Skip to main content

The Functional Architecture of the Medial Geniculate Body and the Primary Auditory Cortex

  • Chapter
The Mammalian Auditory Pathway: Neuroanatomy

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 1))

Abstract

A signal achievement in contemporary neurobiology is the ability to trace the successive synaptic links along which neural signals travel, from receptor to cerebral cortex. This knowledge has been instrumental to understanding the nature and degree of signal transformation at various central targets, and it is a prerequisite to formulating any theory of hierarchical signal processing and transformation. This strategy of analyzing the serial signal transformations at successive synaptic stations has yielded new insights into the organization of central visual (Kuffler 1953; Hubel and Wiesel 1962) and somatic sensory pathways (Mountcastle and Henneman 1949; Mountcastle 1957). An amalgam of physiological, anatomical, pharmacological, and behavioral approaches have identified multiple sensory channels that ascend in parallel from the periphery towards higher integrative stations, then provide important descending influences to further modulate the subcortical output (Diamond 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeles M, Goldstein MH Jr (1970) Functional architecture in cat primary auditory cortex: columnar organization and organization according to depth. J Neurophysiol 33: 172–187.

    PubMed  CAS  Google Scholar 

  • Adrián HO, Lifschitz WM, Tavitas RJ, Galli FP (1966) Activity of neural units in medial geniculate body of cat and rabbit. J Neurophysiol 29: 1046–1060.

    PubMed  Google Scholar 

  • Aitkin LM (1973) Medial geniculate body of the cat: responses to tonal stimuli of neurons in medial division. J Neurophysiol 36: 275–283.

    PubMed  CAS  Google Scholar 

  • Aitkin LM (1986) The Auditory Midbrain. Structure and Function in the Central Auditory Pathways. Clifton, NJ: Humana Press.

    Google Scholar 

  • Aitkin LM, Prain, SM (1974) Medial geniculate body: unit responses in the awake cat. J Neurophysiol 37: 512–521.

    PubMed  CAS  Google Scholar 

  • Aitkin LM, Webster, WR (1972) Medial geniculate body of the cat: organization and responses to tonal stimuli of neurons in ventral division. J Neurophysiol 35: 365–380.

    PubMed  CAS  Google Scholar 

  • Aitkin LM, Calford MB, Kenyon CE, Webster WR (1981) Some facets of the organization of the principal division of the cat medial geniculate body. In: Syka J, Aitkin LM (eds) Neuronal Mechanisms of Hearing. London: Plenum Publishing Company, pp. 163–181.

    Google Scholar 

  • Aitkin LM, Dickhaus H, Schult W, Zimmerman M (1978) External nucleus of the inferior colliculus: auditory and spinal somatosensory afferents and their interactions. J Neurophysiol 41: 837–847.

    PubMed  CAS  Google Scholar 

  • Aitkin LM, Irvine DRF, Nelson JE, Merzenich MM, Clarey JC(1986a) Frequency representation in the auditory midbrain and forebrain of a marsupial, the northern native cat (Dasyurus hallucatus). Brain Behav Evol 29: 17–28.

    Google Scholar 

  • Aitkin LM, Merzenich MM, Irvine DRF, Clarey JC, Nelson JE (1986b) Frequency representation in auditory cortex of the common marmoset (Callithrix jacchus jacchus). J Comp Neurol 252: 175–185.

    PubMed  CAS  Google Scholar 

  • Aitkin LM, Kudo M, Irvine DRF (1988) Connections of the primary auditory cortex in the common marmoset, Callithrix jacchus jacchus. J Comp Neurol 269: 235–248.

    PubMed  CAS  Google Scholar 

  • Albert ML, Bear D (1974) Time to understand. A case study of word deafness with reference to the role of time in auditory comprehension. Brain 97: 373–384.

    PubMed  CAS  Google Scholar 

  • Allard TT, Clark SA, Jenkins WM, Merzenich MM (1985) Syndactyly results in the emergence of double-digit receptive fields in somatosensory cortex in adult owl monkeys. Proc Soc Neurosci 11: 965.

    Google Scholar 

  • Allman J, Miezin F, McGuiness E (1985) Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. Annu Rev Neurosci 8: 407–430.

    PubMed  CAS  Google Scholar 

  • Allon N, Yeshurun Y, Wollberg Z (1981) Responses of single cells in the medial geniculate body of awake squirrel monkeys. Expl Brain Res 41: 222–232.

    CAS  Google Scholar 

  • Altman J, Bayer SA (1979a) Development of the diencephalon in the rat. IV. Quantitative study of the time of origin of neurons and the internuclear chronological gradients in the thalamus. J Comp Neurol 188: 455–472.

    PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1979b) Development of the diencephalon in the rat. V. Thymidine-radiographic observations on internuclear and intranuclear gradients in the thalamus. J Comp Neurol 188: 473–500.

    PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1981) Time of origin of neurons of the rat inferior colliculus and the relations between cytogenesis and tonotopic order in the auditory pathway. Expl Brain Res 42: 411–423.

    CAS  Google Scholar 

  • Altman J, Bayer SA (1988a) Development of the rat thalamus: I. Mosaic organization of the thalamic neuroepithelium. J Comp Neurol 275: 346–377.

    PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1988b) Development of the rat thalamus: II. Time and site of origin and settling pattern of neurons derived from the anterior lobule of the thalamic neuroepithelium. J Comp Neurol 275: 378–405.

    PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1989a) Development of the rat thalamus: IV. The intermediate lobule of the thalamic neuroepithelium, and the time and site of origin and settling pattern of neurons of the ventral nuclear complex. J Comp Neurol 284: 534–566.

    PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1989b) Development of the rat thalamus: V. The posterior lobule of the thalamic neuroepithelium and the time and site of origin and settling patterns of neurons of the medial geniculate body. J Comp Neurol 284: 567–580.

    PubMed  CAS  Google Scholar 

  • Altman JA, Syka J, Shmigidina GN (1970) Neuronal activity in the medial geniculate body of the cat during monaural and binaural stimulation. Expl Brain Res 10: 81–93.

    CAS  Google Scholar 

  • Andersen RA, Roth GL, Aitkin LM, Merzenich MM (1980a) The efferent projections of the central nucleus of the inferior colliculus in the cat. J Comp Neurol 194: 649–662.

    PubMed  CAS  Google Scholar 

  • Andersen RA, Knight PL, Merzenich MM (1980b) The thalamocortical and corticothalamic connections of AI, All, and the anterior auditory field (AAF) in the cat: evidence for two largely segregated systems of connections. J Comp Neurol 194: 663–701.

    PubMed  CAS  Google Scholar 

  • Andrew J, Watkins ES (1969) A Stereotaxic Atlas of the Human Thalamus and Adjacent Structures. A Variability Study. Baltimore, MD: Williams & Wilkins Company.

    Google Scholar 

  • Andrews RJ, Knight RT, Kirby RP (1990) Evoked potential mapping of auditory and somatic sensory cortices in the miniature swine. Neurosci Lett 114: 27–31.

    PubMed  CAS  Google Scholar 

  • Arnault P, Roger M (1990) Ventral temporal cortex in the rat: connections of secondary auditory areas Te2 and Te3. J Comp Neurol 302: 110–123.

    PubMed  CAS  Google Scholar 

  • Asanuma A, Wong D, Suga N (1983) Frequency and amplitude representations in anterior primary auditory cortex of the mustached bat. J Neurophysiol 50: 1182–1196.

    PubMed  CAS  Google Scholar 

  • Ashe JH, McKenna TM, Weinberger NM (1989) Cholinergic modulation of frequency receptive fields in auditory cortex: II. Frequency-specific effects of anticholinesterases provide evidence for a modulatory action of endogenous ACh. Synapse 4: 44–54.

    PubMed  CAS  Google Scholar 

  • Avedaño C, Llamas A (1984) Thalamic and nonthalamic projections to association areas of the cat’s cerebral cortex. In: Reinoso-Suärez F, Ajmone-Marsan C (eds) Cortical Integration. New York: Raven Press, pp. 195–211.

    Google Scholar 

  • Back SA, Gorenstein C (1990) Fluorescent histochemical localization of neutral endopeptidase-24.11 (enkephalinase) in the rat brain stem. J Comp Neurol 296: 130–158.

    PubMed  CAS  Google Scholar 

  • Bailey P, von Bonin G (1951) The Isocortex of Man. Urbana, IL: University of Illinois Press.

    Google Scholar 

  • Barbas H (1986) Pattern in the laminar origin of corticocortical connections. J Comp Neurol 252: 415–422.

    PubMed  CAS  Google Scholar 

  • Barth DS, Di D (1990) Three-dimensional analysis of auditory-evoked potentials in rat neocortex. J Neurophysiol 64: 1527–1536.

    PubMed  CAS  Google Scholar 

  • Batzri-Izraeli R, Kelly JB, Glendenning KK, Masterton RB, Wollberg Z (1990) Auditory cortex of the long-eared hedgehog (Hemiechinus auritus) I. Boundaries and frequency representation. Brain Behav Evol 36: 237–248.

    PubMed  CAS  Google Scholar 

  • Baughman RW, Gilbert CD (1981) Aspartate and glutamate as possible neuro-transmitters in the visual cortex. J Neurosci 1: 427–438.

    PubMed  CAS  Google Scholar 

  • Beaton R, Miller JM (1975) Single cell activity in the auditory cortex of the unanesthetized monkey: correlation with stimulus controlled behavior. Brain Res 100: 543–562.

    PubMed  CAS  Google Scholar 

  • Beaulieu C, Colonnier M (1989) Effects of the richness of the environment on six different cortical areas of the cat cerebral cortex. Brain Res 495: 382–386.

    PubMed  CAS  Google Scholar 

  • Belekhova MG, Zharskaja VD, Khachunts AS, Gaidaenko GV, Tumanova NL (1985) Connections of the mesencephalic, thalamic and telencephalic auditory centers in turtles. Some structural bases for audiosomatic interrelations. J für Hirnforsch 26: 127–152.

    CAS  Google Scholar 

  • Békésy von G (1960) Experiments in Hearing. Trans, Wever EG (ed). New York: Robert E. Krieger Publishing Company (1980 reprint of 1960 edition).

    Google Scholar 

  • Benson DA, Hienz RD (1978) Single-unit activity in the auditory cortex of monkeys selectively attending left vs. right ear stimuli. Brain Res 159: 307–320.

    PubMed  CAS  Google Scholar 

  • Bentivoglio M, Molinari M, Minciacchi D, Macchi G (1983) Organization of the cortical projections of the posterior complex and intralaminar nuclei of the thalamus as studied by means of retrograde tracers. In: Macchi G, Rustioni A, Spreafico R (eds) Somatosensory Integration in the Thalamus. Amsterdam: Elsevier Publishing Company, pp. 337–363.

    Google Scholar 

  • Berkley KJ (1980) Spatial relationships between the terminations of somatic sensory and motor pathways in the rostral brainstem of cats and monkeys I. Ascending somatic sensory inputs to lateral diencephalon. J Comp Neurol 193: 283–317.

    PubMed  CAS  Google Scholar 

  • Berkowitz A, Suga N (1989) Neural mechanisms of ranging are different in two species of bats. Hear Res 41: 255–264.

    PubMed  CAS  Google Scholar 

  • Bigalke-Kunz B, Rübsamen R, Döorscheidt GJ (1987) Tonotopic organization and functional characterization of the auditory thalamus in a songbird, the European starling. J Comp Physiol A 161: 255–265.

    PubMed  CAS  Google Scholar 

  • Bignall KE (1969) Bilateral temporofrontal projections in the squirrel monkey: origin, distribution and pathways. Brain Res 13: 319–327.

    PubMed  CAS  Google Scholar 

  • Bignall KE (1970) Auditory input to frontal polysensory cortex of the squirrel monkey: possible pathways. Brain Res 19: 77–86.

    PubMed  CAS  Google Scholar 

  • Bignall KE, Singer P (1967) Auditory, somatic and visual input to association and motor cortex of the squirrel monkey. Exp Neurol 18: 300–312.

    PubMed  CAS  Google Scholar 

  • Blum PS, Day MJ, Carpenter MB, Gilman S (1979) Thalamic components of the ascending vestibular system. Exp Neurol 54: 587–603.

    Google Scholar 

  • Bolz J, Gilbert CD (1989) The role of horizontal connections in generating long receptive fields in the cat visual cortex. Eur J Neurosci 1: 263–268.

    PubMed  Google Scholar 

  • Bolz J, Gilbert CD, Wiesel TN (1989) Pharmacological analysis of cortical circuitry. Trends Neurosci 12: 292–296.

    PubMed  CAS  Google Scholar 

  • Bonke BA, Bonke D, Scheich H (1979) Connectivity of the auditory forebrain nuclei in the guinea fowl (Numida meleagris). Cell Tissue Res 200: 101–121.

    PubMed  CAS  Google Scholar 

  • Bonke D, Scheich H, Langner G (1979) Responsiveness of units in the auditory neostriatum of the guinea fowl (Numida meleagris) to species-specific calls and synthetic stimuli. I. Tonotopy and functional zones of field L. J Comp Physiol A 132: 243–255.

    Google Scholar 

  • Bonke D, Bonke BA, Langner G, Scheich H (1981) Some aspects of functional organization of the auditory neostriatum in the guinea fowl. In: Syka J, Aitkin L (eds) Neuronal Mechanisms of Hearing. New York: Plenum Press, pp. 323–327.

    Google Scholar 

  • Borbely AA (1970) Changes in click-evoked responses as a function of depth in auditory cortex of the rat. Brain Res 21: 217–247.

    PubMed  CAS  Google Scholar 

  • Bourk TR, Mielcarz JP, Norris BE (1981) Tonotopic organization of the anter- oventral cochlear nucleus of the cat. Hear Res 4: 215–241.

    PubMed  CAS  Google Scholar 

  • Bowman EM, Olson CR (1988a) Visual and auditory association areas of the cat’s posterior ectosylvian gyrus: thalamic afferents. J Comp Neurol 272: 15–29.

    PubMed  CAS  Google Scholar 

  • Bowman EM, Olson CR (1988b) Visual and auditory association areas of the cat’s posterior ectosylvian gyrus: cortical afferents. J Comp Neurol 272: 30–42.

    PubMed  CAS  Google Scholar 

  • Braak H (1978a) On magnopyramidal temporal fields in the human brain — probable morphological counterparts ofWernicke’s sensory speech region. Anat Embryol 152: 141–169.

    PubMed  CAS  Google Scholar 

  • Braak H (1978b) On the pigmentarchitectonics of the human telencephalic cortex. In: Brazier MAB, Petsche H (eds) Architectonics of the Cerebral Cortex. New York: Raven Press, pp. 137–157.

    Google Scholar 

  • Braak H, Bachmann A (1985) The percentage of projection neurons and inter- neurons in the human lateral geniculate nucleus. Human Neurobiol 4: 91–95.

    CAS  Google Scholar 

  • Braak H, Braak E (1984) Neuronal types in the neocortex-dependent lateral territory of the human thalamus. A Golgi-pigment study. Anat Embryol 169: 61–72.

    PubMed  CAS  Google Scholar 

  • Bradford HF (1986) Chemical Neurobiology. An Introduction to Neurochemistry. New York: WH Freeman and Company.

    Google Scholar 

  • Brandner S, Redies H (1990) The projection of the medial geniculate body to field AI: organization in the isofrequency dimension. J Neurosci 10: 50–61.

    PubMed  CAS  Google Scholar 

  • Brauth SE (1990) Investigation of central auditory nuclei in the budgerigar with cytochrome oxidase. Brain Res 508: 142–146.

    PubMed  CAS  Google Scholar 

  • Brauth SE, McHale CM (1988) Auditory pathways in the budgerigar. II. Intra- telencephalic pathways. Brain Behav Evol 32: 193–207.

    PubMed  CAS  Google Scholar 

  • Brauth SE, McHale CM, Brasher CA, Dooling RJ (1987) Auditory pathways in the budgerigar. I. Thalamo-telencephalic projections. Brain Behav Evol 30: 174–199.

    PubMed  CAS  Google Scholar 

  • Brawer JR, Morest DK (1975) Relations between auditory nerve endings and cell types in the cat’s anteroventral cochlear nucleus seen with the Golgi method and Nomarski optics. J Comp Neurol 160: 491–506.

    PubMed  CAS  Google Scholar 

  • Brawer JR, Morest DK, Kane EC (1974) The neuronal architecture of the cochlear nucleus of the cat. J Comp Neurol 155: 251–300.

    PubMed  CAS  Google Scholar 

  • Brodal P (1972) The corticopontine projection in the cat. The projection from the auditory cortex. Arch Ital Biol 110: 119–144.

    PubMed  CAS  Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: J.A. Barth.

    Google Scholar 

  • Bronchti G, Heil P, Scheich H, Wollberg Z (1989) Auditory pathway and auditory activation of primary visual targets in the blind mole rat (Spalax ehrenbergi): I. 2-deoxyglucose study of subcortical centers. J Comp Neurol 284: 253–274.

    PubMed  CAS  Google Scholar 

  • Brugge JF (1975) Mechanisms of coding information in the auditory system. Acta Symbol 6: 35–63.

    Google Scholar 

  • Brugge JF (1982) Auditory cortical areas in primates. In: Woolsey CN (ed) Cortical Sensory Organization, Vol 3, Multiple Auditory Areas. Clifton, NJ: Humana Press, pp. 59–70.

    Google Scholar 

  • Brugge JF, Dubrovsky NA, Aitkin LM, Anderson DJ (1971) Sensitivity of single neurons in the auditory cortex of cat to binaural tone stimulation; effects of varying interaural time and intensity. J Neurophysiol 32: 1005–1024.

    Google Scholar 

  • Brugge JF, Orman SS, Coleman JR, Chan JKC, Phillips DP (1985) Binaural interactions in cortical area AI of cats reared with unilateral atresia of the external ear canal. Brain Res 20: 275–287.

    CAS  Google Scholar 

  • Brysch W, Brysch I, Creutzfeldt OD, Schlingensiepen R, Schlingensiepen K-H (1990) The topology of the thalamocortical projections in the marmoset monkey (Callithrix jacchus). Expl Brain Res 81: 1–17.

    CAS  Google Scholar 

  • Buchwald JS, Halas ES, Schramm S (1966) Changes in cortical and subcortical unit activity during behavioral conditioning. Physiol Behav 1: 11–22.

    Google Scholar 

  • Bullock TH, Corwin JT (1979) Acoustic evoked activity in the brain in sharks. J Comp Physiol A 129: 223–234.

    Google Scholar 

  • Burger PM, Mehl E, Cameron PL, Maycox PR, Baumert M, Lottspeich F, De Camilli P, Jahn R (1989) Synaptic vesicles immunoisolated from rat cerebral cortex contain high levels of glutamate. Neuron 3: 715–720.

    PubMed  CAS  Google Scholar 

  • Burton H, Jones EG (1976) The posterior thalamic region and its cortical projection in new world and old world monkeys. J Comp Neurol 168: 249–302.

    PubMed  CAS  Google Scholar 

  • Burton H, Mitchell G, Brent D (1982) Second somatic sensory area in the cerebral cortex of cats: somatotopic organization and cytoarchitecture. J Comp Neurol 210: 109–135.

