Skip to main content

Toward a Theory of Information Processing in Auditory Cortex

  • Chapter
  • First Online:
The Human Auditory Cortex

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 43))

Abstract

The primary goal of auditory science is to provide a full account of how humans and animals hear sounds of all kinds: the sounds of everyday life, environmental sounds, speech, and music. A comprehensive, neurally grounded theory of hearing is needed that explains precisely how we hear what we hear. This chapter discusses cortical function in the context of such a theory. The first half of the chapter (Sections 13.2 and 13.3) outlines the basic structure of hearing (what is to be explained) and the various aspects of neural information processing that are needed for adequate explanations of auditory function (the terms of the explanations). The second half (Section 13.4) lists some of the fundamental outstanding experimental and theoretical problems that need to be solved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeles, M. (2003). Synfire chains. In M. A. Arbi (Ed.), The handbook of brain theory and neural networks, 2nd ed. (pp. 1143–1146). Cambridge, MA: MIT Press.

    Google Scholar 

  • Abeles, M., Bergman, H., Margalit, E., & Vaadia, E. (1993). Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. Journal of Neurophysiology, 70, 1629–1638.

    PubMed  CAS  Google Scholar 

  • Ahissar, M., & Hochstein, S. (2004). The reverse hierarchy theory of visual perceptual learning. Trends in Cognitive Sciences, 8, 457–464.

    Google Scholar 

  • Ando, Y., & Cariani, P. (2009). Auditory and visual sensations. New York: Springer.

    Google Scholar 

  • Barlow, H. B. (1961). Possible principles underlying the transformation of sensory messages. In W. A. Rosenbluth (Ed.), Sensory communication (pp. 217–234). Cambridge, MA: MIT Press.

    Google Scholar 

  • von Bekesy, G. (1967). Sensory inhibition. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Bendor, D., & Wang, X. (2005). The neuronal representation of pitch in primate auditory cortex. Nature, 436, 1161–1165.

    Article  PubMed  CAS  Google Scholar 

  • Bigand, E. (1993). Contributions of music to research on human auditory cognition. In S. McAdams & E. Bigand (Eds.), Thinking in sound: The cognitive psychology of human audition (pp. 231–277). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Bitterman, Y., Mukamel, R., Malach, R., Fried, I., & Nelken, I. (2008). Ultra-fine frequency tuning revealed in single neurons of human auditory cortex. Nature, 451, 197–201.

    Article  PubMed  CAS  Google Scholar 

  • Bizley, J. K., & King, A. J. (2008). Visual-auditory spatial processing in auditory cortical neurons. Brain Research, 1242, 24–36.

    Article  PubMed  CAS  Google Scholar 

  • Bizley, J. K., & Walker, K. M. M. (2010). Sensitivity and selectivity of neurons in the auditory cortex to the pitch, timbre, and location of sounds. The Neuroscientist, 16, 453–469.

    Article  PubMed  Google Scholar 

  • Bizley, J. K., Walker K. M., King, A. J., & Schnupp, J. W. (2010). Neural ensemble codes for stimulus periodicity in auditory cortex. Journal of Neuroscience, 30(14), 5078–5091.

    Article  PubMed  CAS  Google Scholar 

  • Boomsliter, P., & Creel, W. (1962). The long pattern hypothesis in harmony and hearing. Journal of Music Theory, 5, 2–31.

    Article  Google Scholar 

  • Boring, E. G. (1942). Sensation and perception in the history of experimental psychology. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Bregman, A. S. (1990). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press.

    Google Scholar 

  • Brugge, J. F., Reale, R. A., & Hind, J. E. (1996). The structure of spatial receptive fields of neurons in primary auditory cortex of the cat. Journal of Neuroscience, 16, 4420–4437.

    PubMed  CAS  Google Scholar 

  • Bullock, T. H. (1992). Introduction to induced rhythms: A widespread heterogeneous class of oscillations. In E. Basar & T. H. Bullock (Eds.), Induced rhythms in the brain (pp. 1–26). Boston: Birkhauser.

    Google Scholar 

  • Buzsáki, G. (2006). Rhythms of the brain. New York: Oxford University Press.

