near-infrared spectroscopy and imaging. Proc SPIE 1888:248–257

    Article  CAS  Google Scholar 

  9. McCully KK, Landsberg L, Suarez M, Hofmann M, Posner JD (1997) Identification of peripheral vascular disease in elderly subjects using optical spectroscopy. J Gerontol A Biol Sci Med Sci 52(3):B159–B165

    Article  PubMed  CAS  Google Scholar 

  10. Boushel R, Langberg H, Olesen J, Gonzales-Alonzo J, Bülow J, Kjaer M, Scand J (2001) Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Med Sci Sports 11(4):213–222

    CAS  Google Scholar 

  11. Hamaoka T, McCully K, Chance B, Iwane H (1994) Noninvasive measures of muscle metabolism. In: Sen C, Packer L, Hanninen O (eds) Exercise and oxygen toxicity. Elsevier Science, Amsterdam, pp 481–510

    Google Scholar 

  12. Cerretelli P, Binzoni T (1997) The contribution of NMR, NIRS and their combination to the functional assessment of human muscle. Int J Sports Med 18(Suppl 4):S270–S279

    Article  PubMed  Google Scholar 

  13. Tran TK, Sailasuta N, Kreutzer U, Hurd R, Chung Y, Mole P, Kuno S, Jue T (1999) Comparative analysis of NMR and NIRS measurements of intracellular PO2 in human skeletal muscle. Am J Physiol 276(6 Pt 2):R1682–R1690

    PubMed  CAS  Google Scholar 

  14. Miura H, Araki H, Matoba H, Kitagawa K (2000) Relationship among oxygenation, myoelectric activity, and lactic acid accumulation in vastus lateralis muscle during exercise with constant work rate. Int J Sports Med 21(3):180–184

    Article  PubMed  CAS  Google Scholar 

  15. Chance B, Dait MT, Zhang C, Hamaoka T, Hagerman F (1992) Recovery from exercise-induced desaturation in the quadriceps muscles of elite competitive rowers. Am J Physiol 262(3 Pt 1):C766–C775

    PubMed  CAS  Google Scholar 

  16. Rundell KW, Nioka S, Chance B (1997) Hemoglobin/myoglobin desaturation during speed skating. Med Sci Sports Exerc 29(2):248–258

    Article  PubMed  CAS  Google Scholar 

  17. Shinohara M, Kouzaki M, Yoshihisa T, Fukunaga T (1998) Mechanomyogram from the different heads of the quadriceps muscle during incremental knee extension. Eur J Appl Physiol Occup Physiol 78(4):289–295

    Article  PubMed  CAS  Google Scholar 

  18. Colier WN, Meeuwsen IB, Degens H, Oeseburg B (1995) Determination of oxygen consumption in muscle during exercise using near-infrared spectroscopy. Acta Anaesthesiol Scand 107(Suppl):151–155

    Article  CAS  Google Scholar 

  19. Bhambhani Y, Maikala R, Buckley S (1998) Muscle oxygenation during incremental arm and leg exercise in men and women. Eur J Appl Physiol Occup Physiol 78(5):422–431

    Article  PubMed  CAS  Google Scholar 

  20. Kahn JF, Jouanin JC, Bussière JL, Tinet E, Avrillier S, Ollivier JP, Monod H (1998) The isometric force that induces maximal surface muscle deoxygenation. Eur J Appl Physiol Occup Physiol 78(2):183–187

    Article  PubMed  CAS  Google Scholar 

  21. Boushel R, Pott F, Madsen P, Rådegran G, Nowak M, Quistorff B, Secher N (1998) Muscle metabolism from near-infrared spectroscopy during rhythmic handgrip in humans. Eur J Appl Physiol Occup Physiol 79(1):41–48

    Article  PubMed  CAS  Google Scholar 

  22. McCully KK, Iotti S, Kendrick K, Wang Z, Posner JD, Leigh J Jr, Chance B (1994) Simultaneous in vivo measurements of HbO2 saturation and PCr kinetics after exercise in normal humans. J Appl Physiol 77(1):5–10

    PubMed  CAS  Google Scholar 

  23. Miura H, McCully K, Hong L, Nioka S, Chance B (2001) Regional difference of muscle oxygen saturation and blood volume during exercise determined by near infrared imaging device. Jpn J Physiol 51(5):599–606

    Article  PubMed  CAS  Google Scholar 

  24. Miura H, McCully K, Chance B (2003) Application of multiple NIRS imaging device to the exercising muscle metabolism. Spectroscopy 17:549–558