    PubMed  CAS  Google Scholar 

  • Caird D, Scheich H, Klinke R (1991) Functional organization of auditory cortical fields in the Mongolian gerbil (Meriones unguiculatus): binaural 2-deoxyglucose patterns. J Comp Physiol A 168: 13–26.

    PubMed  CAS  Google Scholar 

  • Calford MB (1983) The parcellation of the medial geniculate body of the cat defined by the auditory response properties of single units. J Neurosci 3: 2350–2364.

    PubMed  CAS  Google Scholar 

  • Calford MB, Aitkin LM (1983) Ascending projections to the medial geniculate body of the cat: evidence for multiple, parallel auditory pathways through the thalamus. J Neurosci 3: 2365–2380.

    PubMed  CAS  Google Scholar 

  • Calford MB, Webster WR (1981) Auditory representation within principal di-vision of cat medial geniculate body: an electrophysiological study. J Neuro- physiol 45: 1013–1028.

    CAS  Google Scholar 

  • Campain R, Minckler J (1976) A note on the gross configuration of the human auditory cortex. Brain Lang 3: 318–323.

    PubMed  CAS  Google Scholar 

  • Campbell AW (1905) Histological Studies on the Localisation of Cerebral Func-tion. Cambridge: Cambridge University Press.

    Google Scholar 

  • Campbell CBG, Boord RL (1974) Central auditory pathways of nonmammalian vertebrates. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, Vol V, Part 1, Auditory System. Anatomy, Physiology (Ear). Berlin: Springer- Verlag, pp. 337–362.

    Google Scholar 

  • Campbell G, Frost DO (1988) Synaptic organization of anomalous retinal pro-jections to the somatosensory and auditory thalamus: target-controlled morpho-genesis of axon terminals and synaptic glomeruli. J Comp Neurol 272: 383–408.

    PubMed  CAS  Google Scholar 

  • Campbell MJ, Lewis DA, Foote SL, Morrison JH (1987) Distribution of choline acetyltransferase-, serotonin-, dopamine-ß-hydroxylase-, tyrosine hydroxylase- immunoreactive fibers in monkey primary auditory cortex. J Comp Neurol 261: 209–220.

    PubMed  CAS  Google Scholar 

  • Cant NB (1982) Identification of cell types in the anteroventral cochlear nucleus that project to the inferior colliculus. Neurosci Lett 32: 241–246.

    PubMed  CAS  Google Scholar 

  • Cant NB (1992) Cochlear nuclei—cell types and connectivity. In: Popper AN, Fay RR, Webster DB (eds) Springer Handbook of Auditory Research, Vol. 1, The Mammalian Auditory Pathway: Neuroanatomy. Springer-Verlag, New York and Berlin.

    Google Scholar 

  • Casseday JH, Diamond IT, Harting JK (1976) Auditory pathways to the cortex in Tupaia glis. J Comp Neurol 166: 303–340.

    PubMed  CAS  Google Scholar 

  • Casseday JH, Kobler JB, Isbey SF, Covey E (1989) Central acoustic tract in an echolocating bat: an extralemniscal auditory pathway to the thalamus. J Comp Neurol 287: 247–259.

    PubMed  CAS  Google Scholar 

  • Celesia GG (1976) Organization of auditory cortical areas in man. Brain 99: 403–414.

    PubMed  CAS  Google Scholar 

  • Celesia, GG, Puletti F (1969) Auditory cortical areas of man. Neurol 19: 211–220.

    CAS  Google Scholar 

  • Celesia GG, Broughton RJ, Rasmussen T, Branch C (1968) Auditory evoked responses from the exposed human cortex. Electroencephal and Clin Neuro- physiol 24: 458–466.

    CAS  Google Scholar 

  • Chow KL, Leiman A (eds) (1970) The structural and functional organization of the neocortex. Neurosci Res Prog Summ 5: 153–220.

    Google Scholar 

  • Cipolloni PB, Pandya DN (1985) Topography and trajectory of commissural fibers of the superior temporal region in the rhesus monkey. Expl Brain Res 57: 381–389.

    CAS  Google Scholar 

  • Cipolloni PB, Pandya DN (1989) Connectional analysis of the ipsilateral and contralateral afferent neurons of the superior temporal region in the rhesus monkey. J Comp Neurol 281: 567–585.

    PubMed  CAS  Google Scholar 

  • Cipolloni PB, Keller A (1989) Thalamocortical synapses with identified neurons in monkey primary auditory cortex: a combined Golgi/EM and GABA/peptide immunocytochemistry study. Brain Res 492: 347–355.

    PubMed  CAS  Google Scholar 

  • Cipolloni PB, Peters A (1979) The bilaminar and banded distribution of the callosal terminals in the posterior neocortex of the rat. Brain Res 176: 33–47.

    PubMed  CAS  Google Scholar 

  • Cipolloni PB, Peters A (1983) The termination of callosal fibres in the auditory cortex of the rat. A combined Golgi-electron microscope and degeneration study. J Neurocytol 12: 713–726.

    PubMed  CAS  Google Scholar 

  • Clarey JC, Irvine DRF (1986a) Auditory response properties of neurons in the anterior ectosylvian sulcus. Brain Res 386: 12–19.

    PubMed  CAS  Google Scholar 

  • Clarey JC, Irvine DRF (1986b) Auditory response properties of neurons in the claustrum and putamen of the cat. Expl Brain Res 61: 432–437.

    CAS  Google Scholar 

  • Clarke S, Innocenti GM (1986) Organization of immature interhemispheric connections. J Comp Neurol 251: 1–22.

    PubMed  CAS  Google Scholar 

  • Clarke S, Innocenti GM (1990) Auditory neurons with transitory axons to visual areas form short permanent connections. Eur J Neurosci 2: 227–242.

    PubMed  Google Scholar 

  • Clements M, Kelly JB (1978) Directional responses by kittens to an auditory stimulus. Develop Psychobiol 11: 505–511.

    CAS  Google Scholar 

  • Clerici WJ, Coleman JR (1990) Anatomy of the rat medial geniculate body: I. Cytoarchitecture, myeloarchitecture and neocortical connectivity. J Comp Neurol 297: 14–31.

    PubMed  CAS  Google Scholar 

  • Clerici WJ, McDonald A J, Thompson R, Coleman JR (1990) Anatomy of the rat medial geniculate body: II. Dendritic morphology. J Comp Neurol 297: 32–54.

    PubMed  CAS  Google Scholar 

  • Clugnet M-C, LeDoux JE (1990) Synaptic plasticity in fear conditioning circuits: induction of LTP in the lateral nucleus of the amygdala by stimulation of the medial geniculate body. J Neurosci 10: 2818–2824.

    PubMed  CAS  Google Scholar 

  • Clugnet M-C, LeDoux JE, Morrison SF (1990) Unit responses evoked in the amygdala and striatum by electrical stimulation of the medial geniculate body. J Neurosci 10: 1055–1061.

    PubMed  CAS  Google Scholar 

  • Code RA, Winer JA (1985) Commissural neurons in layer III of cat primary auditory cortex (Al): pyramidal and non-pyramidal cell input. J Comp Neurol 242: 485–510.

    PubMed  CAS  Google Scholar 

  • Code RA, Winer JA (1986) Columnar organization and reciprocity of commissural connections in cat primary auditory cortex ( Al ). Hear Res 23: 205–222.

    PubMed  CAS  Google Scholar 

  • Colavita FB, Szeligo FV, Zimmer SD (1974) Temporal pattern discrimination in cats with insular-temporal lesions. Brain Res 79: 153–156.

    PubMed  CAS  Google Scholar 

  • Colombo M, D’Amato MR, Rodman HR, Gross CG (1990) Auditory association cortex lesions impair auditory short-term memory. Science 247: 336–338.

    PubMed  CAS  Google Scholar 

  • Colwell S (1975) Thalamocortical-corticothalamic reciprocity: a combined an- terograde-retrograde tracer technique. Brain Res 92: 443–449.

    PubMed  CAS  Google Scholar 

  • Conel JL (1959) The Postnatal Development of the Human Cerebral Cortex, Vol VI, The Cortex of the Twenty-Four-Month Infant. Cambridge: Harvard University Press.

    Google Scholar 

  • Conley M, Kupersmith AC, Diamond IT (1991) Organization of the auditory thalamic sector of the thalamic reticular nucleus in Galago: comparison of the reciprocal connexions between the reticular nucleus and the ventral and mag- nocellular divisions of the medial geniculate complex. Eur J Neurosci 3: 1089–1103.

    PubMed  Google Scholar 

  • Cooper ERA (1948) The development of the human auditory pathway from the cochlear ganglion to the medial geniculate body. Acta Anat 57: 99–122.

    Google Scholar 

  • Cooper JR, Bloom FE, Roth RH (1982) The Biochemical Basis of Neuropharmacology, fourth ed. New York: Oxford University Press.

    Google Scholar 

  • Cornwell P, Ravizza R, Payne B (1984) Extrinsic visual and auditory cortical connections in the 4-day-old kitten. J Comp Neurol 229: 97–120.

    PubMed  CAS  Google Scholar 

  • Cotter JR, Laemle LK (1990) Cholecystokinin (CCK)-like immunoreactivity in the brain of the little brown bat (Myotis Lucifugus) (sic). J fur Hirnforsch 31: 87–97.

    CAS  Google Scholar 

  • Covenas R, Romo R, Cheramy A, Cesselin F, Conrath M (1986) Immunocyto- chemical study of enkephalin-like cell bodies in the thalamus of the cat. Brain Res 377: 355–361.

    PubMed  CAS  Google Scholar 

  • Crabtree JW, Killackey HP (1989) The topographic organization and axis of projection within the visual sector of the rabbit’s thalamic reticular nucleus. Eur J Neurosci 1: 94–109.

    PubMed  Google Scholar 

  • Creutzfeldt O, Hellweg F-C, Schreiner Chr (1980) Thalamocortical transformation of responses to complex auditory stimuli. Expl Brain Res 39: 87–104.

    CAS  Google Scholar 

  • Crunelli V, Leresche N (1991) A role for GABAB receptors in excitation and inhibition of thalamocortical cells. Trends Neurosci 14: 16–21.

    PubMed  CAS  Google Scholar 

  • Cusick CG, MacAvoy MG, Kaas JH (1985) Interhemispheric connections of cortical sensory areas in tree shrews. J Comp Neurol 235: 111–128.

    PubMed  CAS  Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies ofbrain stem neurons. Acta Physiol Scand 62 Supplement 232: 1–55.

    Google Scholar 

  • D’Amato RJ, Blue ME, Largent BL, Lynch DR, Ledbetter DJ, Molliver ME, Snyder SH (1987) Ontogeny of the serotonergic projection to rat neocortex: transient expression of a dense innervation to primary sensory areas. Proc Natl Acad Sci (USA) 84: 4322–4326.

    Google Scholar 

  • Davis TL, Sterling P (1979) Microcircuitry of cat visual cortex: classification of neurons in layer IV of area 17, and identification of the patterns of lateral geniculate input. J Comp Neurol 188: 599–628.

    PubMed  CAS  Google Scholar 

  • Deacon TW, Eichenbaum H, Rosenberg P, Eckmann KW (1983) Afferent connections of the perirhinal cortex in the rat. J Comp Neurol 220: 168–190.

    PubMed  CAS  Google Scholar 

  • De Carlos JA, Lopez-Mascaraque L, Ramón y Cajal-Agüeras S, Valverde F (1987) Chandelier cells in the auditory cortex of monkey and man: a Golgi study. Expl Brain Res 66: 295–302.

    Google Scholar 

  • de Courten C, Garey LJ (1982) Morphology of the neurons in the human lateral geniculate nucleus and their normal development. A Golgi study. Expl Brain Res 47: 159–171.

    Google Scholar 

  • DeFelipe J, Conley M, Jones EG (1986) Long-range focal collaterlization of axons arising from corticocortical cells in monkey sensory-motor cortex. J Neurosci 6: 3749–3766.

    PubMed  CAS  Google Scholar 

  • Dehay C, Kennedy H, Bullier J (1988) Characterization of transient cortical projections from auditory, somatosensory, and motor cortices to visual areas 17, 18, and 19 in the kitten. J Comp Neurol 272: 68–89.

    PubMed  CAS  Google Scholar 

  • Demeter S, Rosene DL, Van Hoesen GW (1990) Fields of origin and pathways of interhemispheric commissures in the temporal lobe of macaques. J Comp Neurol 302: 29–53.

    PubMed  CAS  Google Scholar 

  • Deschenes M, Hu B (1990) Electrophysiology and pharmacology of corticothalamic input to lateral thalamic nuclei: an intracellular study in the cat. Eur J Neurosci 2: 140–152.

    Google Scholar 

  • Dewson JH III, Pribram KH, Lynch JC (1969) Effects of ablations of temporal cortex upon speech sound discrimination in the monkey. Expl Neurol 24: 579–591.

    Google Scholar 

  • Dewulf A (1971) Anatomy of the Normal Human Thalamus. Topometry and Standardized Nomenclature. Amsterdam: Elsevier Publishing Company.

    Google Scholar 

  • DeYoe EA, Van Essen DC (1988) Concurrent processing streams in monkey visual cortex. Trends Neurosci 11: 219–226.

    PubMed  CAS  Google Scholar 

  • Diamond DM, Weinberger NM (1984) Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response: II. Secondary field ( All ). Behav Neurosci 98: 189–210.

    PubMed  CAS  Google Scholar 

  • Diamond DM, Weinberger NM (1986) Classical conditioning rapidly induces specific changes in frequency receptive fields of single neurons in secondary and ventral ectosylvian auditory cortical fields. Brain Res 372: 357–360.

    PubMed  CAS  Google Scholar 

  • Diamond DM, Weinberger NM (1989) Role of context in the expression oflearn- ing-induced plasticity of single neurons in auditory cortex. Behav Neurosci 103: 471–494.

    PubMed  CAS  Google Scholar 

  • Diamond IT (1983) Parallel pathways in the auditory, visual and somatic systems. In: Macchi G, Rustioni A, Spreafico R (eds) Somatosensory Integration in the Thalamus. Amsterdam: Elsevier Publishing Company, pp. 251–272.

    Google Scholar 

  • Diamond IT, Utley JD (1963) Thalamic retrograde degeneration study of sensory cortex in opossum. J Comp Neurol 120: 129–160.

    PubMed  CAS  Google Scholar 

  • Diamond IT, Jones EG, Powell TPS (1968) Interhemispheric fiber connections of the auditory cortex of the cat. Brain Res 11: 177–193.

    PubMed  CAS  Google Scholar 

  • Diamond IT, Jones EG, Powell TPS (1969) The projection of the auditory cortex upon the diencephalon and brain stem of the cat. Brain Res 15: 305–340.

    PubMed  CAS  Google Scholar 

  • Dickson JW, Gerstein GL (1974) Interactions between neurons in auditory cortex of the cat. J Neurophysiol 37: 1239–1261.

    PubMed  CAS  Google Scholar 

  • Disterhoft JF, Olds J (1972) Differential development of conditioned unit changes in thalamus and cortex of rat. J Neurophysiol 35: 665–679.

    PubMed  CAS  Google Scholar 

  • Disterhoft JF, Stuart DK (1976) Trial sequence of changed unit activity in auditory system of alert rat during conditioned response acquisition and extinction. J Neurophysiol 39: 266–281.

    PubMed  CAS  Google Scholar 

  • Domenici L, Waldvogel HJ, Matute C, Streit P (1988) Distribution of GABA- like immunoreactivity in the pigeon brain. Neurosci 25: 931–950.

    CAS  Google Scholar 

  • Downman CBB, Woolsey CN, Lende RA (1960) Auditory areas I, II and Ep: cochlear representation, afferent paths and interconnections. Bull Johns Hopkins Hosp 106: 127–142.

    PubMed  CAS  Google Scholar 

  • Dreher B, Cottee LJ (1975) Visual receptive-field properties of cells in area 18 of cat’s cerebral cortex before and after acute lesions in area 17. J Neurophysiol 38: 735–750.

    PubMed  CAS  Google Scholar 

  • Dreher B, Leventhal AG, Hale PT (1980) Geniculate input to cat visual cortex: a comparison of area 19 with areas 17 and 18. J Neurophysiol 44: 804–826.

    PubMed  CAS  Google Scholar 

  • Dykes RW, Herron P, Lin C-S (1986) Ventroposterior thalamic regions projecting to cytoarchitectonic areas 3a and 3b in the cat. J Neurophysiol 56: 1521–1541.

    PubMed  CAS  Google Scholar 

  • Dykes RW, Rasmussen DD, Hoeltzell PB (1980) Organization of primary somatosensory cortex in the cat. J Neurophysiol 43: 1527–1546.

    PubMed  CAS  Google Scholar 

  • Ebner FF (1969) A comparison of primitive forebrain organization in metatherian and eutherian mammals. Ann N Y Acad Sci 167: 241–257.

    Google Scholar 

  • Eccles JC (1966) Cerebral synaptic mechanisms. In: Eccles JC (ed) Brain and Conscious Experience. New York: Springer-Verlag, pp. 24–58.

    Google Scholar 

  • Echteler SM (1984) Connections of the auditory midbrain in a teleost fish, Cyprinus carpio. J Comp Neurol 230: 536–551.

    PubMed  CAS  Google Scholar 

  • Echteler SM (1985) Organization of central auditory pathways in a teleost fish, Cyprinus carpio. J Comp Physiol A 156: 267–280.

    Google Scholar 

  • Eckenstein FP, Baughman RW, Quinn J (1988) An anatomical study of cholinergic innervation in rat cerebral cortex. Neurosci 25: 457–474.

    CAS  Google Scholar 

  • Edeline J-M (1990) Frequency-specific plasticity of single unit discharges in the rat medial geniculate body. Brain Res 529: 109–119.

    PubMed  CAS  Google Scholar 

  • Edeline J-M, Dutrieux G, Neuenschwander-El Massioui N (1988) Multiunit changes in hippocampus and medial geniculate body in free-behaving rats during acquisition and retention of a conditioned response to tone. Behav Neural Biol 50: 61–79.

    PubMed  CAS  Google Scholar 

  • Edeline J-M, Neuenschwander-El Massioui N, Dutrieux G (1990) Discriminative long-term retention of rapidly induced multiunit changes in the hippocampus, medial geniculate and auditory cortex. Behav Brain Res 39: 145–155.

    PubMed  CAS  Google Scholar 

  • Eidelberg D, Galaburda AM (1982) Symmetry and asymmetry in the human posterior thalamus. I. Cytoarchitectonic analysis in normal persons. Arch Neurol 39: 325–332.

    PubMed  CAS  Google Scholar 

  • Elberling C, Bak C, Kofoed B, Lebech J, Saermark K (1982) Auditory magnetic fields. Source location and ‘tonotopical organization’ in the right hemisphere. Scand Audiol 11: 61–65.

    PubMed  CAS  Google Scholar 

  • Evans EF, Whitfield IC (1964) Classification of unit responses in the auditory cortex of unanaesthetized and unrestrained cat. J Physiol (London) 171: 476–493.