    Book  Google Scholar 

  • Cariani, P. (1995). As if time really mattered: Temporal strategies for neural coding of sensory information. Communication and Cognition–Artificial Intelligence (CC-AI), 12, 161–229. Reprinted in K. Pribram (Ed.), Origins: Brain and self-organization (pp. 208–252). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Cariani, P. (1999). Temporal coding of periodicity pitch in the auditory system: An overview. Neural Plasticity, 6, 147–172.

    Article  PubMed  CAS  Google Scholar 

  • Cariani, P. (2000). Regenerative process in life and mind. In J. L. R. Chandler & G. Van de Vijver (Eds.), Closure: Emergent organizations and their dynamics. Annals of the New York Academy of Sciences, 901, 26–34.

    Google Scholar 

  • Cariani, P. (2001a). Neural timing nets. Neural Networks, 14, 737–753.

    Article  PubMed  CAS  Google Scholar 

  • Cariani, P. (2001b). Temporal coding of sensory information in the brain. Acoustic Science & Technology, 22, 77–84.

    Article  Google Scholar 

  • Cariani, P. (2002). Temporal codes, timing nets, and music perception. Journal of New Music Research, 30, 107–136.

    Article  Google Scholar 

  • Cariani, P. (2004). Temporal codes and computations for sensory representation and scene analysis. IEEE Transactions on Neural Networks, Special Issue on Temporal Coding for Neural Information Processing, 15, 1100–1111.

    Google Scholar 

  • Cariani, P., & Delgutte, B. (1996). Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. II. Pitch shift, pitch ambiguity, phase-invariance, pitch circularity, and the dominance region for pitch. Journal of Neurophysiology, 76, 1698–1734.

    PubMed  CAS  Google Scholar 

  • Carr, C. E. (1993). Processing of temporal information in the brain. Annual Review of Neuroscience, 16, 223–243.

    Article  PubMed  CAS  Google Scholar 

  • Chait, M., Poeppel, D., de Cheveigne, A., & Simon, J. Z. (2007). Processing asymmetry of transitions between order and disorder in human auditory cortex. Journal of Neuroscience, 27(19), 5207–5214.

    Article  PubMed  CAS  Google Scholar 

  • Chase, S. M., & Young, E. D. (2006). Spike-timing codes enhance the representation of multiple simultaneous sound-localization cues in the inferior colliculus. Journal of Neuroscience, 26, 3889–3898.

    Article  PubMed  CAS  Google Scholar 

  • Chechik, G., Anderson, M. J., Bar-Yosef, O., Young, E. D., Tishby, N., & Nelken, I. (2006). I. Reduction of information redundancy in the ascending auditory pathway. Neuron, 51, 359–368.

    Article  PubMed  CAS  Google Scholar 

  • Cherry, C. (1961). Two ears–but one world. In W. A. Rosenblith (Ed.). Sensory communication (pp. 99–117). New York: MIT Press/John Wiley & Sons.

    Google Scholar 

  • Cherry, C. (1966). On human communication. Cambridge, MA: MIT Press.

    Google Scholar 

  • de Cheveigné, A. (2005). Pitch perception models. In C. J. Plack, A. J. Oxenham, R. Fay & A. N. Popper (Eds.), Pitch: Neural coding and perception (pp. 169–233). New York: Springer.

    Google Scholar 

  • Chow, K. L. (1951). Numerical estimates of the auditory central nervous system of the rhesus monkey. Journal of Comparative Neurology, 95, 159–175.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, S., & Thiran, A. B. (2004) Auditory neglect: What and where in auditory space. Cortex, 40(2), 291–300.

    Article  PubMed  Google Scholar 

  • Damasio, A. R., & Damasio, H. (1994). Cortical systems for retrieval of concrete knowledge: The convergence zone framework. In C. Koch & J. L. Davis (Eds.), Large-scale neuronal theories of the brain (pp. 61–74), Cambridge, MA: MIT Press.

    Google Scholar 

  • Delgutte, B., & Kiang, N. Y. S. (1984). Speech coding in the auditory nerve: I. Vowel-like sounds. Journal of the Acoustical Society of America, 75(3), 866–878.

    Article  PubMed  CAS  Google Scholar 

  • Demany, L., & Semal, C. (2007). The role of memory in auditory perception. In W. A. Yost, A. N. Popper, & R. R. Fay (Eds.), Auditory perception of sound sources (pp. 77–113). New York: Springer.