    Article  CAS  Google Scholar 

  25. Miura H, McCully K, Nioka S, Chance B (2004) Relationship between muscle architectural features and oxygenation status determined by near infrared device. Eur J Appl Physiol 91(2–3):273–278

    Article  PubMed  Google Scholar 

  26. Moritani T, Nagata A, Muro M (1982) Electromyographic manifestations of muscular fatigue. Med Sci Sports Exerc 14(3):198–202

    Article  PubMed  CAS  Google Scholar 

  27. Puente-Maestu L, Tena T, Trascasa C, Pérez-Parra J, Godoy R, García MJ, Stringer WW (2003) Training improves muscle oxidative capacity and oxygenation recovery kinetics in patients with chronic obstructive pulmonary disease. Eur J Appl Physiol 88(6):580–587

    Article  PubMed  CAS  Google Scholar 

  28. Ichimura S, Murase N, Osada T, Kime R, Homma T, Ueda C, Nagasawa T, Motobe M, Hamaoka T, Katsumura T (2006) Age and activity status affect muscle reoxygenation time after maximal cycling exercise. Med Sci Sports Exerc 38(7):1277–1281

    Article  PubMed  Google Scholar 

  29. Kime R, Karlsen T, Nioka S, Lech G, Madsen O, Sæterdal R, Im J, Chance B, Stray-Gundersen J (2003) Discrepancy between cardiorespiratory system and skeletal muscle in elite cyclists after hypoxic training. Dyn Med 2(1):4

    Article  PubMed  Google Scholar 

  30. Bhambhani Y, Tuchak C, Burnham R, Jeon J, Maikala R (2000) Quadriceps muscle deoxygenation during functional electrical stimulation in adults with spinal cord injury. Spinal Cord 38(10):630–638

    Article  PubMed  CAS  Google Scholar 

  31. Aldayel A, Muthalib M, Jubeau M, McGuigan M, Nosaka K (2010) Muscle oxygenation of vastus lateralis and medialis muscles during alternating and pulsed current electrical stimulation. Eur J Appl Physiol 111(5):779–787

    Article  PubMed  Google Scholar 

  32. Boushel R, Langberg H, Olesen J, Gonzales-Alonzo J, Bülow J, Kjaer M (2001) Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scand J Med Sci Sports 11(4):213–222

    Article  PubMed  CAS  Google Scholar 

  33. Wilson JR, Mancini DM, McCully K, Ferraro N, Lanoce V, Chance B (1989) Noninvasive detection of skeletal muscle underperfusion with near-infrared spectroscopy in patients with heart failure. Circulation 80(6):1668–1674

    Article  PubMed  CAS  Google Scholar 

  34. Mancini DM, Wilson JR, Bolinger L, Li H, Kendrick K, Chance B, Leigh JS (1994) In vivo magnetic resonance spectroscopy measurement of deoxymyoglobin during exercise in patients with heart failure: demonstration of abnormal muscle metabolism despite adequate oxygenation. Circulation 90(1):500–508

    Article  PubMed  CAS  Google Scholar 

  35. Wariar R, Gaffke JN, Haller RG, Bertocci LA (2000) A modular NIRS system for clinical measurement of impaired skeletal muscle oxygenation. J Appl Physiol 88(1):315–325

    PubMed  CAS  Google Scholar 

  36. Mancini DM, Ferraro N, Nazzaro D, Chance B, Wilson JR (1991) Respiratory muscle deoxygenation during exercise in patients with heart failure demonstrated with near-infrared spectroscopy. J Am Coll Cardiol 8(2):492–498

    Article  Google Scholar 

  37. Mancini DM, La Manca J, Donchez L, Henson D, Levine S (1996) The sensation of dyspnea during exercise is not determined by the work of breathing in patients with heart failure. J Am Coll Cardiol 28(2):391–395

    PubMed  CAS  Google Scholar 

  38. Matsen FA 3rd, Winquist RA, Krugmire RB Jr (1980) Diagnosis and management of compartmental syndromes. J Bone Joint Surg Am 62(2):286–291

    PubMed  Google Scholar 

  39. Arató E, Kürthy M, Sínay L, Kasza G, Menyhei G, Masoud S, Bertalan A, Verzár Z, Kollár L, Roth E, Jancsó G (2009) Pathology and diagnostic options of lower limb compartment syndrome. Clin Hemorheol Microcirc 41(1):1–8

    PubMed  Google Scholar 

  40. Corretti MC, Plotnick GD, Vogel RA (1995) The effects of age and gender on brachial artery endothelium-dependent vasoactivity are stimulus-dependent. Clin Cardiol 18(8):471–476