    CAS  Google Scholar 

  • Evans EF, Ross HF, Whitfield IC (1965) The spatial distribution of unit characteristic frequency in the primary auditory cortex of the cat. J Physiol (London) 179: 238–247.

    CAS  Google Scholar 

  • Fabri M, Burton H (1991) Topography of connections between primary somatosensory cortex and posterior complex in rat: a multiple fluorescent tracer study. Brain Res 538: 351–357.

    PubMed  CAS  Google Scholar 

  • Fallon JH, Leslie FM (1986) Distribution of dynorphin and enkephalin peptides in the rat brain. J Comp Neurol 249: 293–336.

    PubMed  CAS  Google Scholar 

  • Feng JZ, Brugge JF (1983) Postnatal development of auditory callosal connections in the kitten. J Comp Neurol 214: 416–426.

    Google Scholar 

  • Ferrer I, Perera M (1988) Structure and nerve cell organization in the cerebral cortex of the dolphin Stenella coeruleoalba a Golgi study. With special attention to the primary auditory area. Anat Embryol 178: 161–173.

    PubMed  CAS  Google Scholar 

  • Ferster D, LeVay S (1978) The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat. J Comp Neurol 182: 923–944.

    PubMed  CAS  Google Scholar 

  • Fisken RA, Garey LJ, Powell TPS (1975) The intrinsic, association and commissural connections of area 17 of the visual cortex. Phil Trans R Soc London, Ser B 272: 487–536.

    CAS  Google Scholar 

  • Fitzpatrick D, Lund JS, Schmechel DE, Towles AC (1987) Distribution of GABAergic neurons and axon terminals in the macaque striate cortex. J Comp Neurol 264: 73–91.

    PubMed  CAS  Google Scholar 

  • Fitzpatrick D, Diamond IT, Raczkowski D (1989) Cholinergic and monoami- nergic innervation of the cat’s thalamus: comparison of the lateral geniculate nucleus with other principal sensory nuclei. J Comp Neurol 288: 647–675.

    PubMed  CAS  Google Scholar 

  • FitzPatrick KA, Imig TJ (1980) Auditory cortico-cortical connections in the owl monkey. J Comp Neurol 192: 589–610.

    PubMed  CAS  Google Scholar 

  • Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neu- rochem 42: 1–11.

    CAS  Google Scholar 

  • Fonnum F, Storm-Mathisen J, Divac I (1981) Biochemical evidence for glutamate as neurotransmitter in corticostriatal and corticothalamic fibres in rat brain. Neuroscience 6: 863–873.

    PubMed  CAS  Google Scholar 

  • Foote SL, Freedman R, Oliver AP (1975) Effects of putative transmitters on neuronal activity in monkey auditory cortex. Brain Res 86: 229–242.

    PubMed  CAS  Google Scholar 

  • Forbes A, Sherrington CS (1914) Acoustic reflexes in the decerebrate cat. Am J Physiol 35: 367–376.

    Google Scholar 

  • Forbes BF, Moskowitz N (1977) Cortico-cortical connections of the superior temporal gyrus in the squirrel monkey. Brain Res 136: 547–552.

    PubMed  CAS  Google Scholar 

  • Foster RE, Hall WC (1978) The organization of central auditory pathways in a reptile, Iguana iguana. J Comp Neurol 178: 783–832.

    PubMed  CAS  Google Scholar 

  • Friedman DP, Murray EA, O’Neill JB, Mishkin M (1986) Cortical connections of the somatosensory fields of the lateral sulcus of macaques: evidence for a corticolimbic pathway for touch. J Comp Neurol 252: 323–347.

    PubMed  CAS  Google Scholar 

  • Frost DO (1981) Orderly anomalous retinal projections to the medial geniculate, ventrobasal, and lateral posterior nuclei of the hamster. J Comp Neurol 203: 227–256.

    PubMed  CAS  Google Scholar 

  • Frost DO (1986) Development of anomalous retinal projections to nonvisual thalamic nuclei in Syrian hamsters: a quantitative study. J Comp Neurol 252: 95–105.

    PubMed  CAS  Google Scholar 

  • Frost DO, Metin C (1985) Induction of functional retinal projections to the somatosensory system. Nature 317: 162–164.

    PubMed  CAS  Google Scholar 

  • Frostig RD, Gottlieb Y, Vaadia E, Abeles M (1983) The effects of stimuli on the activity and functional connectivity of local neuronal groups in the cat auditory cortex. Brain Res 272: 211–221.

    PubMed  CAS  Google Scholar 

  • Fullerton BC (1978) Morphological studies of the inferior colliculus and the medial geniculate body in the rhesus monkey and the albino rat. Doctoral dissertation, Boston University, Boston, pp. 1–192.

    Google Scholar 

  • Funkenstein HH, Winter P (1973) Responses to acoustic stimuli of units in the auditory cortex of awake squirrel monkeys. Expl Brain Res 18: 464–488.

    CAS  Google Scholar 

  • Fuxe K (1965) The distribution of monoamine terminals in the central nervous system. Acta Physiol Scand 64: 37–78.

    Google Scholar 

  • Fuzessery ZM, Feng AS (1983) Mating call selectivity in the thalamus and midbrain of the leopard frog (Rana p. pipiens): single and multiunit analysis. J Comp Physiol A 150: 333–344.

    Google Scholar 

  • Gabriel M, Miller JD, Saltwick SE (1976) Multiple-unit activity of the rabbit medial geniculate nucleus in conditioning, extinction, and reversal. Physiol Psychol 4: 124–134.

    Google Scholar 

  • Galaburda AM (1986) Role of the thalamus in auditory lateralization-histologic data. Rev Neurol 142: 441–444.

    PubMed  CAS  Google Scholar 

  • Galaburda AM, Pandya DN (1983) The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey. J Comp Neurol 221: 169–184.

    PubMed  CAS  Google Scholar 

  • Galaburda A, Sanides F (1980) Cytoarchitectonic organization of the human auditory cortex. J Comp Neurol 190: 597–610.

    PubMed  CAS  Google Scholar 

  • Galambos R, Myers RE, Sheatz GC (1961) Extralemniscal activation of auditory cortex in cats. Am J Physiol 200: 23–28.

    PubMed  CAS  Google Scholar 

  • Galazyuk AV, Volkov IO (1988) Tonotopic organization of dorsocaudal zone of All cortical area in the cat. Neurophysiol 20:220–227 (original in Russian, abstract and figure legends in English).

    Google Scholar 

  • Galli F, Lifschitz W, Adrian H (1971) Studies on the auditory cortex of rabbit. Expl Neurol 30: 324–335.

    CAS  Google Scholar 

  • Games KD, Winer JA (1988) Layer V in rat auditory cortex: projections to the inferior colliculus and contralateral cortex. Hear Res 34: 1–26.

    PubMed  CAS  Google Scholar 

  • Gates GR, Aitkin LM (1982) Auditory cortex in the marsupial possum Trichosurus vulpecula. Hear Res 7: 1–11.

    PubMed  CAS  Google Scholar 

  • Gerren RA, Weinberger NM (1983) Long term potentiation in the magnocellular medial geniculate nucleus of the anesthetized cat. Brain Res 265: 138–142.

    PubMed  CAS  Google Scholar 

  • Geschwind N, Levitsky W (1968) Human brain: left-right asymmetries in temporal speech region. Science 161: 186–187.

    PubMed  CAS  Google Scholar 

  • Gilbert CD, Wiesel TN (1983) Clustered intrinsic connections in cat visual cortex. J Neurosci 3: 1116–1133.

    PubMed  CAS  Google Scholar 

  • Girard P, Bullier J (1989) Visual activity in area V2 during reversible inactivation of area 17 in the macaque monkey. J Neurophysiol 62: 1287–1302.

    PubMed  CAS  Google Scholar 

  • Giuffrida R, Rustioni A (1989) Glutamate and aspartate immunoreactivity in corticospinal neurons of rats. J Comp Neurol 288: 154–164.

    PubMed  CAS  Google Scholar 

  • Glassman RB, Forgus MW, Goodman JE, Glassman HN (1975) Somesthetic effects of damage to cats’ ventrobasal complex, medial lemniscus or posterior group. Expl Neurol 48: 460–492.

    CAS  Google Scholar 

  • Gloor P (1990) Experiential phenomena of temporal lobe epilepsy. Facts and hypotheses. Brain 113: 1673–1694.

    PubMed  Google Scholar 

  • Goldstein MH Jr, Hall JL, Butterfield BO (1968) Single-unit activity in the primary auditory cortex of unanesthetized cats. J Acoust Soc Am 43: 444–455.

    PubMed  Google Scholar 

  • Gottlieb Y, Vaadia E, Abeles M (1989) Single unit activity in the auditory cortex of a monkey performing a short term memory task. Expl Brain Res 74: 139–148.

    CAS  Google Scholar 

  • Graham J (1977) An autoradiographic study of the efferent connections of the superior colliculus in the cat. J Comp Neurol 173: 629–654.

    PubMed  CAS  Google Scholar 

  • Granda RH, Crossland WJ (1989) GABA-like immunoreactivity of neurons in the chicken diencephalon and mesencephalon. J Comp Neurol 287: 455–469.

    PubMed  CAS  Google Scholar 

  • Graybiel AM (1972a) Some ascending connections of the pulvinar and nucleus lateralis posterior of the thalamus in the cat. Brain Res 44: 99–125.

    PubMed  CAS  Google Scholar 

  • Graybiel AM (1972b) Some fiber pathways related to the posterior thalamic region in the cat. Brain Beh Evol 6: 363–393.

    CAS  Google Scholar 

  • Gross CG, Weiskrantz L (1962) Evidence for dissociation of impairment on auditory discrimination and delayed response following lateral frontal lesions in monkeys. Expl Neurol 5: 453–476.

    CAS  Google Scholar 

  • Gross NB, Lifschitz WS, Anderson DJ (1974) The tonotopic organization of the auditory thalamus of the squirrel monkey (Saimiri sciureus). Brain Res 65: 323–332.

    PubMed  CAS  Google Scholar 

  • Haight JR, Neylon L (1978) An atlas of the dorsal thalamus of the marsupial brush-tailed possum, Trichosurus vulpecula. J Anat (London) 126: 225–245.

    CAS  Google Scholar 

  • Haight JR, Neylon L(1981) A description of the dorsal thalamus of the marsupial native cat, Dasyurus viverrinus (Dasyuridae). Brain Behav Evol 19: 155–179.

    Google Scholar 

  • Hall JC, Feng AS (1987) Evidence for parallel processing in the frog’s auditory thalamus. J Comp Neurol 258: 407–419.

    PubMed  CAS  Google Scholar 

  • Hall JL II, Goldstein MH Jr (1968) Representation of binaural stimuli by single units in primary auditory cortex of unanesthetized cats. J Acoust Soc Am 43: 456–461.

    PubMed  Google Scholar 

  • Hari R, Hämäläinen M, Kaukoranta E, Mäkelä J, Joutsiniemi SL, Tiihonen J (1989a) Selective listening modifies activity of the human auditory cortex. Expl Brain Res 74: 463–470.

    CAS  Google Scholar 

  • Hari R, Joutsiniemi SL, Hämäläinen M, Vilkman V (1989b) Neuromagnetic responses of human auditory cortex to interruptions in a steady rhythm. Neurosci Lett 99: 164–168.

    PubMed  CAS  Google Scholar 

  • Hashikawa T (1983) The inferior colliculopontine neurons of the cat in relation to other collicular descending neurons. J Comp Neurol 219: 241–249.

    PubMed  CAS  Google Scholar 

  • Hashikawa T, Kawamura K (1983) Retrograde labeling of ascending and descending neurons in the inferior colliculus. A fluorescent double labeling study in the cat. Expl Brain Res 49: 457–461.

    CAS  Google Scholar 

  • Hashimoto T (1980) Information processing of speech sounds in the medial geniculate and the inferior colliculus. Proc Jpn Acad Sci 56: 294–299.

    Google Scholar 

  • Heffner HE (1987) Ferner and the study of auditory cortex. Arch Neurol 44: 218–221.

    PubMed  CAS  Google Scholar 

  • HefFner HE, Heffner RS (1986a) Hearing loss in Japanese macaques following bilateral auditory cortex lesions. J Neurophysiol 55: 256–271.

    PubMed  CAS  Google Scholar 

  • HefFner HE, Heffner RS (1986b) Effect of unilateral and bilateral auditory cortex lesions on the discrimination of vocalizations by Japanese macaques. J Neurophysiol 56: 683–701.

    PubMed  Google Scholar 

  • Heffner HE, Heffner RS (1989) EfFect of restricted cortical lesions on absolute threshold and aphasia-like behavior in Japanese macaques. Behav Neurosci 103: 156–169.

    Google Scholar 

  • Heffner HE, Masterton B (1975) Contribution of auditory cortex to sound localization in the monkey (Macaca mulatto). J Neurophysiol 38: 1340–1358.

    PubMed  CAS  Google Scholar 

  • Heffner RS, HefFner HE (1984) Hearing loss in dogs after lesions of the brachium of the inferior colliculus and medial geniculate. J Comp Neurol 230: 207–217.

    PubMed  CAS  Google Scholar 

  • Heil P, Scheich H (1991a) Functional organization of the avian auditory cortex analogue. I. Tonotopic organization of isointensity bandwidth. Brain Res 539: 110–120.

    PubMed  CAS  Google Scholar 

  • Heil P, Scheich H (1991b) Functional organization of the avian auditory cortex analogue. II. Topographic distribution of latency. Brain Res 539: 121–125.

    PubMed  CAS  Google Scholar 

  • Hellweg FC, Koch R, Vollrath M (1977) Representation of the cochlea in the neocortex of guinea pigs. Expl Brain Res 29: 467–474.

    CAS  Google Scholar 

  • Hendry SHC, Jones EG (1991) GABA neuronal subpopulations in cat primary auditory cortex — co-localization with calcium binding proteins. Brain Res 543: 45–55.

    PubMed  CAS  Google Scholar 

  • Hendry SHC, Jones EG, DeFelipe J, Schmechel D, Brandon C, Emson PC (1984) Neuropeptide-containing neurons of the cerebral cortex are also GABAergic. Proc Natl Acad Sci (USA) 81: 6526–6530.

    CAS  Google Scholar 

  • Hendry SHC, Schwark HD, Jones EG, Yan J (1987) Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J Neurosci 7: 1503–1519.

    PubMed  CAS  Google Scholar 

  • Henkel CK (1983) Evidence of sub-collicular auditory projections to the medial geniculate nucleus in the cat: an autoradiographic and horseradish peroxidase study. Brain Res 259: 21–30.

    PubMed  CAS  Google Scholar 

  • Herbert H, Aschoff A, Ostwald J (1991) Topography of projections from the auditory cortex to the inferior colliculus in the rat. J Comp Neurol 304: 103–122.

    PubMed  CAS  Google Scholar 

  • Hikosaka O, Sakamoto M, Usui S (1989) Functional properties of monkey caudate neurons II. Visual and auditory responses. J Neurophysiol 61: 799–813.

    PubMed  CAS  Google Scholar 

  • Hirai T, Jones EG (1989a) A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res Rev 14: 1–34.

    PubMed  CAS  Google Scholar 

  • Hirai T, Jones EG (1989b) Distribution of tachykinin- and enkephalin-immu- noreactive fibers in the human thalamus. Brain Res Rev 14: 35–52.

    PubMed  CAS  Google Scholar 

  • Hocherman S, Gilat E (1981) Dependence of auditory cortex evoked unit activity on interstimulus interval in the cat. J Neurophysiol 45: 987–997.

    PubMed  CAS  Google Scholar 

  • Hocherman S, Benson DA, Goldstein MH Jr, Heffner HE, Hienz RD (1976) Evoked unit activity in auditory cortex of monkeys performing a selective attention task. Brain Res 117: 51–68.

    PubMed  CAS  Google Scholar 

  • Holstege G, Collewijn H (1982) The efferent projections of the nucleus of the optic tract and the superior colliculus in the rabbit. J Comp Neurol 209: 139–175.

    PubMed  CAS  Google Scholar 

  • Horikawa J, Ito S, Hosokawa Y, Homma T, Murata K (1988) Tonotopic representation in the rat auditory cortex. Proc Jpn Acad Sci B 64: 260–263.

    Google Scholar 

  • Horner K, de Ribaupierre Y, de Ribaupierre F (1983) Neural correlates of cubic difference tones in the medial geniculate body of the cat. Hear Res 11: 343–357.

    CAS  Google Scholar 

  • Hornung J-P, Törk I, De Tribolet N (1989) Morphology of tyrosine hydroxylase- immunoreactive neurons in the human cerebral cortex. Expl Brain Res 76: 12–20.

    CAS  Google Scholar 

  • Hörster W, Ettlinger G (1987) Unilateral removal of the posterior insula or of area Sil: inconsistent effects on tactile, visual and auditory performance in the monkey. Behav Brain Res 26: 1–17.

    PubMed  Google Scholar 

  • Hose B, Langner G, Scheich H (1987) Topographic representation of periodicities in the forebrain of the mynah bird: one map for pitch and rhythm? Brain Res 422: 367–373.

    PubMed  CAS  Google Scholar 

  • Hough HB, Wolff HG (1939) The relative vascularity of subcortical ganglia of cat’s brain; the putamen, globus pallidus, substantia nigra, red nucleus, and geniculate bodies. J Comp Neurol 71: 427–436.

    Google Scholar 

  • Houser CR, Vaughn JE, Barber RP, Roberts E (1980) GABA neurons are the major cell type of the nucleus reticularis thalami. Brain Res 200: 345–354.

    Google Scholar 

  • Hu H, Jayarman A (1986) The projection pattern of the suprageniculate nucleus to the caudate nucleus in cats. Brain Res 368: 201–203.

    PubMed  CAS  Google Scholar 

  • Huang C-M, Liu G (1985) Electrophysiological mapping of the auditory areas in the cerebellum of the cat. Brain Res 335: 121–129.

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1959) Receptive fields of single neurones in the cat’s striate cortex. J Physiol (London) 148: 574–591.

    CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol (London) 160: 106–154.

    CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1965) Receptive fields and functional architecture in two non-striate visual areas (18 and 19) of the cat. J Neurophysiol 28: 229–289.

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol (London) 206: 419–436.

    CAS  Google Scholar 

  • Hubel DH, Wiesel TN, LeVay S (1977) Plasticity of ocular dominance columns in monkey striate cortex. Phil Trans R Soc London, Ser B 278: 377–409.

    CAS  Google Scholar 

  • Huchton DM, Larue DT, Sun JY-M, Winer JA (1991) The organization of GABAergic neurons in the cat medial geniculate body: a quantitative immuno- cytochemical study of post-embedded material. Proc Soc Neurosci 17: 300.

    Google Scholar 

  • Huffman RF, Henson OW Jr (1990) The descending auditory pathway and acousticomotor systems: connections with the inferior colliculus. Brain Res Rev 15: 295–323.