    Chapter  Google Scholar 

  • DeWeese, M. R., Hromadka, T., & Zador, A. M. (2005). Reliability and representational bandwidth in the auditory cortex. Neuron, 48, 479–488.

    Article  PubMed  CAS  Google Scholar 

  • Eggermont, J. J. (1990). The correlative brain: Theory and experiment in neural interaction. Berlin: Springer.

    Google Scholar 

  • Emmers, R. (1981). Pain: A spike-interval coded message in the brain. New York: Raven Press.

    Google Scholar 

  • Evans, E. F., Pratt, S. R., Spenner, H., & Cooper, N. P. (1992). Comparisons of physiological and behavioural properties: Auditory frequency selectivity. In Y. Cazals, K. Horner, & L. Demany (Eds.), Auditory physiology and perception, Vol. 83 (pp. 159–169). Oxford: Pergamon.

    Google Scholar 

  • Fishman, Y. I., Reser, D. H., Arezzo, J. C., & Steinschneider, M. (2000). Complex tone processing in primary auditory cortex of the awake monkey. I. Neural ensemble correlates of roughness. Journal of the Acoustical Society of America, 108, 235–246.

    Article  PubMed  CAS  Google Scholar 

  • Fritz, J., Shamma, S., Elhilali, M., & Klein, D. (2003). Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neuroscience, 6, 1216–1223.

    Article  PubMed  CAS  Google Scholar 

  • Fritz, J., Mishkin, M., & Saunders, R. C. (2005). In search of an auditory engram. Proceedings of the National Academy of Sciences of the USA, 102, 9359–9364.

    Article  PubMed  CAS  Google Scholar 

  • 6–Furukawa, S., Xu, L., & Middlebrooks, J. C. (2000). Coding of sound-source location by ensembles of cortical neurons. Journal of Neuroscience, 20, 1216–1228.

    Google Scholar 

  • Garde, M. M., & Cowey, A. (2000). “Deaf hearing”: Unacknowledged detection of auditory stimuli in a patient with cerebral deafness. Cortex, 36(1), 71–79.

    Article  PubMed  CAS  Google Scholar 

  • Greene, P. H. (1962). On looking for neural networks and “cell assemblies” that underlie behavior. I. Mathematical model. II. Neural realization of a mathematical model. Bulletin of Mathematical Biophysics, 24, 247–275, 395–411.

    Google Scholar 

  • Handel, S. (1989). Listening: An introduction to the perception of auditory events. Cambridge, MA: MIT Press.

    Google Scholar 

  • Heil, P. (1997). Auditory cortical onset responses revisited. I. First-spike timing. Journal of Neurophysiology, 77, 2616–2641.

    PubMed  CAS  Google Scholar 

  • Hromadka, T., DeWeese, M. R., & Zador, A. M. (2008). Sparse representation of sounds in the unanesthetized auditory cortex. Public Library of Science (PLoS) Biology, 6, e16.

    Google Scholar 

  • Huetz, C., Gourevitch, B., & Edeline, J. M. (2011). Neural codes in the thalamocortical auditory system: From artificial stimuli to communication sounds. Hearing Research, 271(1–2), 147–158.

    Article  PubMed  Google Scholar 

  • Huron, D. B. (2006). Sweet anticipation: Music and the psychology of expectation. Cambridge, MA: MIT Press.

    Google Scholar 

  • Izhikevich, E. M. (2006). Polychronization: Computation with spikes. Neural Computation, 18, 245–282.

    Article  PubMed  Google Scholar 

  • Jeffress, L. A. (1948). A place theory of sound localization. Journal of Comparative and Physiological Psychology, 41, 35–39.

    Article  PubMed  CAS  Google Scholar 

  • Kayser, C., Petkov, C. I., & Logothetis, N. K. (2008). Visual modulation of neurons in auditory cortex. Cerebral Cortex, 18, 1560–1574.

    Article  PubMed  Google Scholar 

  • Koch, C. (2004). The quest for consciousness: A neurobiological approach. Denver: Roberts & Co.

    Google Scholar 

  • Köhler, W. (1947). Gestalt psychology: An introduction to new concepts in modern psychology. New York: Liveright.