    Article  PubMed  CAS  Google Scholar 

  41. Najjar SS, Scuteri A, Lakatta EG (2005) Arterial aging: is it an immutable cardiovascular risk factor? Hypertension 46(3):454–462

    Article  PubMed  CAS  Google Scholar 

  42. Cameron JD, Dart AM (1994) Exercise training increases total systemic arterial compliance in humans. Am J Physiol 266(2 Pt 2):H693–H701

    PubMed  CAS  Google Scholar 

  43. Weitz JI, Byrne J, Clagett GP, Farkouh ME, Porter JM, Sackett DL, Strandness DE Jr, Taylor LM (1996) Diagnosis and treatment of chronic arterial insufficiency of the lower extremities: a critical review. Circulation 94(11):3026–3049

    Article  PubMed  CAS  Google Scholar 

  44. Komiyama T, Shigematsu H, Yasuhara H, Muto T (1994) An objective assessment of intermittent claudication by near-infrared spectroscopy. Eur J Vasc Surg 8(3):294–296

    Article  PubMed  CAS  Google Scholar 

  45. Kooijman HM, Hopman MT, Colier WN, van der Vliet JA, Oeseburg B (1997) Near infrared spectroscopy for noninvasive assessment of claudication. J Surg Res 72(1):1–7

    Article  PubMed  CAS  Google Scholar 

  46. Miura H, McCully K, Hong L, Nioka S, Chance B (2000) Exercise-induced changes in oxygen status in calf muscle of elderly subjects with peripheral vascular disease using functional near infrared imaging machine. Ther Res 21(6):79–84

    Google Scholar 

  47. Miura H, Okumura N (2010) A novel approach to evaluate the vessel function determined by near infrared spectroscopy. Adv Exp Med Biol 662:467–471

    Article  PubMed  Google Scholar 

  48. Tousoulis D, Davies G, Tentolouris C, Crake T, Toutouzas P (1997) Inhibition of nitric oxide synthesis during the cold pressor test in patients with coronary artery disease. Am J Cardiol 79(12):1676–1679

    Article  PubMed  CAS  Google Scholar 

  49. Miura H, Takahashi Y, Okumura N (2011) Response of peripheral vascular system to cold pressor test measured by near infrared spectroscopy. J Jpn Coll Angiol 51:255–257

    Google Scholar 

  50. Binzoni T, Quaresima V, Ferrari M, Hiltbrand E, Cerretelli P (2000) Human calf microvascular compliance measured by near-infrared spectroscopy. J Appl Physiol 88(2):369–372

    PubMed  CAS  Google Scholar 

  51. Wyatt JS (1993) Near-infrared spectroscopy in asphyxial brain injury. Clin Perinatol 20(2):369–378

    PubMed  CAS  Google Scholar 

  52. Elwell CE, Owen-Reece H, Cope M, Wyatt JS, Edwards AD, Delpy DT, Reynolds EO (1993) Measurement of adult cerebral haemodynamics using near infrared spectroscopy. Acta Neurochir Suppl 59:74–80

    PubMed  CAS  Google Scholar 

  53. Wyatt JS, Peebles DM (1993) Near infrared spectroscopy and intrapartum fetal surveillance. In: Spencer JAD (ed) Intrapartum fetal surveillance. RCOG Press, London, pp 329–345

    Google Scholar 

  54. Román GC (1987) Senile dementia of the Binswanger type: a vascular form of dementia in the elderly. JAMA 258(13):1782–1788

    Article  PubMed  Google Scholar 

  55. Yoshikawa T, Murase K, Oku N, Kitagawa K, Imaizumi M, Takasawa M, Nishikawa T, Matsumoto M, Hatazawa J, Hori M (2003) Statistical image analysis of cerebral blood flow in vascular dementia with small-vessel disease. J Nucl Med 44(4):505–511

    PubMed  Google Scholar 

  56. Tak S, Yoon SJ, Jang J, Yoo K, Jeong Y, Ye JC (2011) Quantitative analysis of hemodynamic and metabolic changes in subcortical vascular dementia using simultaneous near-infrared spectroscopy and fMRI measurements. Neuroimage 55(1):176–184

    Article  PubMed  Google Scholar 

  57. Bhatia R, Hampton T, Malde S, Kandala NB, Muammar M, Deasy N, Strong A (2007) The application of near-infrared oximetry to cerebral monitoring during aneurysm embolization: a comparison with intraprocedural angiography. J Neurosurg Anesthesiol 19(2):97–104