    PubMed  CAS  Google Scholar 

  • Humphrey AL, Sur M, Uhlrich DJ, Sherman SM (1985) Termination patterns of individual X- and Y-cell axons in the visual cortex of the cat: projections to area 18, to the 17/18 border region, and to both areas 17 and 18. J Comp Neurol 233: 190–212.

    PubMed  CAS  Google Scholar 

  • Hurd LB II, Eldred WD (1989) Localization of GABA- and GAD-like immu- noreactivity in the turtle retina. Vis Neurosci 3: 9–20.

    PubMed  Google Scholar 

  • Hutson KA (1988) Connections of the auditory midbrain: efferent projections of the dorsal nucleus of the lateral lemniscus, the nucleus sagulum, and the origins of the GABAergic commissure of Probst. Doctoral dissertation, The Florida State University College of Letters and Sciences, Tallahassee, pp. 1–165.

    Google Scholar 

  • Imig TJ, Adrián HO (1977) Binaural columns in the primary auditory field ( Al) of cat auditory cortex. Brain Res 138: 241–257.

    PubMed  CAS  Google Scholar 

  • Imig TJ, Brugge JF (1978) Sources and terminations of callosal axons related to binaural and frequency maps in primary auditory cortex of the cat. J Comp Neurol 182: 637–660.

    PubMed  CAS  Google Scholar 

  • Imig TJ, Morel A (1983) Organization of the thalamocortical auditory system in the cat. Ann Rev Neurosci 6: 95–120.

    PubMed  CAS  Google Scholar 

  • Imig TJ, Morel A (1984) Topographic and cytoarchitectonic organization of thalamic neurons related to their targets in low-, middle-, and high-frequency representations in cat auditory cortex. J Comp Neurol 227: 511–539.

    PubMed  CAS  Google Scholar 

  • Imig TJ, Morel A (1985a) Tonotopic organization in lateral part of posterior group of thalamic nuclei in the cat. J Neurophysiol 53: 836–851.

    PubMed  CAS  Google Scholar 

  • Imig TJ, Morel A (1985b) Tonotopic organization in ventral nucleus of medial geniculate body in the cat. J Neurophysiol 53: 309–340.

    PubMed  CAS  Google Scholar 

  • Imig TJ, Reale RA (1980) Patterns of cortico-cortical connections related to tonotopic maps in cat auditory cortex. J Comp Neurol 192: 293–332.

    PubMed  CAS  Google Scholar 

  • Imig TJ, Reale RA (1981) Ipsilateral corticocortical projections related to binaural columns in cat primary auditory cortex. J Comp Neurol 203: 1–14.

    PubMed  CAS  Google Scholar 

  • Imig TJ, Ruggero MA, Kitzes LM, Javel E, Brugge JF (1977) Organization of auditory cortex in the owl monkey ( Aotus trivirgatus ). J Comp Neurol 171: 111–128.

    PubMed  CAS  Google Scholar 

  • Imig TJ, Morel A, Kauer CD (1982) Covariation of distribution of callosal cell bodies and callosal axon terminals in layer III of cat primary auditory cortex. Brain Res 251: 157–159.

    PubMed  CAS  Google Scholar 

  • Imig TJ, Irons WA, Samson FR (1990) Single-unit selectivity to azimuthal direction and sound pressure level of noise bursts in cat high-frequency primary auditory cortex. J Neurophysiol 63: 1448–1466.

    PubMed  CAS  Google Scholar 

  • Imig TJ, Irons WA, Samson FR (1990) Single-unit selectivity to azimuthal direction and sound pressure level of noise bursts in cat high-frequency primary auditory cortex. J Neurophysiol 63: 1448–1466.

    PubMed  CAS  Google Scholar 

  • Innocenti GM, Clarke S (1984) Bilateral transitory projections to visual areas from auditory cortex in kittens. Develop Brain Res 14: 143–148.

    Google Scholar 

  • Irvine DRF (1986) The Auditory Brainstem. A Review of the Structure and Function of Auditory Brainstem Processing Mechanisms. In: Ottoson D (ed) Progress in Sensory Physiology 7: 1–279.

    Google Scholar 

  • Irvine DRF, Huebner H (1979) Acoustic response characteristics of neurons in nonspecific areas of cat cerebral cortex. J Neurophysiol 42: 107–122.

    PubMed  CAS  Google Scholar 

  • Ivarsson C, de Ribaupierre Y, de Ribaupierre F (1988) Influence of auditory localization cues on neuronal activity in the auditory thalamus of the cat. J Neurophysiol 59: 586–606.

    CAS  Google Scholar 

  • Jacobowitz DM, Winsky L (1991) Immunocytochemical localization of calretinin in the forebrain of the rat. J Comp Neurol 304: 198–218.

    PubMed  CAS  Google Scholar 

  • Jansen KRL, Faull RLM, Dragunow M (1989) Excitatory amino acid receptors in the human cerebral cortex: a quantitative autoradiographic study comparing the distributions of [3H]TCP, [3H]glycine, L-[3H]glutamate, [3H]AMPA and [3H]kainic acid binding sites. Neuroscience 32: 587–607.

    PubMed  CAS  Google Scholar 

  • Jarrell TW, Gentile CG, Romanski LM, McCabe PM, Schneiderman N (1987) Involvement of cortical and thalamic auditory regions in retention of differential bradycardiac conditioning to acoustic conditioned stimuli in rabbits. Brain Res 412: 285–294.

    PubMed  CAS  Google Scholar 

  • Jen PH-S, Sun X, Lin PJJ (1989) Frequency and space representation in the primary auditory cortex of the frequency modulating bat Eptesicus fuscus. J Comp Physiol A 165: 1–14.

    PubMed  CAS  Google Scholar 

  • Jenkins WM, Masterton RB (1982) Sound localization: effects of unilateral lesions on central auditory system. J Neurophysiol 47: 987–1016.

    PubMed  CAS  Google Scholar 

  • Jenkins WM, Merzenich MM (1984) Role of cat primary auditory cortex for sound-localization behavior. J Neurophysiol 52: 819–847.

    PubMed  CAS  Google Scholar 

  • Johansson O, Hökfelt T, Eide RP (1984) Immunohistochemical distribution of somatostatin-like immunoreactivity in the central nervous system of the adult rat. Neuroscience 13: 265–339.

    PubMed  CAS  Google Scholar 

  • Jones EG (1985) The Thalamus. New York: Plenum Press.

    Google Scholar 

  • Jones EG, Burton H (1974) Cytoarchitecture and somatic sensory connectivity of thalamic nuclei other than the ventrobasal complex in the cat. J Comp Neurol 154: 395–432.

    PubMed  CAS  Google Scholar 

  • Jones EG, Burton H (1976) Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal, and temporal regions of primates. J Comp Neurol 168: 197–248.

    PubMed  CAS  Google Scholar 

  • Jones EG, Hendry SHC (1989) Differential calcium binding protein immunoreactivity distinguishes classes of relay neurons in monkey thalamic nuclei. Eur J Neurosci 1: 222–246.

    PubMed  Google Scholar 

  • Jones EG, Powell TPS (1969) An electron microscopic study of the mode of termination of cortico-thalamic fibres within the sensory relay nuclei of the thalamus. Proc R Soc London, Ser B 172: 173–185.

    CAS  Google Scholar 

  • Jones EG, Powell TPS (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93: 793–820.

    PubMed  CAS  Google Scholar 

  • Jones EG, Powell TPS (1971) An analysis of the posterior group of thalamic nuclei on the basis of its afferent connections. J Comp Neurol 143: 185–216.

    PubMed  CAS  Google Scholar 

  • Jones EG, Powell TPS (1973) Anatomical organization of the somatosensory cortex. In: Iggo A (ed) Handbook of Sensory Physiology, Vol 2, Somatosensory System. Berlin: Springer-Verlag, pp. 579–620.

    Google Scholar 

  • Jones EG, Rockel AJ (1971) The synaptic organization in the medial geniculate body of afferent fibres ascending from the inferior colliculus. Zeit fur Zellforsch und Mikroskop Anat 113: 44–66.

    CAS  Google Scholar 

  • Jordan H (1973) The structure of the medial geniculate nucleus (MGN): a cyto- and myeloarchitectonic study in the squirrel monkey. J Comp Neurol 148: 469–480.

    PubMed  CAS  Google Scholar 

  • Jouandet ML, Garey LJ, Lipp J-P (1984) Distribution of cells of origin of the corpus callosum and anterior commissure in the marmoset monkey. Anat Em- bryol 169: 45–59.

    CAS  Google Scholar 

  • Kaas JH, Sur M, Nelson RJ, Merzenich MM (1981) The postcentral somatosensory cortex. Multiple representations of the body in primates. In: Woolsey CN (ed) Cortical Sensory Organization, Vol 1, Multiple Somatic Areas. Clifton, NJ: Humana Press, pp. 29–45.

    Google Scholar 

  • Kamiya H, Itoh K, Yasui Y, Ino T, Mizuno N (1988) Somatosensory and auditory relay nucleus in the rostral part of the ventrolateral medulla: a morphological study in the cat. J Comp Neurol 273: 421–435.

    PubMed  CAS  Google Scholar 

  • Karten HJ (1967) The organization of the ascending auditory pathway in the pigeon (Columba livia) I. Diencephalic projections of the inferior colliculus (nucleus mesencephalicus lateralis, pars dorsalis). Brain Res 6: 409–427.

    PubMed  CAS  Google Scholar 

  • Karten HJ (1968) The ascending auditory pathway in the pigeon (Columba livia) II. Telencephalic projections of the nucleus ovoidalis thalami. Brain Res 11: 134–153.

    PubMed  CAS  Google Scholar 

  • Kaukoranta E, Sams M, Hari R, Hämäläinen M, Näätänen R (1989) Reactions of human auditory cortex to a change in tone duration. Hear Res 41: 15–22.

    PubMed  CAS  Google Scholar 

  • Kelley DB, Nottebohm F (1979) Projections of a telencephalic auditory nucleus- field L-in the canary. J Comp Neurol 183: 455–469.

    PubMed  CAS  Google Scholar 

  • Kelly JB, Judge PW (1985) Effects of medial geniculate lesions on sound localization by the rat. J Neurophysiol 53: 361–372.

    PubMed  CAS  Google Scholar 

  • Kelly JB, Kavanagh GL (1986) Effects of auditory cortical lesions on pure-tone sound localization by the albino rat. Behav Neurosci 100: 569–575.

    PubMed  CAS  Google Scholar 

  • Kelly JP, Wong D (1981) Laminar connections of the cat’s auditory cortex. Brain Res 212: 1–15.

    PubMed  CAS  Google Scholar 

  • Kelly JB, Larue DT, Sally SL, Cheff SJ, Kleinberg JL, Winer JA (1993) Origins of medial geniculate body projections to physiologically defined zones of rat primary auditory cortex (in preparation).

    Google Scholar 

  • Kesarev VS, Malofeyeva LI, Trykova OV (1977) Ecological specificity of cetacean neocortex. J für Hirnforsch 18: 447–460.

    CAS  Google Scholar 

  • Kiang NY-S, with the assistance of Watanabe T, Thomas EC, Clark LF (1965) Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve. MIT Research Monograph No. 35. Cambridge: MIT Press.

    Google Scholar 

  • King AJ, Palmer AR (1985) Integration of visual and auditory information in bimodal neurones in the guinea-pig superior colliculus. Expl Brain Res 60: 492–500.

    CAS  Google Scholar 

  • Kisvárday ZF, Adams CBT, Smith AD (1986) Synaptic connections of axo-so- matic (chandelier) cells in human epileptic temporal cortex. Neuroscience 19: 1179–1186.

    PubMed  Google Scholar 

  • Kisvarday ZF, Gulyas A, Beroukas D, North JB, Chubb IW, Somogyi P (1990) Synapses, axonal and dendritic patterns of GABA-immunoreactive neurons in human cerebral cortex. Brain 113: 793–812.

    PubMed  Google Scholar 

  • Kitzes LM, Wrege KS, Cassady JM (1980) Patterns of responses of cortical cells to binaural stimulation. J Comp Neurol 192: 455–472.

    PubMed  CAS  Google Scholar 

  • Knight PL (1977) Representation of the cochlea within the anterior auditory field (AAF) of the cat. Brain Res 130: 447–467.

    PubMed  CAS  Google Scholar 

  • Knight RT, Brailowsky S (1990) Auditory evoked potentials from the primary auditory cortex of the cat: topographic and pharmacological studies. Electroen- ceph Clin Neurophysiol 77: 225–232.

    CAS  Google Scholar 

  • Knight RT, Scabini D, Woods DL (1989a) Prefrontal gating of auditory transmission in humans. Brain Res 504: 338–342.

    PubMed  CAS  Google Scholar 

  • Knight RT, Scabini D, Woods DL, Clayworth CC (1989b) Contributions of temporal-parietal junction to the human auditory P3. Brain Res 502: 109–116.

    PubMed  CAS  Google Scholar 

  • Kobler JB, Isbey SF, Casseday JH (1987) Auditory pathways to the frontal cortex of the mustache bat, Pteronotus parnellii. Science 236: 824–826.

    PubMed  CAS  Google Scholar 

  • König N, Marty R (1974) On the functions and structure of deep layers of immature auditory cortex. J Physiol (Paris) 68: 145–155.

    Google Scholar 

  • König N, Pujol R, Marty R (1972) A laminar study of evoked potentials and unit responses in the auditory cortex of the postnatal cat. Brain Res 36: 469–473.

    PubMed  Google Scholar 

  • König N, Roch G, Marty R (1975) The onset of synaptogenesis in rat temporal cortex. Anat Embryol 148: 73–87.

    PubMed  Google Scholar 

  • Krieg WJS (1946) connections of the cerebral cortex I. The albino rat. A. Topography of the cortical areas. J Comp Neurol 84: 221–275.

    Google Scholar 

  • Kruger L (1959) The thalamus of the dolphin (Turslops truncatus) and comparison with other mammals. J Comp Neurol 111: 133–194.

    Google Scholar 

  • Kudo M, Niimi K (1980) Ascending projections of the inferior colliculus in the cat: an autoradiographic study. J Comp Neurol 191: 545–556.

    PubMed  CAS  Google Scholar 

  • Kudo M, Aitkin LM, Nelson JE (1989) Auditory forebrain organization of an Australian marsupial, the northern native cat (Dasyurus hallucatus). J Comp Neurol 279: 28–42.

    PubMed  CAS  Google Scholar 

  • Kudo M, Glendenning KK, Frost SB, Masterton RB (1986) Origin of mammalian thalamocortical projections. I. Telencephalic projections of the medial geniculate body in the opossum (Didelphis virginiana). J Comp Neurol 245: 176–197.

    PubMed  CAS  Google Scholar 

  • Kuffler S (1953) Discharge patterns and functional organization of mammalian retina. J Neurophysiol 16: 37–68.

    PubMed  CAS  Google Scholar 

  • Kujirai K, Suga N (1983) Tonotopic representation and space map in the non- primary auditory cortex of the mustached bat. Auris Nasus Larynx 10: 9–24.

    PubMed  CAS  Google Scholar 

  • Kuriki S, Murase M (1989) Neuromagnetic study of the auditory responses in right and left hemispheres of the human brain evoked by pure tones and speech sounds. Expl Brain Res 77: 127–134.

    CAS  Google Scholar 

  • Kurokawa T, Yoshida K, Yamamoto T, Oka H (1990) Frontal cortical projections from the suprageniculate nucleus in the rat, as demonstrated by the PHA-L method. Neurosci Lett 120: 259–262.

    PubMed  CAS  Google Scholar 

  • Lackner JR (1973) Visual rearrangement affects auditory localization. Neuropsy- chologia 11: 29–32.

    CAS  Google Scholar 

  • Lackner JR, Shenker B (1985) Proprioceptive influences on auditory and visual spatial localization. J Neurosci 5: 579–583.

    PubMed  CAS  Google Scholar 

  • Landry P, Deschenes M (1981) Intracortical arborizations and receptive fields of identified ventrobasal thalamocortical afferents to the primary somatic sensory cortex in the cat. J Comp Neurol 199: 345–372.

    PubMed  CAS  Google Scholar 

  • Larue DT, Huchton DM, Sun JY-M, Winer JA (1992) The GABAergic organization of the cat medial geniculate body: a quantitative study with post-embed- ding immunocytochemistry (in preparation).

    Google Scholar 

  • Lauter JL, Herscovitch P, Formby C, Raichle ME (1985) Tonotopic organization in human auditory cortex revealed by positron emission tomography. Hear Res 20: 199–205.

    PubMed  CAS  Google Scholar 

  • LeDoux IE, Sakaguchi A, Reis DJ (1984) Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. J Neurosci 4: 683–698.

    PubMed  CAS  Google Scholar 

  • LeDoux JE, Ruggiero DA, Reis DJ (1985) Projections to the subcortical forebrain from anatomically defined regions of the medial geniculate body in the rat. J Comp Neurol 242: 182–213.

    PubMed  CAS  Google Scholar 

  • LeDoux JE, Iwata J, Pearl D, Reis DJ (1986a) Disruption of auditory but not visual learning by destruction of intrinsic neurons in the rat medial geniculate body. Brain Res 371: 395–399.

    PubMed  CAS  Google Scholar 

  • LeDoux JE, Sakaguchi A, Iwata J, Reis DJ (1986b) Interruption of projections from the medial geniculate body to an archi-neostriatal field disrupts the classical conditioning of emotional responses to acoustic stimuli. Neuroscience 17: 615–627.

    PubMed  CAS  Google Scholar 

  • LeDoux JE, Ruggiero DA, Forest R, Stornetta R, Reis DJ (1987) Topographic organization of convergent projections to the thalamus from the inferior colliculus and spinal cord in the rat. J Comp Neurol 264: 123–146.

    PubMed  CAS  Google Scholar 

  • LeDoux JE, Cicchetti P, Xagoraris A, Romanski LM (1990a) The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J Neurosci 10: 1062–1069.

    PubMed  CAS  Google Scholar 

  • LeDoux JE, Färb C, Ruggiero DA (1990b) Topographic organization of neurons in the acoustic thalamus that project to the amygdala. J Neurosci 10: 1043–1054.

    PubMed  CAS  Google Scholar 

  • Leppelsack H-J (1974) Funktionelle Eigenschaften der Hörbahn im Feld L des Neostriatum caudale des Staren. J Comp Physiol A 88: 271–320.

    Google Scholar 

  • Leppelsack H-J (1978) Unit responses to species-specific sounds in the auditory forebrain center of birds. Fed Proc 37: 2336–2341.

    PubMed  CAS  Google Scholar 

  • Leppelsack H-J, Vogt M (1976) Responses of auditory neurons in the forebrain of a songbird to stimulation with species-specific sounds. J Comp Physiol A 107: 263–274.

    Google Scholar 

  • LeVay S, Gilbert CD (1976) Laminar patterns of geniculocortical projection in the cat. Brain Res 113: 1–19.

    PubMed  CAS  Google Scholar 

  • Levey AI, Hallanger AE, Wainer BH (1987) Choline acetyltransferase immuno- reactivity in the rat thalamus. J Comp Neurol 257: 317–332.