    Google Scholar 

  • Kowalski, N., Depireux, D. A., & Shamma, S. A. (1996). Analysis of dynamic spectra in ferret primary auditory cortex. I. Characteristics of single-unit responses to moving ripple spectra. Journal of Neurophysiology, 76, 3503–3523.

    PubMed  CAS  Google Scholar 

  • Lamme, V. A. (2006). Towards a true neural stance on consciousness. Trends in Cognitive Sciences, 10, 494–501.

    Article  PubMed  Google Scholar 

  • Laurent, G. (2006). Shall we even understand the fly’s brain? In J. L. van Hemmen & T. J. Sejnowski (Eds.), 23 problems in systems neuroscience (pp. 3–21). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Lee, K. M., Skoe, E., Kraus, N., & Ashley, R. (2009). Selective subcortical enhancement of musical intervals in musicians. Journal of Neuroscience, 29, 5832–5840.

    Article  PubMed  CAS  Google Scholar 

  • Licklider, J. C. R. (1959). Three auditory theories. In S. Koch (Ed.), Psychology: A study of a science. Study I. Conceptual and systematic, Vol. I: Sensory, perceptual, and physiological formulations (pp. 41–144). New York: McGraw-Hill.

    Google Scholar 

  • von der Malsberg, C. (1994). The correlation theory of brain function. In E. Domany, J. L. van Hemmen, & K. Schulten (Eds.), Models of neural networks II: Temporal aspects of coding and information processing in biological systems (pp. 95–120). New York: Springer.

    Google Scholar 

  • Marr, D. (1982). Vision: A computational approach. San Francisco: Freeman & Co.

    Google Scholar 

  • McAdams, S., & Giordano, B. L. (2009). The perception of musical timbre. In S. Hallam, I. Cross, & M. Thaut (Eds.), The Oxford handbook of music psychology (pp. 72–80). Oxford: Oxford University Press.

    Google Scholar 

  • McCulloch, W. S. (1951). Why the mind is in the head. In L. A. Jeffress (Ed.), Cerebral mechanisms of behavior (pp. 42–111). New York: John Wiley & Sons.

    Google Scholar 

  • McDermott, J., & Oxenham, A. (2008) Music perception, pitch, and the auditory system. Current Opinion in Neurobiology, 18, 452–463.

    Article  PubMed  CAS  Google Scholar 

  • Mesulam, M. M. (2000). Principles of behavioral and cognitive neurology. New York: Oxford University Press.

    Google Scholar 

  • Miller, L. M., Escabi, M. A., Read, H. L., & Schreiner, C. E. (2001). Functional convergence of response properties in the auditory thalamocortical system. Neuron, 32, 151–160.

    Article  PubMed  CAS  Google Scholar 

  • Miller, L. M., Escabí, M. A., Read, H. L., & Schreiner, C. E. (2002). Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex. Journal of Neurophysiology, 87, 516–527.

    PubMed  Google Scholar 

  • Monahan, P. J., & Idsardi, W. J. (2010). Auditory sensitivity to formant ratios: Toward an account of vowel normalization. Language and Cognitive Processes, 25(6), 808–839.

    Article  PubMed  Google Scholar 

  • Moore, B. C. (1973). Frequency difference limens for short-duration tones. Journal of the Acoustical Society of America, 54, 610–619.

    Article  PubMed  CAS  Google Scholar 

  • Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118, 2544–2590.

    Article  PubMed  Google Scholar 

  • Nelken, I., Fishbach, A., Las, L., Ulanovsky, N., & Farkas, D. (2003). Primary auditory cortex of cats: Feature detection or something else? Biological Cybernetics, 89, 397–406.

    Article  PubMed  Google Scholar 

  • Palmer, A. R. (1992). Segregation of the responses to paired vowels in the auditory nerve of the guinea pig using autocorrelation. In M. E. H. Schouten (Ed.), The auditory processing of speech (pp. 115–124). Berlin: Mouton de Gruyter.

    Chapter  Google Scholar 

  • Panzeri, S., Brunel, N., Logothetis, N. K., & Kayser, C. (2009). Sensory neural codes using multiplexed temporal scales. Trends in Neurosciences, 33(3), 111–120.