    Article  PubMed  Google Scholar 

  58. Murkin JM, Arango M (2009) Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br J Anaesth 103(Suppl 1):i3–i13

    Article  PubMed  Google Scholar 

  59. Edmonds HL Jr, Ganzel BL, Austin EH III (2004) Cerebral oximetry for cardiac and vascular surgery. Semin Cardiothorac Vasc Anesth 8(2):147–166

    Article  PubMed  Google Scholar 

  60. Slater JP, Guarino T, Stack J, Vinod K, Bustami RT, Brown JM 3rd, Rodriguez AL, Magovern CJ, Zaubler T, Freundlich K, Parr GV (2009) Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg 87(1):36–45

    Article  PubMed  Google Scholar 

  61. Moritz S, Kasprzak P, Arlt M, Taeger K, Metz C (2007) Accuracy of cerebral monitoring in detecting cerebral ischemia during carotid endarterectomy: a comparison of transcranial Doppler sonography, near-infrared spectroscopy, stump pressure, and somatosensory evoked potentials. Anesthesiology 107(4):563–569

    Article  PubMed  Google Scholar 

  62. Yamamoto K, Miyata T, Nagawa H (2007) Good correlation between cerebral oxygenation measured using near infrared spectroscopy and stump pressure during carotid clamping. Int Angiol 26(3):262–265

    PubMed  CAS  Google Scholar 

  63. Mille T, Tachimiri ME, Klersy C, Ticozzelli G, Bellinzona G, Blangetti I, Pirrelli S, Lovotti M, Odero A (2004) Near infrared spectroscopy monitoring during carotid endarterectomy: which threshold value is critical? Eur J Vasc Endovasc Surg 27(6):646–650

    Article  PubMed  CAS  Google Scholar 

  64. Kirkpatrick PJ, Lam J, Al-Rawi P, Smielewski P, Czosnyka M (1998) Defining thresholds for critical ischemia by using near-infrared spectroscopy in the adult brain. J Neurosurg 89(3):389–394

    Article  PubMed  CAS  Google Scholar 

  65. Hayashida M, Kin N, Tomioka T, Orii R, Sekiyama H, Usui H, Chinzei M, Hanaoka K (2004) Cerebral ischaemia during cardiac surgery in children detected by combined monitoring of BIS and near-infrared spectroscopy. Br J Anaesth 92(5):662–669

    Article  PubMed  CAS  Google Scholar 

  66. Yamamoto A, Yokoyama N, Yonetani M, Uetani Y, Nakamura H, Nakao H (2003) Evaluation of change of cerebral circulation by SpO2 in preterm infants with apneic episodes using near infrared spectroscopy. Pediatr Int 45(6):661–664

    Article  PubMed  Google Scholar 

  67. Ancora G, Maranella E, Locatelli C, Pierantoni L, Faldella G (2009) Changes in cerebral hemodynamics and amplitude integrated EEG in an asphyxiated newborn during and after cool cap treatment. Brain Dev 31(6):442–444

    Article  PubMed  Google Scholar 

  68. Frangioni JV (2008) New technologies for human cancer imaging. J Clin Oncol 26(24):4012–4021

    Article  PubMed  Google Scholar 

  69. Tromberg BJ, Cerussi A, Shah N, Compton M, Durkin A, Hsiang D, Butler J, Mehta R (2005) Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy. Breast Cancer Res 7(6):279–285

    Article  PubMed  Google Scholar 

  70. Kondepati VR, Heise HM, Backhaus J (2008) Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy. Anal Bioanal Chem 390(1):125–139

    Article  PubMed  CAS  Google Scholar 

  71. Kerlikowske K, Barclay J (1997) Outcomes of modern screening mammography. J Natl Cancer Inst Monogr 22:105–111

    PubMed  Google Scholar 

  72. Hindle WH, Davis L, Wright D (1999) Clinical value of mammography for symptomatic women 35 years of age and younger. Am J Obstet Gynecol 180(6 Pt 1):1484–1490

    Article  PubMed  CAS  Google Scholar 

  73. Baines CJ, Dayan R (1999) A tangled web: factors likely to affect the efficacy of screening mammography. J Natl Cancer Inst 91(10):833–838

    Article  PubMed  CAS  Google Scholar 

  74. Laya MB, Larson EB, Taplin SH, White E (1996) Effect of estrogen replacement therapy on the specificity and sensitivity of screening mammography. J Natl Cancer Inst 88(10):643–649