    PubMed  CAS  Google Scholar 

  • Liegeois-Chauvel C, Morin C, Musolino A, Bancaud J, Chauvel P (1989) Evidence of a contribution of the auditory cortex to audiospinal facilitation in man. Brain 112: 375–391.

    PubMed  Google Scholar 

  • Liegeois-Chauvel C, Musolino A, Chauvel P (1991) Localization of the primary auditory cortex in man. Brain 114: 139–153.

    PubMed  Google Scholar 

  • Llinás R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol (London) 305: 171–195.

    Google Scholar 

  • Luethke LE, Krubitzer LA, Kaas JH (1985) Connections of auditory cortex in squirrels. Proc Soc Neurosci 11: 33.

    Google Scholar 

  • Luethke LE, Krubitzer LA, Kaas JH (1988) Cortical connections of electrophys- iologically and architectonically defined subdivisions of auditory cortex in squirrels. J Comp Neurol 268: 181–203.

    PubMed  CAS  Google Scholar 

  • Luethke LE, Krubitzer LA, Kaas JH (1989) Connections of primary auditory cortex in a new world monkey, Saguinus. J Comp Neurol 285: 487–513.

    PubMed  CAS  Google Scholar 

  • Lund JS, Henry GH, MacQueen CL, Harvey AR (1979) Anatomical organization of the primary visual cortex (area 17) of the cat. A comparison with area 17 of the monkey. J Comp Neurol 184: 599–618.

    PubMed  CAS  Google Scholar 

  • Mäkelä JP (1988) Contra- and ipsilateral auditory stimuli produce different activation patterns at the human auditory cortex. A neuromagnetic study. Eur J Physiol 412: 12–16.

    Google Scholar 

  • Mäkelä JP, Hari R, Linnankivi A (1987) Different analysis of frequency and amplitude modulations of a continuous tone in the human auditory cortex. A neuromagnetic study. Hear Res 27: 257–264.

    PubMed  Google Scholar 

  • Mäkelä JP, Hari R, Leinonen L (1988) Magnetic responses in the human auditory cortex to noise/square wave transitions. Electroenceph Clin Neurophysiol 69: 423–430.

    PubMed  Google Scholar 

  • Mäkelä JP, Karmos G, Molnär M, Csepe V, Winkler I (1990) Steady-state responses from the cat auditory cortex. Hear Res 45: 41–50.

    PubMed  Google Scholar 

  • Malach R, Ebert R, Van Sluyters RC (1984) Recovery from effects of brief monocular deprivation in the kitten. J Neurophysiol 51: 538–551.

    PubMed  CAS  Google Scholar 

  • Manley JA, Mueller-Preuss P (1978a) Response variability in the mammalian auditory cortex: an objection to feature detection? Fed Proc 37: 2355–2359.

    PubMed  CAS  Google Scholar 

  • Manley JA, Müller-Preuss P (1978b) Response variability of auditory cortex cells in the squirrel monkey to constant acoustic stimuli. Expl Brain Res 32: 171–180.

    CAS  Google Scholar 

  • Markowitsch HJ, Emmans D, Irle D, Streicher M, Preilowski B (1985) Cortical and subcortical afferents of the primate’s temporal pole: a study of rhesus monkeys, squirrel monkeys, and marmosets. J Comp Neurol 242: 425–458.

    PubMed  CAS  Google Scholar 

  • Martin KAC (1988) From single cells to simple circuits in the cerebral cortex. Quart J Expl Physiol 73: 637–702.

    CAS  Google Scholar 

  • Masterton RB, Hodos W, Jenson H (1976) (eds) Evolution, Brain, and Behavior: Persistent Problems. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Matsubara JA, Phillips DP (1988) Intracortical connections and their physiological correlates in the primary auditory cortex ( AI) of the cat. J Comp Neurol 268: 38–48.

    CAS  Google Scholar 

  • McCormick DA (1989) GABA as an inhibitory transmitter in human cerebral cortex. J Neurophysiol 62: 1018–1027.

    PubMed  CAS  Google Scholar 

  • McCormick DA, Feeser HR (1990) Functional implications of burst firing and single spike activity in lateral geniculate relay neurons. Neuroscience 39: 103–113.

    PubMed  CAS  Google Scholar 

  • McCormick DA, Pape H-C (1990) Noradrenergic and serotonergic modulation of a hyperpolarization-activated cation current in thalamic relay neurones. J Physiol (London) 431: 319–342.

    CAS  Google Scholar 

  • McCormick DA, Prince DA (1986) Acetylcholine produces burst firing in thalamic reticular neurones by activating a potassium conductance. Nature 319: 402–405.

    PubMed  CAS  Google Scholar 

  • McCormick DA, Prince DA (1987) Actions of acetylcholine in the guinea-pig and cat medial and lateral geniculate nuclei, in vitro. J Physiol (London) 431: 319–342.

    Google Scholar 

  • McGuire BA, Hornung J-P, Gilbert CD, Wiesel TN (1984) Patterns of synaptic input to layer 4 of cat striate cortex. J Neurosci 4: 3021–3033.

    PubMed  CAS  Google Scholar 

  • McKenna TM, Ashe JH, Hui GK, Weinberger NM (1988) Muscarinic agonists modulate spontaneous and evoked unit discharge in auditory cortex of cat. Synapse 2: 54–68.

    PubMed  CAS  Google Scholar 

  • McKenna TM, Ashe JH, Weinberger NM (1989) Cholinergic modulation of frequency receptive fields in auditory cortex: I. Frequency-specific effects of muscarinic agonists. Synapse 4: 30–43.

    PubMed  CAS  Google Scholar 

  • McMullen NT, Glaser EM (1982a) Morphology and laminar distribution of non- pyramidal neurons in the auditory cortex of the rabbit. J Comp Neurol 208: 85–106.

    PubMed  CAS  Google Scholar 

  • McMullen NT, Glaser EM (1982b) Tonotopic organization of rabbit auditory cortex. Expl Neurol 75: 208–220.

    CAS  Google Scholar 

  • McMullen NT, Glaser EM (1988) Auditory cortical responses to neonatal deafening: pyramidal neuron spine loss without changes in growth or orientation. Expl Brain Res 72: 195–200.

    CAS  Google Scholar 

  • McMullen NT, Glaser EM, Tagamets M (1984) Morphology of spine-free non- pyramidal neurons in rabbit auditory cortex. J Comp Neurol 222: 383–396.

    PubMed  CAS  Google Scholar 

  • McMullen NT, Goldberger B, Suter CM, Glaser EM (1988) Neonatal deafening alters nonpyramidal dendrite orientation in auditory cortex: a computer microscope study. J Comp Neurol 267: 91–106.

    Google Scholar 

  • Mehler WR, Feferman ME, Nauta WJH (1960) Ascending axon degeneration following anterolateral cordotomy. An experimental study in the monkey. Brain 83: 718–750.

    PubMed  CAS  Google Scholar 

  • Meredith MA, Clemo HR (1989) Auditory cortical projection from the anterior ectosylvian sulcus (field AES) to the superior colliculus in the cat: an anatomical and electrophysiological study. J Comp Neurol 289: 687–707.

    PubMed  CAS  Google Scholar 

  • Merzenich MM, Brugge JF (1973) Representation of the cochlear partition on the superior temporal plane of the macaque monkey. Brain Res 50: 275–296.

    PubMed  CAS  Google Scholar 

  • Merzenich MM, Knight PL, Roth GL (1975) Representation of cochlea within primary auditory cortex in the cat. J Neurophysiol 38: 231–249.

    PubMed  CAS  Google Scholar 

  • Merzenich MM, Kaas JH, Roth GL (1976) Auditory cortex in the grey squirrel: tonotopic organization and architectonic fields. J Comp Neurol 166: 387–402.

    PubMed  CAS  Google Scholar 

  • Merzenich MM, Kaas JH, Wall J, Nelson RJ, Sur M, Felleman D (1983) Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation. Neuroscience 8: 33–55.

    PubMed  CAS  Google Scholar 

  • Merzenich MM, Jenkins WM, Middlebrooks JC (1984) Observations and hypotheses on special organizational features of the central auditory nervous system. In: Edelman GM, Gall WE, Cowan WM (eds) Dynamic Aspects of Neo- cortical Function. New York: John Wiley & Sons, pp. 397–424.

    Google Scholar 

  • Mesulam M-M, Pandya DN (1973) The projection of the medial geniculate complex within the sylvian fissure of the rhesus monkey. Brain Res 60: 315–333.

    PubMed  CAS  Google Scholar 

  • Metherate R, Weinberger NM (1989) Acetylcholine produces stimulus-specific receptive field alterations in cat auditory cortex. Brain Res 480: 372–377.

    PubMed  CAS  Google Scholar 

  • Metherate R, Ashe JH, Weinberger NM (1990) Acetylcholine modifies neuronal acoustic rate-level functions in guinea pig auditory cortex by an action at muscarinic receptors. Synapse 6: 364–368.

    PubMed  CAS  Google Scholar 

  • Meyer G, Albus K (1981) Spiny stellates as cells of origin of association fibres from area 17 to area 18, in the cat’s neocortex. Brain Res 210: 335–341.

    PubMed  CAS  Google Scholar 

  • Meyer G, Castañeyra-Perdomo A, Ferres-Torres R (1984) A type of apparently axonless granule cell in the cat auditory cortex. Anat Embryol 170: 319–320.

    PubMed  CAS  Google Scholar 

  • Meyer G, González-Hernández TH, Ferres-Torres R (1989) The spiny stellate neurons in layer IV of the human auditory cortex. A Golgi study. Neuroscience 33: 489–498.

    PubMed  CAS  Google Scholar 

  • Middlebrooks JC, Knudsen EI (1984) A neural code for auditory space in the cat’s superior colliculus. J Neurosci 4: 2621–2634.

    PubMed  CAS  Google Scholar 

  • Middlebrooks JC, Knudsen EI (1987) Changes in external ear position modify the spatial tuning of auditory units in the cat’s superior colliculus. J Neurophysiol 57: 672–687.

    PubMed  CAS  Google Scholar 

  • Middlebrooks JC, Pettigrew JD (1981) Functional classes of neurons in primary auditory cortex of the cat distinguished by sensitivity to sound location. J Neurosci 1: 107–120.

    PubMed  CAS  Google Scholar 

  • Middelbrooks JC, Zook JM (1983) Intrinsic organization of the cat’s medial geniculate body identified by projections to binaural response-specific bands in the primary auditory cortex. J Neurosci 3: 203–225.

    Google Scholar 

  • Middlebrooks JC, Dykes RW, Merzenich MM (1980) Binaural response-specific bands in primary auditory cortex (AI) of the cat: topographic organization orthogonal to isofrequency contours. Brain Res 181: 31 — 48.

    PubMed  CAS  Google Scholar 

  • Miller JM, Beaton RD, O’Connor T, Pfingst BE (1974) Response pattern complexity of auditory cells in the cortex of unanesthetized monkeys. Brain Res 69: 101–113.

    PubMed  CAS  Google Scholar 

  • Mitani A, Itoh K, Nomura S, Kudo M, Kaneko T, Mizuno N (1984) Thalamocortical projections to layer I of the primary auditory cortex in the cat: a horseradish peroxidase study. Brain Res 310: 347–350.

    PubMed  CAS  Google Scholar 

  • Mitani A, Shimokouchi M, Itoh K, Nomura S, Kudo M, Mizuno N (1985) Morphology and laminar organization of electrophysiologically identified neurons in primary auditory cortex in the cat. J Comp Neurol 235: 430–447.

    PubMed  CAS  Google Scholar 

  • Molinari M, Hendry SHC, Jones EG (1987) Distribution of certain neuropeptides in the primate thalamus. Brain Res 426: 270–289.

    PubMed  CAS  Google Scholar 

  • Montero VM (1983) Ultrastructural identification of axon terminals from the thalamic reticular nucleus in the medial geniculate body in the rat: an EM autoradiographic study. Expl Brain Res 51: 338–342.

    Google Scholar 

  • Moore JK (1980) The primate cochlear nuclei: loss of lamination as a phylogenetic process. J Comp Neurol 193: 609–629.

    PubMed  CAS  Google Scholar 

  • Moore JK, Karapas F, Moore RY (1977) Projections of the inferior colliculus in insectivores and primates. Brain Behav Evol 14: 301–327.

    PubMed  CAS  Google Scholar 

  • Moore RY, Goldberg JM (1966) Projections of the inferior colliculus in monkey. Expl Neurol 14: 429–438.

    CAS  Google Scholar 

  • Morán MA, Mufson EJ, Mesulam M-M (1987) Neural inputs into the tempo- ropolar cortex of the rhesus monkey. J Comp Neurol 256: 88–103.

    PubMed  Google Scholar 

  • Morel A (1980) Codage des sons dans le corps génouille median du chat: évaluation de l’organisation tonotopique di ses différents noyaux. Thèse de l’Université de Lausanne, Faculté des Sciences, Janis Druck H- Verlag Zurich, pp. 1–154.

    Google Scholar 

  • Morel A, Imig TJ (1987) Thalamic projections to fields A, AI, P, and VP in the cat auditory cortex. J Comp Neurol 265: 119–144.

    PubMed  CAS  Google Scholar 

  • Morest DK (1964) The neuronal architecture of the medial geniculate body of the cat. J Anat (London) 98: 611–630.

    CAS  Google Scholar 

  • Morest DK (1965a) The laminar structure of the medial geniculate body of the cat. J Anat (London) 99: 143–160.

    CAS  Google Scholar 

  • Morest DK (1965b) The lateral tegmental system of the midbrain and the medial geniculate body: study with Golgi and Nauta methods in the cat. J Anat (London) 99: 611–634.

    CAS  Google Scholar 

  • Morest DK (1971) Dendrodendritic synapses o f cells that have axons: the fine structure of the Golgi type II cell in the medial geniculate body of the cat. Zeit für Anat Entwicklungsgeschichte 133: 216–246.

    CAS  Google Scholar 

  • Morest DK (1974) LCN’s in the medial geniculate body of the cat. Neurosci Res Prog Bull 13: 367–377.

    Google Scholar 

  • Morest DK (1975) Synaptic relations of Golgi type II cells in the medial geniculate body of the cat. J Comp Neurol 162: 157–194.

    PubMed  CAS  Google Scholar 

  • Morest DK, Winer JA (1986) The comparative anatomy of neurons: homologous neurons in the medial geniculate body of the opossum and the cat. Adv Anat Embryol Cell Biol 97: 1–96.

    PubMed  CAS  Google Scholar 

  • Morgane PJ, Jacobs MS, Galaburda A (1985) Conservative features of neocortical evolution in dolphin brain. Brain Behav Evol 26: 176–184.

    PubMed  CAS  Google Scholar 

  • Moryś J, Soniewska P, Narkiewicz O, Pilgrim C (1987) Origin and terminals of the pretectothalamoclaustral connections in the cat. Folia Morphol Warszawa 46: 129–140.

    Google Scholar 

  • Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20: 408–434.

    PubMed  CAS  Google Scholar 

  • Mountcastle VB, Henneman E (1949) The representation of tactile sensibility in the thalamus of the monkey. J Comp Neurol 97: 409–440.

    Google Scholar 

  • Mudry KM, Constantine-Paton M, Capranica RR (1977) Auditory sensitivity of the diencephalon of the leopard frog Rana p. pipiens. J Comp Physiol A 114: 1–13.

    Google Scholar 

  • Mugnaini E, Oertel WH (1985) An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunohistochemistry. In: Björklund A and Hökfelt T (eds) Handbook of Chemical Neuroanatomy, Vol 4, GAB A and Neuropeptides in the CNS, Part I. Amsterdam: Elsevier Science Publishers B.V., pp. 436–608.

    Google Scholar 

  • Mugnaini E, Osen KK, Dahl A-L, Friedrich VL Jr, Korte G (1980) Fine structure of granule cells and related interneurons (termed Golgi cells) in the cochlear nuclear complex of cat, rat and mouse. J Neurocytol 9: 537–570.

    PubMed  CAS  Google Scholar 

  • Müller CM (1987) Differential effects of acetylcholine in the chicken auditory neostriatum and hyperstriatum ventral — studies in vivo and in vitro. J Comp Physiol A 161: 857–866.

    PubMed  Google Scholar 

  • Müller CM (1988) Distribution of GABAergic perikarya and terminals in the centers of the higher auditory pathway of the chicken. Cell Tissue Res 252: 99–106.

    PubMed  Google Scholar 

  • Müller CM, Leppelsack H-J (1985) Feature extraction and tonotopic organization in the avian auditory forebrain. Expl Brain Res 59: 587–599.

    Google Scholar 

  • Müller CM, Scheich H (1987a) GABAergic inhibition increases the neuronal selectivity to natural sounds in the avian auditory forebrain. Brain Res 414: 376–380.

    PubMed  Google Scholar 

  • Müller CM, Scheich H (1987b) GABA mediates interaural inhibition in the avian auditory forebrain. Naturwiss 74: 602–604.

    PubMed  Google Scholar 

  • Müller SC, Scheich H (1985) Functional organization of avian auditory field L. A comparative 2DG study. J Comp Physiol A 156: 1–12.

    Google Scholar 

  • Müller-Preuss P (1986) On the mechanism of call coding through auditory neurons in the squirrel monkey. Eur Arch Psych Neurol 236: 50–55.

    Google Scholar 

  • Müller-Preuss P, Jürgens U (1976) Projections from the ‘cingular’ vocalization area in the squirrel monkey. Brain Res 103: 29–43.

    PubMed  Google Scholar 

  • Müller-Preuss P, Ploog D (1981) Inhibition of auditory cortical neurons during Phonation. Brain Res 215: 61–76.

    PubMed  Google Scholar 

  • Mulligan KA, Törk I (1988) Serotoninergic innervation of the cat cerebral cortex. J Comp Neurol 270: 86–110.

    PubMed  CAS  Google Scholar 

  • Mysliveček J (1983) Development of the auditory evoked response in the auditory cortex in mammals. In: Romand R (ed) Development of Auditory and Vestibular Systems. New York: Academic Press, pp. 167–209.

    Google Scholar 

  • Neal JW, Pearson RCA, Powell TPS (1986) The relationship between the auditory cortex and the claustrum in the cat. Brain Res 366: 145–151.

    PubMed  CAS  Google Scholar 

  • Neff WD, Diamond IT, Casseday JH (1975) Behavioral studies of auditory discrimination: central nervous system. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, Vol V, Part 2, Auditory System. Anatomy, Physiology (Ear). Berlin: Springer-Verlag, pp. 307–400.

    Google Scholar 

  • Neville HJ, Schmidt A, Kutas M (1983) Altered visual-evoked potential in congenially deaf adults. Brain Res 266: 127–132.

    PubMed  CAS  Google Scholar 

  • Newman JD (1970) Midbrain regions relevant to auditory communication in songbirds. Brain Res 22: 259–261.

    PubMed  CAS  Google Scholar 

  • Newman JD, Lindsley DF (1976) Single unit analysis of auditory processing in squirrel monkey frontal cortex. Expl Brain Res 25: 169–181.

    CAS  Google Scholar 

  • Newman JD, Symmes D (1974) Arousal effects on unit responsiveness to vocalizations in squirrel monkey auditory cortex. Brain Res 78: 125–138.