    Google Scholar 

  • Patel, A. D. (2008). Music, language and the brain. Oxford: Oxford University Press.

    Google Scholar 

  • Patterson, R. D., Uppenkamp, S., Johnsrude, I. S., & Griffiths, T. D. (2002). The processing of temporal pitch and melody information in auditory cortex. Neuron, 36, 767–776.

    Article  PubMed  CAS  Google Scholar 

  • Penagos, H., Melcher, J. R., & Oxenham, A. J. (2004). A neural representation of pitch salience in nonprimary human auditory cortex revealed with functional magnetic resonance imaging. Journal of Neuroscience, 24, 6810–6815.

    Article  PubMed  CAS  Google Scholar 

  • Perkell, D. H., & Bullock T. H. (1968). Neural coding. Neurosciences Research Program Bulletin, 6, 221–348.

    Google Scholar 

  • Phillips, D. P., Semple, M. N., Calford, M. B., & Kitzes, L. M. (1994). Level-dependent representation of stimulus frequency in cat primary auditory cortex. Experimental Brain Research, 102, 210–226.

    Article  CAS  Google Scholar 

  • Phillips, D. P., Hall, S. E., & Boehnke, S. E. (2002). Central auditory onset responses, and temporal asymmetries in auditory perception. Hearing Research, 167, 192–205.

    Article  PubMed  CAS  Google Scholar 

  • Reprinted in W. S. McCulloch (Ed.), Embodiments of mind (pp. 46–66). Cambridge, MA: MIT Press, 1965.Pitts, W., & McCulloch, W. S. (1947). How we know universals: The perception of auditory and visual forms. Bulletin of Mathematical Biophysics, 9, 127–147. Reprinted in W. S. McCulloch (Ed.), Embodiments of mind (pp. 46–66). Cambridge, MA: MIT Press, 1965.

    Article  PubMed  CAS  Google Scholar 

  • Pollen, D. A. (2008). Fundamental requirements for primary visual perception. Cerebral Cortex, 18, 1991–1998.

    Article  PubMed  Google Scholar 

  • Rauschecker, J. P., & Tian, B. (2004). Processing of band-passed noise in the lateral auditory belt cortex of the rhesus monkey. Journal of Neurophysiology, 91, 2578–2589.

    Article  PubMed  Google Scholar 

  • Rieke, F., Warland, D., de Ruyter van Steveninck, R., & Bialek, W. (1997). Spikes: Exploring the neural code. Cambridge, MA: MIT Press.

    Google Scholar 

  • Sadagopan, S., & Wang, X. (2008). Level invariant representation of sounds by populations of neurons in primary auditory cortex. Journal of Neuroscience, 28(13), 3415–3426.

    Article  PubMed  CAS  Google Scholar 

  • Schreiner, C. E., & Langner, G. (1988). Coding of temporal patterns in the central auditory nervous system. In G. Edelman (Ed.), Auditory function: Neurobiological bases of hearing (pp. 337–361). New York: John Wiley & Sons.

    Google Scholar 

  • Schroeder, C. E., & Lakatos, P. (2009). Low-frequency neuronal oscillations as instruments of sensory selection. Trends in Neurosciences, 32(1), 9–17.

    Article  PubMed  CAS  Google Scholar 

  • Shamma, S. A., & Micheyl, C. (2010). Behind the scenes of auditory perception. Current Opinion in Neurobiology, 20, 361–366.

    Article  PubMed  CAS  Google Scholar 

  • Shamma, S. A., Elhilali, M., & Micheyl, C. (2010). Temporal coherence and attention in auditory scene analysis. Trends in Neurosciences, 34(3), 114–123.

    Article  PubMed  CAS  Google Scholar 

  • 1–Singer, W. (2003). Synchronization, binding, and expectancy. In M. A. Arbib (Ed.). The handbook of brain theory and neural networks, 2nd ed. (pp. 1136–1143). Cambridge, MA: MIT Press.

    Google Scholar 

  • Snyder, B. (2000). Music and memory. Cambridge, MA: MIT Press.

    Google Scholar 

  • Snyder, B. (2009). Memory for music. In S. Hallam, I. Cross, & M. Thaut (Eds.), The Oxford handbook of music psychology (pp. 171–183). Oxford: Oxford University Press.