    Article  PubMed  CAS  Google Scholar 

  75. Nioka S, Miwa M, Orel S, Shnall M, Haida M, Zhao S, Chance B (1994) Optical imaging of human breast cancer. Adv Exp Med Biol 361:171–179

    Article  PubMed  CAS  Google Scholar 

  76. Hsiang D, Shah N, Yu H, Su MY, Cerussi A, Butler J, Baick C, Mehta R, Nalcioglu O, Tromberg B (2005) Coregistration of dynamic contrast enhanced MRI and broadband diffuse optical spectroscopy for characterizing breast cancer. Technol Cancer Res Treat 4(5):549–558

    PubMed  Google Scholar 

  77. Carpenter CM, Pogue BW, Jiang S, Dehghani H, Wang X, Paulsen KD, Wells WA, Forero J, Kogel C, Weaver JB, Poplack SP, Kaufman PA (2007) Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatterer size. Opt Lett 32(8):933–935

    Article  PubMed  Google Scholar 

  78. Kukreti S, Cerussi AE, Tanamai W, Hsiang D, Tromberg BJ, Gratton E (2010) Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy. Radiology 254(1):277–284

    Article  PubMed  Google Scholar 

  79. Fletcher SW (1997) Breast cancer screening among women in their forties: an overview of the issues. J Natl Cancer Inst Monogr 22:5–9

    PubMed  Google Scholar 

  80. McIntosh LM, Summers R, Jackson M, Mantsch HH, Mansfield JR, Howlett M, Crowson AN, Toole JW (2001) Towards non-invasive screening of skin lesions by near-infrared spectroscopy. J Invest Dermatol 116(1):175–181

    Article  PubMed  CAS  Google Scholar 

  81. Goldenberg RL, Hauth JC, Andrews WW (2000) Intrauterine infection and preterm delivery. N Engl J Med 342(20):1500–1507

    Article  PubMed  CAS  Google Scholar 

  82. Hornung R, Spichtig S, Baños A, Stahel M, Zimmermann R, Wolf M (2011) Frequency-domain near-infrared spectroscopy of the uterine cervix during regular pregnancies. Lasers Med Sci 26(2):205–212

    Article  PubMed  Google Scholar 

  83. Polk HC Jr (1974) The prophylaxis of infection following operative procedures. J Ky Med Assoc 72(3):139–143

    PubMed  Google Scholar 

  84. Hopf HW, Hunt TK, West JM, Blomquist P, Goodson WH 3rd, Jensen JA, Jonsson K, Paty PB, Rabkin JM, Upton RA, von Smitten K, Whitney JD (1997) Wound tissue oxygen tension predicts the risk of wound infection in surgical patients. Arch Surg 132(9):997–1004

    Article  PubMed  CAS  Google Scholar 

  85. Knighton DR, Halliday B, Hunt TK (1984) Oxygen as an antibiotic: the effect of inspired oxygen on infection. Arch Surg 119(2):199–204

    Article  PubMed  CAS  Google Scholar 

  86. Govinda R, Kasuya Y, Bala E, Mahboobi R, Devarajan J, Sessler DI, Akça O (2010) Early postoperative subcutaneous tissue oxygen predicts surgical site infection. Anesth Analg 111(4):946–952

    PubMed  Google Scholar 

  87. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis: the ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 101(6):1644–1655

    Article  PubMed  CAS  Google Scholar 

  88. Doerschug KC, Delsing AS, Schmidt GA, Haynes WG (2007) Impairments in microvascular reactivity are related to organ failure in human sepsis. Am J Physiol Heart Circ Physiol 293(2):H1065–H1071

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miura Hajime Ph.D. .

Editor information

Editors and Affiliations

Appendices

Problem

  1. 4.1

    How does NIRS help us better understand the relationship between vasculature and tissue function?

Further Reading

Boushel R, Langberg H, Olesen J, Gonzales-Alonzo J, Bülow J, Kjaer M (2001) Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scand J Med Sci Sports 11(4):213–222

Hebden JC, Delpy DT (1997) Diagnostic imaging with light. Br J Radiol 70:S206–S214

Kondepati VR, Heise HM, Backhaus J (2008) Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy. Anal Bioanal Chem 390(1):125–139

Murkin JM, Arango M (2009) Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br J Anaesth 103(Suppl 1):i3–i13

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hajime, M. (2013). Clinical Application of NIRS. In: Jue, T., Masuda, K. (eds) Application of Near Infrared Spectroscopy in Biomedicine. Handbook of Modern Biophysics, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-6252-1_4

Download citation

Publish with us

Policies and ethics