    PubMed  CAS  Google Scholar 

  • Newman JD, Wollberg Z (1973) Responses of single neurons in the auditory cortex of squirrel monkeys to variants of a single call type. Expl Neurol 40: 821–824.

    CAS  Google Scholar 

  • Newman DB, Hilleary SK, Ginsberg CY (1989) Nuclear terminations of corti- coreticular fiber systems in rats. Brain Behav Evol 34: 223–264.

    PubMed  CAS  Google Scholar 

  • Neylon L, Haight JR (1983) Neocortical projections of the suprageniculate and posterior thalamic nuclei in the marsupial brush-tailed possum, Trichosurus vulpecula ( Phalangeridae), with a comparative commentary on the organization of the posterior thalamus in marsupial and placental mammals. J Comp Neurol 217: 357–375.

    PubMed  CAS  Google Scholar 

  • Nieuwenhuys R, Veening JG, Van Domburg P (1988/1989) Core and paracores: some new chemoarchitectural entities in the mammalian neuraxis. Acta Morphol Neerland Scand 26: 131–163.

    Google Scholar 

  • Niimi K, Naito F (1974) Cortical projections of the medial geniculate body in the cat. Expl Brain Res 19: 326–342.

    CAS  Google Scholar 

  • Niimi K, Matsuoka H (1979) Thalamocortical organization of the auditory system in the cat studied by retrograde axonal transport of horseradish peroxidase. Adv Anat Embryol Cell Biol 57: 1–56.

    PubMed  CAS  Google Scholar 

  • Niimi K, Matsuoka H, Yamazaki Y, Matsumoto H (1981) Thalamic afferents to the visual cortex in the cat studied by retrograde axonal transport ofhorseradish peroxidase. Brain Behav Evol 18: 114–139.

    PubMed  CAS  Google Scholar 

  • Niimi K, Ono K, Kusunose M (1984) Projections of the medial geniculate nucleus to layer 1 of the auditory cortex in the cat traced with horseradish peroxidase. Neurosci Lett 45: 223–228.

    PubMed  CAS  Google Scholar 

  • Norita M, Katoh Y (1987) The GABAergic neurons and axon terminals in the lateralis medialis-suprageniculate nuclear complex of the cat: GABA-immu- nocytochemical and WGA-HRP studies by light and electron microscopy. J Comp Neurol 253: 54–67.

    Google Scholar 

  • Norita M, Katoh Y (1988) Synaptic organization of the lateralis medialis-supra- geniculate nuclear (LM-Sg) complex in the cat. Prog Brain Res 75: 109–118.

    PubMed  CAS  Google Scholar 

  • Northcutt RG (1981) Audition and the central nervous system of fishes. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 331–353.

    Google Scholar 

  • Ogren MP, Hendrickson AE (1979) The structural organization of the inferior and lateral subdivisions of the Macaca monkey pulvinar. J Comp Neurol 188: 147–178.

    PubMed  CAS  Google Scholar 

  • Ohara PT, Lieberman AR, Hunt SP, Wu J-Y (1983) Neural elements containing glutamic acid decarboxylase (GAD) in the dorsal lateral geniculate nucleus of the rat: immunohistochemical studies by light and electron microscopy. Neuroscience 8: 189–211.

    PubMed  CAS  Google Scholar 

  • Ohara PT, Chazal H, Ralston HJ III (1989) Ultrastructural analysis of GABA- immunoreactive elements in the monkey thalamic ventrobasal complex. J Comp Neurol 283: 541–558.

    PubMed  CAS  Google Scholar 

  • Oleson TD, Ashe JH, Weinberger NM (1975) Modification of auditory and somatosensory system activity during pupillary conditioning in the paralyzed cat. J Neurophysiol 38: 1114–1139.

    PubMed  CAS  Google Scholar 

  • Oliver DL (1982) A Golgi study of the medial geniculate body of the tree shrew (Tupaia glis). J Comp Neurol 209: 1–16.

    PubMed  CAS  Google Scholar 

  • Oliver DL (1984) Neuron types in the central nucleus of the inferior colliculus that project to the medial geniculate body. Neuroscience 11: 409–424.

    PubMed  CAS  Google Scholar 

  • Oliver DL, Hall WC (1978a) The medial geniculate body of the tree shrew, Tupaia glis. I. Cytoarchitecture and midbrain connections. J Comp Neurol 182: 423–458.

    PubMed  CAS  Google Scholar 

  • Oliver DL, Hall WC (1978b) The medial geniculate body of the three shrew, Tupaia glis. II. Connections with the neocortex. J Comp Neurol 182: 459–494.

    PubMed  CAS  Google Scholar 

  • Oliver DL, Morest DK (1984) The central nucleus of the inferior colliculus in the cat. J Comp Neurol 222: 237–264.

    PubMed  CAS  Google Scholar 

  • Oliver DL, Merzenich MM, Roth GL, Hall WC, Kaas JH (1976) Tonotopic organization and connections of primary auditory cortex in the tree shrew. Anat Ree 184: 491.

    Google Scholar 

  • Oliver DL, Winer JA, Beckius GH, Saint Marie RL (1992) Morphology of GABAergic neurons in the cat inferior colliculus. (To be submitted).

    Google Scholar 

  • Olsen JF (1986) Processing of biosonar information by the medial geniculate body of the mustached bat. Doctoral dissertation, Washington University, St. Louis, pp. 1–325.

    Google Scholar 

  • Olson CR, Graybiel AM (1987) Ectosylvian visual area of the cat: location, re- tinotopic organization, and connections. J Comp Neurol 261: 277–294.

    PubMed  CAS  Google Scholar 

  • O’Neill WE, Suga N (1979) Target range-sensitive neurons in the auditory cortex of the mustache bat. Science 203: 69–73.

    PubMed  Google Scholar 

  • Ong WY, Garey LJ (1990) Neuronal architecture of the human temporal cortex. Anat Embryol 181: 351–364.

    PubMed  CAS  Google Scholar 

  • Orban GA, Hoffmann K-P, Duysens J (1985) Velocity sensitivity in the cat visual system. I. Responses of LGN cells to moving bar stimuli: a comparison with cortical areas 17 and 18. J Neurophysiol 54: 1026–1049.

    PubMed  CAS  Google Scholar 

  • Oyanagi K, Ohama E, Ikuta F (1989) The auditory system in methyl mercury intoxication: a neuropathological investigation of 14 autopsy cases in Niigata, Japan. Acta Neuropathol 77: 561–568.

    PubMed  CAS  Google Scholar 

  • Pallas SL, Roe AW, Sur M (1990) Visual projections induced into the auditory pathway of ferrets. I. Novel inputs to primary auditory cortex ( AI) from the LP/pulvinar complex and the topography of the MGN-AI projection. J Comp Neurol 298: 50–68.

    PubMed  CAS  Google Scholar 

  • Palmer AR, King AJ (1985) A monaural space map in the guinea pig superior colliculus. Hear Res 17: 267–280.

    PubMed  CAS  Google Scholar 

  • Pandya DN, Sanides F (1973) Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern. Zeit für Anat Entwicklungsgeschichte 139: 127–161.

    CAS  Google Scholar 

  • Pandya DN, Hallett M, Mukheijee SK (1969) Intra- and interhemispheric connections of the neocortical auditory system in the rhesus monkey. Brain Res 14: 49–65.

    PubMed  CAS  Google Scholar 

  • Pantev C, Hoke M, Lehnertz K, Lutkenhoner B (1989a) Neuromagnetic evidence of an amplitopic organization of the human auditory cortex. Electroenceph Clin Neurophysiol 72: 225–231.

    PubMed  CAS  Google Scholar 

  • Pantev C, Hoke M, Lehnertz K, Lutkenhoner B, Anogianakis G, Wittkowski W (1989b) Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. Electroenceph Clin Neurophysiol 69: 160–170.

    Google Scholar 

  • Pantev C, Hoke M, Lutkenhoner B, Lehnertz K (1989c) Tonotopic organization of the auditory cortex: pitch versus frequency representation. Science 246: 486–488.

    PubMed  CAS  Google Scholar 

  • Papez JW (1929) Central acoustic tract in cat and man. Anat Rec 42: 60.

    Google Scholar 

  • Patterson HA (1976) An anterograde degeneration and retrograde axonal transport study of the cortical projections of the rat medial geniculate body. Doctoral dissertation, Boston University Graduate School, Boston, pp. 1–171.

    Google Scholar 

  • Paula-Barbosa MM, Feyo PB, Sousa-Pinto A (1975) The association connexions of the suprasylvian fringe ( SF) and other areas of the cat auditory cortex. Expl Brain Res 23: 535–554.

    CAS  Google Scholar 

  • Payne BR, Pearson HE, Cornwell P (1988) Neocortical connections in fetal cats. Neurosci Res 5: 513–543.

    PubMed  CAS  Google Scholar 

  • Pelleg-Toiba R, Wollberg Z (1989) Tuning properties of auditory cortex cells in the awake squirrel monkey. Expl Brain Res 74: 353–364.

    CAS  Google Scholar 

  • Penfield W, Perot P (1963) The brain’s record of auditory and visual experience. Brain 86: 595–697.

    PubMed  CAS  Google Scholar 

  • Penny GR, Conley M, Schmechel DE, Diamond IT (1984) The distribution of glutamic acid decarboxylase immunoreactivity in the diencephalon of the opossum and the rabbit. J Comp Neurol 228: 38–56.

    PubMed  CAS  Google Scholar 

  • Perrott DR, Saberi K, Brown K, Strybel TZ (1990) Auditory psychomotor coordination and visual search performance. Percep Psychophys 48: 214–226.

    CAS  Google Scholar 

  • Peters A, Harriman KM (1988) Enigmatic bipolar cell of rat visual cortex. J Comp Neurol 267: 409–432.

    PubMed  CAS  Google Scholar 

  • Peters A, Regidor J (1981) A reassessment of the forms of nonpyramidal neurons in area 17 of cat visual cortex. J Comp Neurol 203: 685–716.

    PubMed  CAS  Google Scholar 

  • Peterson BA, Winer JA (1988) Projections of the cat medial geniculate body to the primary auditory cortex. Proc Soc Neurosci 14: 492.

    Google Scholar 

  • Peterson BA, Winer JA (1989) GABA-immunoreactive neurons and puncta in layers IV and V of cat primary auditory cortex ( AI ). Proc Soc Neurosci 15: 1110.

    Google Scholar 

  • Peterson BA, Winer J A (1993) Laminar and areal patterns of input to auditory cortical fields from the cat medial geniculate body (in preparation).

    Google Scholar 

  • Peterson BA, Prieto J J, Winer JA (1990) GABA-immunoreactive axon terminals in cat primary auditory cortex ( AI ). Proc Soc Neurosci 16: 796.

    Google Scholar 

  • Petrides M, Pandya DN (1988) Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey. J Comp Neurol 273: 52–66.

    PubMed  CAS  Google Scholar 

  • Petrusz, P, Merchenthaler I, Maderdrut JL (1985) Distribution of enkephalin- containing neurons in the central nervous system. In: Bjorklund A, Hokfelt T (eds) Handbook of Chemical Neuroanatomy, Vol 4, GABA and Neuropeptides in the CNS, Part I. Amsterdam: Elsevier Science Publishers B.V., pp. 273–334.

    Google Scholar 

  • Pfingst BE, O’Connor TA (1981) Characteristics of neurons in auditory cortex of monkeys performing a simple auditory task. J Neurophysiol 45: 16–34.

    PubMed  CAS  Google Scholar 

  • Pfingst BE, O’Connor TA, Miller JM (1977) Response plasticity of neurons in auditory cortex of the rhesus monkey. Expl Brain Res 29: 393–404.

    CAS  Google Scholar 

  • Phillips DP, Farmer ME (1990) Acquired word deafness, and the temporal grain of sound representation in the primary auditory cortex. Behav Brain Res 40: 85–94.

    PubMed  CAS  Google Scholar 

  • Phillips DP, Hall SE (1990) Response timing constraints on the cortical representation of sound time structure. J Acoust Soc Am 88: 1403–1411.

    PubMed  CAS  Google Scholar 

  • Phillips DP, Irvine DRF (1981) Responses of single neurons in physiologically defined area AI of cat cerebral cortex: sensitivity to interaural intensity differences. Hear Res 4: 299–307.

    PubMed  CAS  Google Scholar 

  • Phillips DP, Irvine DRF (1982) Properties of single neurons in the anterior auditory field ( AAF) of the cat cerebral cortex. Brain Res 248: 237–244.

    PubMed  CAS  Google Scholar 

  • Phillips DP, Kelly JB (1988) Coding of tone-pulse amplitude by single neurons in auditory cortex of albino rats (Rattus norvegiens). Hear Res 37: 267–279.

    Google Scholar 

  • Phillips DP, Orman SS (1984) Responses of single neurons in posterior field of cat auditory cortex to tonal stimulation. J Neurophysiol 51: 147–163.

    PubMed  CAS  Google Scholar 

  • Poggio GF, Mountcastle VB (1960) A study of the functional contributions of the lemniscal and spinothalamic systems to somatic sensibility. Central nervous mechanisms in pain. Bull Johns Hopkins Hosp 106: 266–316.

    PubMed  CAS  Google Scholar 

  • Popowits JM, Larue DT, Winer JA (1988) Glutamate is a major transmitter in the rat medial geniculate body. Proc Soc Neurosci 14: 490.

    Google Scholar 

  • Powell TPS, Erulkar SD (1962) Transneuronal cell degeneration in the auditory relay nuclei of the cat. J Anat (London) 96: 249–268.

    CAS  Google Scholar 

  • Preuss A, Muller-Preuss P (1990) Processing of amplitude modulated sounds in the medial geniculate body of squirrel monkeys. Expl Brain Res 79: 207–211.

    CAS  Google Scholar 

  • Prieto JJ, Peterson BA, Winer JA (1990) The GABAergic neurons in cat primary auditory cortex. Proc Soc Neurosci 16: 796.

    Google Scholar 

  • Prieto JJ, Peterson BA, Winer JA (1992a) Morphology and spatial distribution of GABAergic neurons in cat primary auditory cortex (AI ), (in preparation).

    Google Scholar 

  • Prieto JJ, Peterson BA, Winer JA (1992b) Laminar distribution and neuronal targets of GABAergic axon terminals in cat primary auditory cortex (AI ), (in preparation).

    Google Scholar 

  • Prieto JJ, Winer JA (1991) Neurons of layer VI in cat primary auditory cortex (AI): study with Golgi method and GABA and GAD immunocytochemistry. Proc Soc Neurosci 17: 301.

    Google Scholar 

  • Pritz MB (1974a) Ascending connections of a midbrain auditory area in a crocodile, Caiman crocodilus. J Comp Neurol 153: 179–198.

    PubMed  CAS  Google Scholar 

  • Pritz MB (1974b) Ascending connections of a thalamic auditory area in a crocodile, Caiman crocodilus. J Comp Neurol 153: 199–214.

    PubMed  CAS  Google Scholar 

  • Pritz MB, Stritzel ME (1988) Thalamic nuclei that project to the reptilian telencephalon lack GABA and GAD immunoreactive neurons and puncta. Brain Res 457: 154–159.

    PubMed  CAS  Google Scholar 

  • Pujol R (1972) Development of tone-burst responses along the auditory pathway in the cat. Acta Otolaryngol 74: 383–391.

    PubMed  CAS  Google Scholar 

  • Raczkowski D, Diamond IT, Winer J (1976) Organization of thalamocortical auditory system in the cat studied with horseradish peroxidase. Brain Res 101: 345–354.

    PubMed  CAS  Google Scholar 

  • Rajan R, Aitkin LM, Irvine DRF, McKay J (1990a) Azimuthal sensitivity of neurons in primary auditory cortex of cats. I. Types of sensitivity and the effects of variations in stimulus parameters. J Neurophysiol 64: 872–887.

    PubMed  CAS  Google Scholar 

  • Rajan R, Aitkin LM, Irvine DRF (1990b) Azimuthal sensitivity of neurons in primary auditory cortex of cats. II. Organization along frequency-band strips. J Neurophysiol 64: 888–902.

    PubMed  CAS  Google Scholar 

  • Ramón y Cajal S (1900) Estudios sobre la corteza humana III: Corteza acústica. Revista Trimestral Micrográfica, Madrid 5:129–183. Reprinted in DeFelipe J and Jones EG (1988) (eds and trans) Cajal on the Cerebral Cortex. An Annotated Translation of the Compete Writings. In: Corsi P, Jones EG, Shepherd GM (eds) History of Neuroscience, Vol 1, pp. 251–288.

    Google Scholar 

  • Ramón y Cajal S (1911) Histologie du Système Nerveux de l’Homme et des Vértébres, trans Azoulay L. Maloine, Paris (reprinted in 1972 by Consejo Superior de Investigaciones Çientificas).

    Google Scholar 

  • Reale RA, Brugge JF (1990) Auditory cortical neurons are sensitive to static and continuously changing interaural phase cues. J Neurophysiol 64: 1247–1260.

    PubMed  CAS  Google Scholar 

  • Reale RA, Imig TJ (1980) Tonotopic organization in auditory cortex of the cat. J Comp Neurol 182: 265–291.

    Google Scholar 

  • Reale RA, Imig TJ (1983) Auditory cortical field projections to the basal ganglia of the cat. Neuroscience 8: 67–86.

    PubMed  CAS  Google Scholar 

  • Reale RA, Kettner RE (1986) Topography of binaural organization in primary auditory cortex of the cat: effects of changing interaural intensity. J Neurophysiol 56: 663–682.

    PubMed  CAS  Google Scholar 

  • Reale RA, Brugge JF, Feng JZ (1983) Geometry and orientation of neuronal processes in cat primary auditory cortex ( A I) related to characteristic-frequency maps. Proc Nat Acad Sci (USA) 80: 5449–5453.

    CAS  Google Scholar 

  • Reale RA, Brugge JF, Chan JCK (1987) Maps of auditory cortex in cats reared after unilateral cochlear ablation in the neonatal period. Develop Brain Res 34: 281–290.

    Google Scholar 

  • Rebillard G, Rebillard M, Carlier E, Pujol R (1976) Histo-physiological relationships in the deaf white cat auditory system. Acta Otolaryngol 82: 48–56.

    PubMed  CAS  Google Scholar 

  • Rebillard G, Carlier E, Rebillard M, Pujol R (1977) Enhancement of visual responses on the primary auditory cortex of the cat after an early destruction of cochlear receptors. Brain Res 129: 162–164.

    PubMed  CAS  Google Scholar 

  • Rebillard G, Rebillard M, Pujol R (1980) Factors affecting the recording of visual- evoked potentials from the deaf cat primary auditory cortex. Brain Res 188: 252–254.

    PubMed  CAS  Google Scholar 

  • Redies H, Sieben U, Creutzfeldt OD (1989a) Functional subdivisions in the auditory cortex of the guinea pig. J Comp Neurol 282: 473–488.

    PubMed  CAS  Google Scholar 

  • Redies H, Brandner S, Creutzfeldt OD (1989b) Anatomy of the auditory thalamocortical system of the guinea pig. J Comp Neurol 282: 489–511.