    Google Scholar 

  • Thatcher, R. W., & John, E. R. (1977). Foundations of cognitive processes. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Tian, B., & Rauschecker, J. P. (1994). Processing of frequency-modulated sounds in the cat’s anterior auditory field. Journal of Neurophysiology, 71, 1959–1975.

    PubMed  CAS  Google Scholar 

  • Tononi, G., & Koch, C. (2008). The neural correlates of consciousness: An update. Annals of the New York Academy of Sciences, 1124, 239–61.

    Article  PubMed  Google Scholar 

  • Trainor, L. J., & Zatorre, R. J. (2009). The neurobiological basis of musical expectations. In S. Hallam, I. Cross, & M. Thaut (Eds.), The Oxford handbook of music psychology (pp. 171–183). Oxford: Oxford University Press.

    Google Scholar 

  • Tramo, M. J., Cariani, P. A., Koh, C. K., Makris, N., & Braida, L. D. (2005). Neurophysiology and neuroanatomy of pitch perception: Auditory cortex. Annals of the New York Academy of Sciences, 1060, 148–174.

    Article  PubMed  Google Scholar 

  • Tzounopoulos, T., Kim, Y., Oertel, D., & Trussell, L. O. (2004). Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nature Neuroscience, 7, 719–725.

    Article  PubMed  CAS  Google Scholar 

  • Ulanovsky, N., Las, L., Farkas, D., & Nelken, I. (2004). Multiple time scales of adaptation in auditory cortex neurons. Journal of Neuroscience, 24, 10440–10453.

    Article  PubMed  CAS  Google Scholar 

  • Van Rullen, R., & Thorpe, S. J. (2001). Rate coding versus temporal order coding: What the retinal ganglion cells tell the visual cortex. Neural Computation, 13, 1255–1283.

    Article  PubMed  CAS  Google Scholar 

  • Villa, A. E. (2000). Empirical evidence about temporal structure in multi-unit recordings. In R. Miller (Ed.), Time and the brain (pp. 1–52). Amsterdam: Harwood.

    Chapter  Google Scholar 

  • Wallace, M. N., Shackleton, T. M., & Palmer, A. R. (2002). Phase-locked responses to pure tones in the primary auditory cortex. Hearing Research, 172, 160–171.

    Article  PubMed  Google Scholar 

  • Wang, D. (2002). The time dimension for neural computation (pp. 1–40). Columbus, OH: Center for Cognitive Science and the Department of Computer & Information Science, The Ohio State University.

    Google Scholar 

  • Wang, X. (2007). Neural coding strategies in auditory cortex. Hearing Research, 229, 81–93.

    Article  PubMed  Google Scholar 

  • Warren, J. D., Uppenkamp, S., Patterson, R. D., & Griffiths, T. D. (2003). Separating pitch chroma and pitch height in the human brain. Proceedings of the National Academy of Sciences of the USA, 100, 10038–10042.

    Article  PubMed  CAS  Google Scholar 

  • Winer, J. A. (1992). The functional architecture of the medial geniculate body and the primary auditory cortex. In D. B. Webster, A. N. Popper, & R. R. Fay (Eds.), The mammalian auditory pathway: Neuroanatomy (pp. 222–286). New York: Springer.

    Chapter  Google Scholar 

  • Winkler, I., Denham, S. L., & Nelken, I. (2009). Modeling the auditory scene: Predictive regularity representations and perceptual objects. Trends in Cognitive Sciences, 13, 532–540.

    Article  PubMed  Google Scholar 

  • Wiskott, L. (2006). How does our visual system achieve shift invariance? In J. L. van Hemmen (Ed.), 23 problems in systems neuroscience (pp. 322–340). Oxford: Oxford University Press.

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from the Air Force Office for Sponsored Research (FA9550-09-1-0119 to P. C.) and the National Institutes for Health (R01 DC05216 and R01 07657 to C. M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Cariani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cariani, P., Micheyl, C. (2012). Toward a Theory of Information Processing in Auditory Cortex. In: Poeppel, D., Overath, T., Popper, A., Fay, R. (eds) The Human Auditory Cortex. Springer Handbook of Auditory Research, vol 43. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2314-0_13

Download citation

Publish with us

Policies and ethics