    PubMed  CAS  Google Scholar 

  • Reinoso-Suárez F (1984) Connectional patterns in parietotemporoccipital association cortex of the feline cerebral cortex. In: Reinoso-Suárez F and Ajmone-Marsan C (eds) Cortical Integration. New York: Raven Press, pp. 255–278.

    Google Scholar 

  • Revishchin AV, Garey LJ (1990) The thalamic projection to the sensory neocortex of the porpoise, Phocoena phocoena. J Anat (London) 169: 85–102.

    CAS  Google Scholar 

  • Revishchin AV, Garey LJ (1990) The thalamic projection to the sensory neocortex of the porpoise, Phocoena phocoena. J Anat (London) 169: 85–102.

    CAS  Google Scholar 

  • Rhode WS, Oertel D, Smith PH (1983) Physiological properties of cells labeled intracellulary with horseradish peroxidase in cat ventral cochlear nucleus. J Comp Neurol 213: 448–463.

    PubMed  CAS  Google Scholar 

  • Rinvik E, Ottersen OP, Storm-Mathisen J (1987) Gamma-aminobutyrate-like im-munoreactivity in the thalamus of the cat. Neuroscience 21: 781–805.

    PubMed  CAS  Google Scholar 

  • Rioch D McK (1929) Studies on the diencephalon of carnivora. Part I. The nuclear configuration of the thalamus, epithalamus, and hypothalamus of the dog and cat. J Comp Neurol 49: 1–119.

    Google Scholar 

  • RoBards MJ, Watkins DW III, Masterton RB (1976) An anatomical study of some somesthetic afferents to the intercollicular terminal zone of the midbrain of the opossum. J Comp Neurol 170: 499–524.

    PubMed  CAS  Google Scholar 

  • Robertson D, Irvine DRF (1989) Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J Comp Neurol 282: 456–471.

    PubMed  CAS  Google Scholar 

  • Robertson RT, Gragnola TG, Yu J (1990) Patterns of transiently expressed ac-etylcholinesterase activity in cerebral cortex and dorsal thalamus of rats with cytotoxin-induced microencephaly. Int J Develop Neurosci 8: 223–232.

    CAS  Google Scholar 

  • Robin DA, Tranel D, Damasio H (1990) Auditory perception of temporal and spectral events in patients with focal left and right cerebral lesions. Brain Lang 39: 539–555.

    PubMed  CAS  Google Scholar 

  • Robson JA (1983) The morphology of corticofugal axons to the dorsal lateral geniculate nucleus in the cat. J Comp Neurol 216: 89–103.

    PubMed  CAS  Google Scholar 

  • Robson JA (1984) Reconstructions of corticogeniculate axons in the cat. J Comp Neurol 225: 193–200.

    PubMed  CAS  Google Scholar 

  • Rockel AJ, Hiorns RW, Powell TPS (1980) The basic uniformity in structure of the neocortex. Brain 103: 221–244.

    PubMed  CAS  Google Scholar 

  • Roda JM, Reinoso-Suárez F (1983) Topographic organization of thalamic projections to the cortex of the anterior ectosylvian sulcus in the cat. Expl Brain Res 49: 131–139.

    CAS  Google Scholar 

  • Rodrigues-Dagaeff C, Simm G, de Ribaupierre Y, Villa A, de Ribaupierre F, Rouiller EM (1989) Functional organization of the ventral division of the medial geniculate body of the cat: evidence for a rostro-caudal gradient of response properties and cortical projections. Hear Res 39: 103–125.

    CAS  Google Scholar 

  • Roe AW, Pallas SL, Hahm J-O, Sur M (1990) A map of visual space induced in primary auditory cortex. Science 250: 818–820.

    PubMed  CAS  Google Scholar 

  • Roger M, Arnault P (1989) Anatomical study of the connections of the primary auditory area in the rat. J Comp Neurol 287: 339–356.

    PubMed  CAS  Google Scholar 

  • Roland PE, Skinhoj E, Lassen NA (1981) Focal activations of human cerebral cortex during auditory discrimination. J Neurophysiol 45: 1139–1151.

    PubMed  CAS  Google Scholar 

  • Romani GL, Williamson SJ, Kaufman L (1982) Tonotopic organization of tfie human auditory cortex. Science 216: 1339–1340.

    PubMed  CAS  Google Scholar 

  • Room P, Groenenwegen HJ (1986) Connections of the parahippocampal region. I. Cortical afferents. J Comp Neurol 251: 415–450.

    PubMed  CAS  Google Scholar 

  • Rose JE, Woolsey CN (1949) The relations of thalamic connections, cellular structure, and evocable electrical activity in the auditory region of the cat. J Comp Neurol 91: 441–466.

    PubMed  CAS  Google Scholar 

  • Rose JE, Woolsey CN (1958) Cortical projections and functional organization of thalamic auditory system of cat. In: Harlow HF, Woolsey CN (eds) Biological and Biochemical Bases of Behavior. Madison: University of Wisconsin Press, pp. 127–150.

    Google Scholar 

  • Roucoux-Hanus M, Boisacq-Schepens N (1977) Ascending vestibular projections: further results at cortical and thalamic levels in the cat. Expl Brain Res 29: 283–292.

    CAS  Google Scholar 

  • Rouiller EM, de Ribaupierre F (1985) Origins of afferents to physiologically defined regions of the medial geniculate body of the cat: ventral and dorsal divisions. Hear Res 19: 97–114.

    CAS  Google Scholar 

  • Rouiller EM, de Ribaupierre F (1990) Arborization of corticothalamic axons in the auditory thalamus of the cat: a PHA-L tracing study. Neurosci Lett 108: 29–35.

    CAS  Google Scholar 

  • Rouiller EM, Colomb E, Capt M, de Ribaupierre F (1985) Projections of the reticular complex of the thalamus onto physiologically characterized regions of the medial geniculate body. Neurosci Lett 53: 227–232.

    CAS  Google Scholar 

  • Rouiller EM, Hornung JP, de Ribaupierre F (1989a) Extrathalamic ascending projections to physiologically identified fields of the cat auditory cortex. Hear Res 40: 233–246.

    CAS  Google Scholar 

  • Rouiller EM, Rodrigues-Dagaeff C, Simm G, de Ribaupierre Y, Villa A, de Ribaupierre F (1989b) Functional organization of the medial division of the medial geniculate body of the cat: tonotopic organization, spatial distribution of response properties and cortical connections. Hear Res 39: 127–146.

    CAS  Google Scholar 

  • Rubel EW (1978) Ontogeny of structure and function in the vertebrate auditory system. In: Jacobson M (ed) Handbook of Sensory Physiology, Vol IX, Development of Sensory Systems. New York: Springer-Verlag, pp. 135–237.

    Google Scholar 

  • Rudell AP, Eberle LP (1985) Acoustic facilitation of the Hoffman reflex. Expl Neurol 89: 592–602.

    CAS  Google Scholar 

  • Russchen FT (1982) Amygdalopetal projections in the cat. II. Subcortical afferent connections. A study with retrograde tracing techniques. J Comp Neurol 207: 157–176.

    PubMed  CAS  Google Scholar 

  • Rustioni A, Cuénod M (1982) Selective retrograde transport of D-aspartate in spinal interneurons and cortical neurons of rats. Brain Res 236: 143–155.

    PubMed  CAS  Google Scholar 

  • Ryan AF, Woolf NK, Sharp FR (1982) Tonotopic organization in the central auditory pathway of the Mongolian gerbil: a 2-deoxyglucose study. J Comp Neurol 207: 369–380.

    PubMed  CAS  Google Scholar 

  • Ryan AF, Miller JM, Pfingst BE, Martin GK (1984) Effects of reaction time performance on single-unit activity in the central auditory pathway of the rhesus macaque. J Neurosci 4: 298–308.

    PubMed  CAS  Google Scholar 

  • Ryugo DK, Fekete DM (1982) Morphology of primary axosomatic endings in the anteroventral cochlear nucleus of the cat: a study of the endbulbs of Held. J Comp Neurol 210: 239–257.

    PubMed  CAS  Google Scholar 

  • Ryugo DK, Killackey HP (1974) Differential telencephalic projections of the medial and ventral divisions of the medial geniculate body of the rat. Brain Res 82: 173–177.

    PubMed  CAS  Google Scholar 

  • Ryugo DK, Weinberger NM (1976) Corticofugal modulation of the medial geniculate body. Expl Neurol 51: 377–391.

    CAS  Google Scholar 

  • Ryugo DK, Weinberger NM (1978) Differential plasticity of morphologically distinct populations in the medial geniculate body of the cat during classical conditioning. Behav Biol 22: 275–301.

    PubMed  CAS  Google Scholar 

  • Saini KD, Leppelsack H-J (1977) Neuronal arrangement of the auditory field L of the neostriatum of the starling. Cell Tissue Res 176: 309–316.

    PubMed  CAS  Google Scholar 

  • Saini KD, Leppelsack H-J (1981) Cell types of the auditory caudomedial neostriatum of the starling (Sturnus vulgaris). J Comp Neurol 1981: 209–229.

    Google Scholar 

  • Sakai K, Salvert D, Kitahama K, Kimura H, Maeda T, Jouvet M (1983) Projections ascendantes et descendantes des neurones de l’hypothalamus posterior immunoreactifs à la Serotonine après administration 5-hydroxytrytophane chez le chat. Comptes Rendus Academie des Sciences (Paris) Série III 296: 1013–1018.

    CAS  Google Scholar 

  • Sakurai Y (1990) Cells in rat auditory system have sensory-delay correlates during the performance of an auditory working memory task. Behav Neurosci 104: 856–868.

    PubMed  CAS  Google Scholar 

  • Sally SL, Kelly JB (1988) Organization of auditory cortex in the albino rat: sound frequency. J Neurophysiol 59: 1627–1638.

    PubMed  CAS  Google Scholar 

  • Scheel M (1988) Topographic organization of the auditory thalamocortical system in the albino rat. Anat Embryol 179: 181–190.

    PubMed  CAS  Google Scholar 

  • Scheibel ME, Scheibel AB (1966) Patterns of organization in specific and nonspecific thalamic fields. In: Purpura DP, Yahr MD (eds) The Thalamus. New York: Columbia University Press, pp. 13–46.

    Google Scholar 

  • Scheibner T, Törk I (1987) Ventromedial mesencephalic tegmental (VMT) projections to ten functionally different cortical areas in the cat: topography and quantitative analysis. J Comp Neurol 259: 247–265.

    PubMed  CAS  Google Scholar 

  • Scheich H (1983) Two columnar systems in the auditory neostriatum of the chick: evidence from 2-deoxyglucose. Expl Brain Res 51: 99–105.

    Google Scholar 

  • Scheich H, Bonke BA (1981) Tone-versus FM-induced patterns of excitation and suppression in the 14-C-2-deoxyglucose labeled auditory cortex of the guinea fowl. Expl Brain Res 44: 445–449.

    CAS  Google Scholar 

  • Scheich H, Langner G, Bonke D (1979) Responsiveness of units in the auditory neostriatum of the guinea fowl (Numida meleagris) to species-specific calls and synthetic stimuli. II. Discrimination of Iambus-like calls. J Comp Physiol A 132: 257–276.

    Google Scholar 

  • Schiffmann S, Campistron G, Tugendhaft P, Brotchi J, Flament-Durand J, Geffard M, Vanderhaeghen J-J (1988) Immunocytochemical detection of GABAergic nerve cells in the human temporal cortex using a direct 7-aminobutyric acid antiserum. Brain Res 442: 270–278.

    PubMed  CAS  Google Scholar 

  • Schreiner CE, Cynader MS (1984) Basic functional organization of second auditory cortical field ( All) of the cat. J Neurophysiol 51: 1284–1305.

    PubMed  CAS  Google Scholar 

  • Schreiner CE, Mendelson JR (1990) Functional topography of cat primary auditory cortex: distribution of integrated excitation. J Neurophysiol 64: 1442–1459.

    PubMed  CAS  Google Scholar 

  • Schreiner CE, Urbas JV (1986) Representation of amplitude modulation in the auditory cortex of the cat. I. The anterior auditory field ( AAF ). Hear Res 21: 227–241.

    PubMed  CAS  Google Scholar 

  • Schreiner CE, Urbas JV (1988) Representation of amplitude modulation in the auditory cortex of the cat. II. Comparison between cortical fields. Hear Res 32: 49–64.

    PubMed  CAS  Google Scholar 

  • Schweitzer L, Cant NB (1984) Development of the cochlear innervation of the dorsal cochlear nucleus of the hamster. J Comp Neurol 225: 228–243.

    PubMed  CAS  Google Scholar 

  • Segraves MA, Rosenquist AC (1982a) The distribution of the cells of origin of callosal projections in cat visual cortex. J Neurosci 2: 1079–1089.

    PubMed  CAS  Google Scholar 

  • Segraves MA, Rosenquist AC (1982b) The afferent and efferent callosal connections of retinotopically defined areas in cat cortex. J Neurosci 2: 1090–1107.

    PubMed  CAS  Google Scholar 

  • Seldon HL (1981) Structure of human auditory cortex. I. Cytoarchitectonics and dendritic distribution. Brain Res 229: 277–294.

    PubMed  CAS  Google Scholar 

  • Seltzer B, Pandya DN (1978) Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res 149: 1–24.

    PubMed  CAS  Google Scholar 

  • Seltzer B, Pandya DN (1989a) Frontal lobe connections of the superior temporal sulcus in the rhesus monkey. J Comp Neurol 281: 97–113.

    PubMed  CAS  Google Scholar 

  • Seltzer B, Pandya DN (1989b) Intrinsic connections and architectonics of the superior temporal sulcus in the rhesus monkey. J Comp Neurol 290: 451–471.

    PubMed  CAS  Google Scholar 

  • Shamma SA, Symmes D (1985) Patterns of inhibition in auditory cortical cells in awake squirrel monkeys. Hear Res 19: 1–13.

    PubMed  CAS  Google Scholar 

  • Shneiderman A, Oliver DL (1989) EM autoradiographic study of the projections of the dorsal nucleus of the lateral lemniscus — a possible source of inhibitory inputs to the inferior colliculus. J Comp Neurol 286: 28–47.

    PubMed  CAS  Google Scholar 

  • Shosaku A, Kayama Y, Sumitomo I, Sugitani M, Iwama K (1989) Analysis of recurrent inhibitory circuit in rat thalamus: neurophysiology of the thalamic reticular nucleus. Prog Neurobiol 32: 77–102.

    PubMed  CAS  Google Scholar 

  • Shute CCD, Lewis PR (1967) Ascending cholinergic limbic system — neocortical olfactory and subcortical projections. Brain 90: 497–521.

    PubMed  CAS  Google Scholar 

  • Sillito AM, Kemp JA (1983) Cholinergic modulation of the functional organization of the cat visual cortex. Brain Res 289: 143–155.

    PubMed  CAS  Google Scholar 

  • Sindberg RM, Thompson RF (1962) Auditory response fields in ventral temporal and insular cortex of cat. J Neurophysiol 25: 21–28.

    PubMed  CAS  Google Scholar 

  • Smith DE, Moskowitz N (1979) Ultrastructure of layer IV of the primary auditory cortex of the squirrel monkey. Neuroscience 4: 349–359.

    PubMed  Google Scholar 

  • Smith Y, Seguela P, Parent A (1987) Distribution of GABA-immunoreactive neurons in the thalamus of the squirrel monkey (Saimiri sciureus). Neuroscience 22: 579–591.

    PubMed  CAS  Google Scholar 

  • Sousa-Pinto A (1973a) Cortical projections of the medial geniculate body in the cat. Adv Anat Embryol Cell Biol 48: 1–42.

    Google Scholar 

  • Sousa-Pinto A (1973b) The structure of the first auditory cortex (A I) in the cat. I. Light microscopic observations on its structure. Arch Ital Biol 111: 112–137.

    PubMed  CAS  Google Scholar 

  • Sousa-Pinto A, Paula-Barbosa MM, Matos MDC (1975) A Golgi and electron microscopical study of nerve cells in layer I of the cat auditory cortex. Brain Res 95: 443–458.

    PubMed  CAS  Google Scholar 

  • Sovijärvi ARA (1975) Detection of natural complex sounds by cells in the primary auditory cortex of the cat. Acta Physiol Scand 93: 318–335.

    PubMed  Google Scholar 

  • Sovijärvi ARA, Hyvärinen J (1974) Auditory cortical neurons in the cat sensitive to the direction of sound source movement. Brain Res 73: 455–471.

    PubMed  Google Scholar 

  • Špaček J, Lieberman AR (1974) Ultrastructural and three-dimensional organization of synaptic glomeruli in rat somatosensory thalamus. J Anat (London) 117: 486–516.

    Google Scholar 

  • Starr A, Don M (1972) Responses of squirrel monkey medial geniculate body to binaural clicks. J Neurophysiol 35: 501–517.

    PubMed  CAS  Google Scholar 

  • Steinschneider M, Arezzo JC, Vaughan HG Jr (1990) Tonotopic features of speech-evoked activity in primate auditory cortex. Brain Res 519: 158–168.

    PubMed  CAS  Google Scholar 

  • Stępień I, Stępień L, Łubinska E (1990) Function of dog’s auditory cortex in tests involving auditory location cues and directional instrumental responses. Acta Neurobiol Exp 50: 1–12.

    Google Scholar 

  • Stępniewska I, Rajkowska G (1989) The sensory projections to the frontal association cortex in the dog. Acta Neurobiol Exp 49: 299–310.

    Google Scholar 

  • Steriade M, Llinás R (1988) The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 68: 649–742.

    PubMed  CAS  Google Scholar 

  • Stiebler I (1987) A distinct ultrasound-processing area in the auditory cortex of the mouse. Naturwiss 74: 96–97.

    PubMed  CAS  Google Scholar 

  • Stone J (1983) Parallel Processing in the Visual System. The Classification of Retinal Ganglion Cells and Its Impact on the Neurobiology of Vision. In: Blakemore C (ed) Perspectives on Vision Research. New York and London: Plenum Press.

    Google Scholar 

  • Striedter GF (1990a) The diencephalon of the channel catfish, Ictalurus punctatus I. Nuclear organization. Brain Behav Evol 36: 329–354.

    PubMed  CAS  Google Scholar 

  • Striedter GF (1990b) The diencephalon of the channel catfish, Ictalurus punctatus II. Retinal, tectal, cerebellar and telencephalic connections. Brain Behav Evol 36: 355–377.

    PubMed  CAS  Google Scholar 

  • Suga N (1978) Specialization of the auditory system for reception and processing of species-specific sounds. Fed Proc 37: 2342–2354.

    PubMed  CAS  Google Scholar 

  • Suga N (1984a) Neural mechanisms of complex-sound processing for echoloca- tion. Trends Neurosci 7: 20–27.

    Google Scholar 

  • Suga N (1984b) The extent to which biosonar information is represented in the bat auditory cortex. In: Edelman GM, Gall WE, Cowan WM (eds) Dynamic Aspects of Neocortical Function. New York: John Wiley & Sons, pp. 315–373.

    Google Scholar 

  • Suga N (1988) What does single-unit analysis in the auditory cortex tell us about information processing in the auditory system? In: Rakic P, Singer W (eds) Neurobiology of Neocortex. Chichester: John Wiley & Sons Limited, pp. 331–350.

    Google Scholar 

  • Suga N, Horikawa J (1986) Multiple time axes for representation of echo delays in the auditory cortex of the mustached bat. J Neurophysiol 55: 776–805.

    PubMed  CAS  Google Scholar 

  • Suga N, O’Neill WE, Kujirai K, Manabe T (1983) Specificity of combination sensitive neurons for processing of complex biosonar signals in auditory cortex of the mustached bat. J Neurophysiol 49: 1573–1626.

    PubMed  CAS  Google Scholar 

  • Suga N, Hiwa H, Taniguchi I, Margoliash D (1987) The personalized auditory cortex of the mustached bat: adaptation for echolocation. J Neurophysiol 58: 643–654.

    PubMed  CAS  Google Scholar 

  • Supple WF Jr, Kapp BS (1989) Response characteristics of neurons in the medial component of the medial geniculate nucleus during Pavlovian differential fear conditioning in rabbits. Behav Neurosci 103: 1276–1286.

    PubMed  Google Scholar 

  • Sur M, Garraghty PE, Roe AW (1988) Experimentally induced visual projections into auditory thalamus and cortex. Science 242: 1437–1441.

    PubMed  CAS  Google Scholar 

  • Sutter ML, Schreiner CE (1991) Physiology and topography of neurons with multipeaked tuning curves in cat primary auditory cortex. J Neurophysiol 65: 1207–1226.

    PubMed  CAS  Google Scholar 

  • Swarbrick L, Whitfield IC (1972) Auditory cortical units selectively responsive to stimulus “shape.” J Physiol (London) 224: 68–69.

    Google Scholar 

  • Symmes D, Anderson KV (1967) Reticular modulation of higher auditory centers in monkey. Expl Neurol 18: 161–176.

    CAS  Google Scholar 

  • Symmes D, Alexander GE, Newman JD (1980) Neural processing of vocalizations and artificial stimuli in the medial geniculate body of the squirrel monkey. Hear Res 3: 133–146.

    PubMed  CAS  Google Scholar 

  • Tago H, McGeer PL, McGeer EG, Akiyama H, Hersh LB (1989) Distribution of choline acetyltransferase positive structures in the rat brainstem. Brain Res 495: 271–297.

    PubMed  CAS  Google Scholar 

  • Takeuchi A (1987) The transmitter role of glutamate in the nervous system. Jpn J Physiol 37: 559–572.

    PubMed  CAS  Google Scholar 

  • Tamai Y, Miyashita E (1989) Subcortical connections of an ‘oculomotor’ region in the ventral bank of the anterior ectosylvian sulcus in the cat. Neurosci Res 7: 249–256.

    PubMed  CAS  Google Scholar 

  • Tarlov EV, Moore RY (1966) The tecto-thalamic connections in the brain of the rabbit. J Comp Neurol 126: 403–422.

    PubMed  CAS  Google Scholar 

  • Teas DC, Kiang NY-S (1964) Evoked responses from the auditory cortex. Expl Neurol 10: 91–119.

    CAS  Google Scholar 

  • Tebēcis AK (1967) Are 5-hydroxytryptamine and noradrenaline inhibitory transmitters in the medial geniculate nucleus? Brain Res 6: 780–782.

    PubMed  Google Scholar 

  • Tebēcis AK (1970a) Effects of monoamines and amino acids on medial geniculate neurones of the cat. Neuropharmacol 9: 381–390.

    Google Scholar 

  • Tebēcis AK (1970b) Properties of cholinoceptive neurones in the medial geniculate nucleus. Brit J Pharmacol 38: 117–137.

    Google Scholar 

  • Teich AH, McCabe PD, Gentile CC, Schneiderman LS, Winters RW, Lisowsky DR, Schneiderman N (1989) Auditory cortex lesions prevent the extinction of Pavlovian differential heart rate conditioning to tonal stimuli in rabbits. Brain Res 480: 210–218.

    PubMed  CAS  Google Scholar 

  • Thompson RF, Sindberg RM (1960) Auditory response fields in association and motor cortex of cat. J Neurophysiol 23: 87–105.

    PubMed  CAS  Google Scholar 

  • Tiihonen J, Hari R, Kaukoranta E, Kajola M (1989) Interaural interaction in the human auditory cortex. Audiology 28: 37–48.

    PubMed  CAS  Google Scholar 

  • Tsuzuki K, Suga N (1988) Combination-sensitive neurons in the ventroanterior area of the auditory cortex of the mustached bat. J Neurophysiol 60: 1908–1923.

    PubMed  CAS  Google Scholar 

  • Tunturi AR (1971) Classification of neurons in the ectosylvian auditory cortex of the dog. J Comp Neurol 142: 153–166.

    Google Scholar 

  • Tusa RJ, Palmer LA, Rosenquist AC (1981) Multiple cortical visual areas. Visual field topography in the cat. In: Woolsey CN (ed) Cortical Sensory Organization, Vol 2, Multiple Visual Areas. Clifton, NJ: Humana Press, pp. 1–31.

    Google Scholar 

  • Uhl GR, Goodman RR, Kuhar MJ, Childers SR, Snyder SH (1979) Immunohisto- chemical mapping of enkephalin containing cell bodies, fibers and nerve terminals in the brain stem of the rat. Brain Res 166: 75–94.

    PubMed  CAS  Google Scholar 

  • Ulinski PS (1983) Dorsal Ventricular Ridge. A Treatise on Forebrain Organization in Birds and Reptiles. In: Northcutt RG (ed) Wiley Series in Neurobiology. New York: John Wiley & Sons.

    Google Scholar 

  • Ungerstedt U (1971) Stereotaxic mapping of monamine pathways in rat brain. Acta Physiol Scand Suppl 367: 1–48.

    PubMed  CAS  Google Scholar 

  • Usami S, Hozawa J, Tazawa M, Igarashi M, Thompson GC, Wu J-Y, Wenthold RJ (1989) Immunocytochemical study of the GABA system in chicken vestibular endorgans and the vestibular ganglion. Brain Res 503: 214–218.

    PubMed  CAS  Google Scholar 

  • Van Buren JM, Borke RC (1972) Variations and Connections of the Human Thalamus. New York: Springer-Verlag.

    Google Scholar 

  • Vaughan DW (1983) Thalamic and callosal connections of the rat auditory cortex. Brain Res 260: 181–189.

    PubMed  CAS  Google Scholar 

  • van Noort J (1969) The Structure and Connections of the Inferior Colliculus. An Investigation of the Lower Auditory System. The Netherlands: Van Gorcum & Company, NV.

    Google Scholar 

  • Vincent SR, Hökfelt T, Skirboll LR, Wu J-Y (1983) Hypothalamic 7-aminobutyric acid neurons project to the neocortex. Science 220: 1309–1311.

    PubMed  CAS  Google Scholar 

  • von Economo C (1929) The Cytoarchitectonics of the Human Cerebral Cortex, trans Parker S. London: Humphrey Milford and Oxford University Press.

    Google Scholar 

  • Walker AE (1938) The Primate Thalamus. Chicago and London: University of Chicago Press.

    Google Scholar 

  • Wallach H (1940) The role of head movements and vestibular and visual cues in sound localization. J Expl Psychol 27: 339–368.

    Google Scholar 

  • Warr WB (1982) Parallel ascending pathways from the cochlear nucleus: neu- roanatomical evidence of functional specialization. In: Neff WD (ed) Contributions to Sensory Physiology 7, New York: Academic Press, pp. 1–38.

    Google Scholar 

  • Wegener JG (1973) The sound localizing behavior of normal and brain damaged monkeys. J Aud Res 13: 191–219.

    Google Scholar 

  • Wegener JG (1976) Auditory and visual discrimination following lesions of the anterior supratemporal plane in monkeys. Neuropsychol 14: 161–173.

    CAS  Google Scholar 

  • Weinberger NM (1982) Sensory plasticity and learning: the magnocellular medial geniculate nucleus of the auditory system. In: Woody CD (ed) Conditioning: Representation of Involved Neural Functions. New York and London: Plenum Press, pp. 697–710.

    Google Scholar 

  • Weinberger NM, Diamond DM (1987) Physiological plasticity in auditory cortex: rapid induction by learning. Prog Neurobiol 29: 1–55.

    PubMed  CAS  Google Scholar 

  • Weinberger NM, Hopkins W, Diamond DM (1984) Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response: I. Primary field ( AI ). Behav Neurosci 98: 171–188.

    PubMed  CAS  Google Scholar 

  • Weinberger NM, Imig TJ, Lippe WR (1972) Modification of unit discharges in the medial geniculate nucleus by click-shock pairing. Expl Neurol 36: 46–58.

    CAS  Google Scholar 

  • Weiskrantz L, Mishkin M (1958) Effects of temporal and frontal cortical lesions on auditory discrimination in monkeys. Brain 81: 406–414.

    PubMed  CAS  Google Scholar 

  • Wenstrup JJ, Winer JA (1987) Projections to the medial geniculate body from physiologically defined frequency representations of the mustached bat’s inferior colliculus. Proc Soc Neurosci 13: 324.

    Google Scholar 

  • Wepsic JG, Sutin J (1964) Posterior thalamic and septal influence upon pallidal and amygdaloid slow-wave and unitary activity. Expl Neurol 10: 67–80.

    CAS  Google Scholar 

  • Whitfield IC (1982) Coding in the auditory cortex. In: Neff WD (ed) Contributions to Sensory Physiology 6, New York: Academic Press, pp. 159–178.

    Google Scholar 

  • Whitfield IC, Purser D (1972) Microelectrode study of the medial geniculate body in unanaesthetized free-moving cats. Brain Behav Evol 6: 311–322.

    Google Scholar 

  • Whitley JM, Henkel CK (1984) Topographical organization of the inferior colliculus projection and other connections of the ventral nucleus of the lateral lemniscus in the cat. J Comp Neurol 229: 257–270.

    PubMed  CAS  Google Scholar 

  • Wickesberg RE, Oertel D (1988) Tonotopic projection from the dorsal to the anteroventral cochlear nucleus of mice. J Comp Neurol 268: 389–399.

    PubMed  CAS  Google Scholar 

  • Winer JA (1984a) Anatomy of layer IV in cat primary auditory cortex (AI). J Comp Neurol 224: 535–567.

    PubMed  CAS  Google Scholar 

  • Winer JA (1984b) The pyramidal cells in layer III of cat primary auditory cortex (AI). J Comp Neurol 229: 476–496.

    PubMed  CAS  Google Scholar 

  • Winer JA (1984c) The non-pyramidal neurons in layer III of cat primary auditory cortex (AI). J Comp Neurol 229: 512–530.

    PubMed  CAS  Google Scholar 

  • Winer JA (1984d) The human medial geniculate body. Hear Res 15: 225–247.

    PubMed  CAS  Google Scholar 

  • Winer J A (1984e) Identification and structure of neurons in the medial geniculate body projecting to primary auditory cortex (AI) in the cat. Neuroscience 13: 395–413.

    PubMed  CAS  Google Scholar 

  • Winer JA (1985a) Structure of layer II in cat primary auditory cortex (AI). J Comp Neurol 238: 10–37.

    PubMed  CAS  Google Scholar 

  • Winer JA (1985b) The medial geniculate body of the cat. Adv Anat Embryol Cell Biol 86: 1–98.

    PubMed  CAS  Google Scholar 

  • Winer JA (1986) Neurons accumulating [3H]gamma-aminobutyric acid (GABA) in supragranular layers of cat primary auditory cortex (AI). Neuroscience 19: 771–793.

    PubMed  CAS  Google Scholar 

  • Winer JA (1991) Anatomy of the medial geniculate body. In: Altschuler RA, Bobbin RP, Clopton BM, Hoffman DW (eds) Neurobiology of Hearing, Vol 2, The Central Auditory System. New York: Raven Press, pp. 293–333.

    Google Scholar 

  • Winer JA (1992) Neuronal organization of layer V in cat primary auditory cortex (AI). (in preparation).

    Google Scholar 

  • Winer JA, Larue DT (1987) Patterns of reciprocity in auditory thalamocortical and corticothalamic connections: study with horseradish peroxidase and autoradiographic methods in the rat medial geniculate body. J Comp Neurol 257: 282–315.

    PubMed  CAS  Google Scholar 

  • Winer J A, Larue DT (1988) Anatomy of glutamic acid decarboxylase ( GAD) immunoreactive neurons and axons in the rat medial geniculate body. J Comp Neurol 278: 47–68.

    PubMed  CAS  Google Scholar 

  • Winer J A, Larue DT (1989) Populations of GABAergic neurons and axons in layer I of rat auditory cortex. Neuroscience 33: 499–515.

    PubMed  CAS  Google Scholar 

  • Winer J A, Larue DT (1992) Evolution of GABAergic organization in the mammalian medial geniculate complex, (in preparation).

    Google Scholar 

  • Winer JA, Morest DK (1983a) The medial division of the medial geniculate body of the cat: implications for thalamic organization. J Neurosci 3: 2629–2651.

    PubMed  CAS  Google Scholar 

  • Winer J A, Morest DK (1983b) The neuronal architecture of the dorsal division of the medial geniculate body of the cat. A study with the rapid Golgi method. J Comp Neurol 221: 1–30.

    PubMed  CAS  Google Scholar 

  • Winer J A, Morest DK (1984) Axons of the dorsal division of the medial geniculate body of the cat: a study with the rapid Golgi method. J Comp Neurol 224: 344–370.

    PubMed  CAS  Google Scholar 

  • Winer J A, Peterson BA (1988) Origins of auditory corticothalamic projections onto the cat medial geniculate body. Proc Soc Neurosci 14: 492.

    Google Scholar 

  • Winer J A, Wenstrup JJ (1992a) The neurons of the medial geniculate body in the mustached bat (Pteronotus parnellii). (submitted).

    Google Scholar 

  • Winer J A, Wenstrup JJ (1992b) Cytoarchitecture of the medial geniculate body of the mustached bat (Pteronotus parnellii). (submitted).

    Google Scholar 

  • Winer J A, Morest DK, Diamond IT (1988) A cytoarchitectonic atlas of the medial geniculate body of the opossum, Didelphys virginiana, with a comment on the posterior intralaminar nuclei of the thalamus. J Comp Neurol 274: 422–448.

    PubMed  CAS  Google Scholar 

  • Winer JA, Diamond IT, Raczkowski D (1977) Subdivisions of the auditory cortex of the cat: the retrograde transport of horseradish peroxidase to the medial geniculate body and posterior thalamic nuclei. J Comp Neurol 176: 387–418.

    PubMed  CAS  Google Scholar 

  • Winer J A, Wenstrup JJ, Larue DT (1992) Patterns of GABAergic immunoreactivity define subdivisions of the mustached bat’s medial geniculate body. J Comp Neurol 319: 172–190.

    PubMed  CAS  Google Scholar 

  • Winguth SD, Winer JA (1986) Corticocortical connections of cat primary auditory cortex (AI): laminar organization and identification of supragranular neurons projecting to area AIL J Comp Neurol 248: 36–56.

    PubMed  CAS  Google Scholar 

  • Wise LZ, Irvine DRF (1983) Auditory response properties of neurons in deep layers of cat superior colliculus. J Neurophysiol 49: 674–685.

    PubMed  CAS  Google Scholar 

  • Witter MP, Groenenwegen HJ (1986) Connections of the parahippocampal cortex in the cat. III. Cortical and thalamic efferents. J Comp Neurol 252: 1–31.

    PubMed  CAS  Google Scholar 

  • Witter MP, Groenenwegen HJ, Lopes da Silva FH, Lohman AHM (1989) Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog Neurobiol 33: 161–254.

    PubMed  CAS  Google Scholar 

  • Wong D, Kelly JP (1981) Differentially projecting cells in individual layers of the auditory cortex: a double-labeling study. Brain Res 230: 362–366.

    PubMed  CAS  Google Scholar 

  • Wong D, Shannon SL (1988) Functional zones in the auditory cortex of the echolocating bat, Myotis Lucifugus. Brain Res 453: 349–352.

    PubMed  CAS  Google Scholar 

  • Wong WC (1967) The tangential organization of dendrites and axons in three auditory areas of the cat’s cerebral cortex. J Anat (London) 101: 419–433.

    CAS  Google Scholar 

  • Woody CD, Gruen E, Melamed O, Chizhevsky V (1991) Patterns of unit activity in the rostral thalamus of cats related to short-latency discrimination between different auditory stimuli. J Neurosci 11: 48 - 58.

    PubMed  CAS  Google Scholar 

  • Woolsey CN, Walzl EM (1942) Topical projection of nerve fibers from local regions of the cochlea to the cerebral cortex of the cat. Bull Johns Hopkins Hosp 71: 315–344.

    Google Scholar 

  • Wu MF, Mallick BN, Siegel JM (1989) Lateral geniculate spikes, muscle atonia and startle response elicited by auditory stimuli as a function of stimulus parameters and arousal state. Brain Res 499: 7–17.

    PubMed  CAS  Google Scholar 

  • Wuarin JP, Kim YI, Cepeda C, Tasker JG, Walsh JP, Peacock WJ, Buchwald NA, Dudek FE (1990) Synaptic transmission in human neocortex removed for treatment of intractable epilepsy in children. Ann Neurol 28: 503–511.

    PubMed  CAS  Google Scholar 

  • Yeshurun Y, Wollberg Z, Dyn N, Allon N (1985) Identification of MGB cells by Volterra kernels. I. Prediction of responses to species specific vocalizations. Biol Cybernet 51: 383–390.

    CAS  Google Scholar 

  • Yeterian EH, Pandya DN (1989) Thalamic connections of the cortex of the superior temporal sulcus in the rhesus monkey. J Comp Neurol 282: 80–97.

    PubMed  CAS  Google Scholar 

  • Yingcharoen K, Rinvik E, Storm-Mathisen J, Ottersen OP (1989) GABA, glycine, glutamate, aspartate and taurine in the perihypoglossal nuclei: an immuno- cytochemical investigation with particular reference to the issue of amino acid colocalization. Expl Brain Res 78: 345–357.

    CAS  Google Scholar 

  • Zeki S, Shipp S (1988) The functional logic of cortical connections. Nature 335: 311–317.

    PubMed  CAS  Google Scholar 

  • Zilles K (1985) The Cortex of the Rat. A Stereotaxic Atlas. Berlin: Springer-Verlag.

    Google Scholar 

  • Zook JM, Winer J A, Pollak GD, Bodenhamer RD (1985) Topology of the central nucleus of the mustache bat’s inferior colliculus: correlation of single unit properties and neuronal architecture. J Comp Neurol 231: 530–546

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Winer, J.A. (1992). The Functional Architecture of the Medial Geniculate Body and the Primary Auditory Cortex. In: Webster, D.B., Popper, A.N., Fay, R.R. (eds) The Mammalian Auditory Pathway: Neuroanatomy. Springer Handbook of Auditory Research, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4416-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4416-5_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97800-0

  • Online ISBN: 978-1-4612-4416-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics