Skip to main content

The Role of Memory in Auditory Perception

  • Chapter
Auditory Perception of Sound Sources

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 29))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen J, Kraus N, Bradlow A (2000) Neural representation of consciously imperceptible speech sound differences. Percept Psychophys 62:1383–1393.

    PubMed  CAS  Google Scholar 

  • Allik J, Dzhafarov EN, Houtsma AJM, Ross J, Versfeld HJ (1989) Pitch motion with random chord sequences. Percept Psychophys 46:513–527.

    PubMed  CAS  Google Scholar 

  • Atienza M, Cantero JL, Dominguez-Marin E (2002) The time course of neural changes underlying auditory perceptual learning. Learn Mem 9:138–150.

    Article  PubMed  Google Scholar 

  • Berliner JE, Durlach NI (1973) Intensity perception. IV. Resolution in roving-level discrimination. J Acoust Soc Am 53:1270–1287.

    Article  PubMed  CAS  Google Scholar 

  • Bigand E, Poulin B, Tillmann B, Madurell F, d’Adamo DA (2003) Sensory versus cognitive components in harmonic priming. J Exp Psychol [Hum Percept Perform] 29:159–171.

    Article  Google Scholar 

  • Bland DE, Perrott DR (1978) Backward masking: Detection versus recognition. J Acoust Soc Am 63:1215–1217.

    Article  PubMed  CAS  Google Scholar 

  • Bodner M, Kroger J, Fuster JM (1996) Auditory memory cells in dorsolateral prefrontal cortex. NeuroReport 7:1905–1908.

    Article  PubMed  CAS  Google Scholar 

  • Braun M (2001) Speech mirrors norm-tones: Absolute pitch as a normal but precognitive trait. Acoust Res Let Online 2:85–90.

    Google Scholar 

  • Bregman AS (1990) Auditory Scene Analysis. Cambridge, MA: MIT Press.

    Google Scholar 

  • Brosch M, Schreiner CE (2000) Sequence sensitivity of neurons in cat primary auditory cortex. Cereb Cortex 10:1155–1167.

    Article  PubMed  CAS  Google Scholar 

  • Brown M, Irvine DRF, Park VN (2004) Perceptual learning on an auditory frequency discrimination task by cats: Association with changes in primary auditory cortex. Cereb Cortex 14:952–965.

    Article  PubMed  Google Scholar 

  • Burns EM, Houtsma AJM (1999) The influence of musical training on the perception of sequentially presented mistuned harmonics. J Acoust Soc Am 106:3564–3570.

    Article  PubMed  CAS  Google Scholar 

  • Burns EM, Ward WD (1978) Categorical perception—phenomenon or epiphenomenon: Evidence from experiments in the perception of melodic musical intervals. J Acoust Soc Am 63:456–468.

    Article  PubMed  CAS  Google Scholar 

  • Cansino S, Williamson SJ (1997) Neuromagnetic fields reveal cortical plasticity when learning an auditory discrimination task. Brain Res 764:53–66.

    Article  PubMed  CAS  Google Scholar 

  • Clément S (2001) La mémoire auditive humaine: Psychophysique et neuroimagerie fonctionnelle. PhD thesis, Université Victor Segalen, Bordeaux, France.

    Google Scholar 

  • Clément S, Demany L, Semal C (1999) Memory for pitch versus memory for loudness. J Acoust Soc Am 106:2805–2811.

    Article  PubMed  Google Scholar 

  • Cowan N (1984) On short and long auditory stores. Psychol Bull 96:341–370.

    Article  PubMed  CAS  Google Scholar 

  • Cowan N, Winkler I, Teder W, Näätänen R (1993) Memory prerequisites of mismatch negativity in the auditory event-related potential (ERP). J Exp Psychol [Learn Mem Cogn] 19:909–921.

    Article  CAS  Google Scholar 

  • Czigler I, Csibra G, Csontos A (1992) Age and inter-stimulus interval effects on event-related potentials to frequent and infrequent auditory stimuli. Biol Psychol 33: 195–206.

    Article  PubMed  CAS  Google Scholar 

  • Darwin CJ, Hukin RW (2000) Effectiveness of spatial cues, prosody, and talker characteristics in selective attention. J Acoust Soc Am 107:970–977.

    Article  PubMed  CAS  Google Scholar 

  • Dean I, Harper NS, McAlpine D (2005) Neural population coding of sound level adapts to stimulus statistics. Nat Neurosci 8:1684–1689.

    Article  PubMed  CAS  Google Scholar 

  • Demany L, Ramos C (2005) On the binding of successive sounds: Perceiving shifts in nonperceived pitches. J Acoust Soc Am 117:833–841.

    Article  PubMed  Google Scholar 

  • Demany L, Ramos C (2007) A paradoxical aspect of auditory change detection. In: Kollmeier B, Klump G, Hohmann V, Mauermann M, Uppenkamp S, Verhey J (eds) Hearing: From Basic Research to Applications. Heidelberg: Springer, pp. 313–321.

    Google Scholar 

  • Demany L, Semal C (1990) Harmonic and melodic octave templates. J Acoust Soc Am 88:2126–2135.

    Article  PubMed  CAS  Google Scholar 

  • Demany L, Semal C (2002) Learning to perceive pitch differences. J Acoust Soc Am 111:1377–1388.

    Article  PubMed  Google Scholar 

  • Demany L, Semal C (2005) The slow formation of a pitch percept beyond the ending time of a short tone burst. Percept Psychophys 67:1376–1383.

    PubMed  Google Scholar 

  • Demany L, Semal C, Carlyon RP (1991) On the perceptual limits of octave harmony and their origin. J Acoust Soc Am 90:3019–3027.

    Article  Google Scholar 

  • Demany L, Clément S, Semal C (2001) Does auditory memory depend on attention? In: Breebart DJ, Houtsma AJM, Kohlrausch A, Prijs VF, Schoonhoven R (eds) Physiological and Psychophysical Bases of Auditory Function. Maastricht, the Netherlands: Shaker, pp. 461–467.

    Google Scholar 

  • Demany L, Montandon G, Semal C (2004) Pitch perception and retention: Two cumulative benefits of selective attention. Percept Psychophys 66:609–617.

    PubMed  Google Scholar 

  • Demany L, Montandon G, Semal C (2005) Internal noise and memory for pitch. In: Pressnitzer D, de Cheveigné A, McAdams S, Collet L (eds) Auditory Signal Processing: Physiology, Psychoacoustics, and Models. New York: Springer, pp. 230–236.

    Google Scholar 

  • Deutsch D (1991) The tritone paradox: An influence of language on music perception. Music Percept 8:335–347.

    Google Scholar 

  • Deutsch D (1999) The processing of pitch combinations. In: Deutsch D (ed) The Psychology of Music. New York: Academic Press, pp. 349–411.

    Google Scholar 

  • Deutsch D, Feroe J (1975) Disinhibition in pitch memory. Percept Psychophys 17:320–324.

    Google Scholar 

  • Deutsch D, Henthorn T, Dolson M (2004) Absolute pitch, speech, and tone language: Some experiments and a proposed framework. Music Percept 21:339–356.

    Article  Google Scholar 

  • Dewar K, Cuddy L, Mewhort J (1977) Recognition memory for single tones with and without context. J Exp Psychol [Hum Learn Mem Cogn] 3:60–67.

    Article  CAS  Google Scholar 

  • Dowling WJ, Harwood DL (1986) Music Cognition. Orlando: Academic Press.

    Google Scholar 

  • Durlach NI, Braida LD (1969) Intensity perception. I. Preliminary theory of intensity resolution. J Acoust Soc Am 46:372–383.

    Article  PubMed  CAS  Google Scholar 

  • Edeline JM (1999) Learning-induced physiological plasticity in the thalamo-cortical sensory systems: A critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Prog Neurobiol 57:165–224.

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald MB, Wright BA (2005) A perceptual learning investigation of the pitch elicited by amplitude-modulated noise. J Acoust Soc Am 118:3794–3803.

    Article  PubMed  Google Scholar 

  • Fraisse P (1967) Psychologie du Temps. Paris: Presses Universitaires de France.

    Google Scholar 

  • Francés R (1988) The Perception of Music (JW Dowling, trans). Hillsdale, NJ: Lawrence Erlbaum. Original work: La Perception de la Musique. Paris: Vrin, 1958.

    Google Scholar 

  • Frey HP, Kaernbach C, König P (2003) Cats can detect repeated noise stimuli. Neurosci Lett 346:45–48.

    Article  PubMed  CAS  Google Scholar 

  • Fritz J, Shamma S, Elhilali M, Klein D (2003) Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nat Neurosci 6:1216–1223.

    Article  PubMed  CAS  Google Scholar 

  • Giard MH, Lavikainen J, Reinikainen K, Perrin F, Bertrand O, Pernier J, Näätänen R (1995) Separate representations of stimulus frequency, intensity, and duration in auditory sensory memory. J Cogn Neurosci 7:133–143.

    Google Scholar 

  • Gold JM, Murray RF, Sekuler AB, Bennett PJ, Sekuler R (2005) Visual memory decay is deterministic. Psychol Sci 16:769–774.

    Article  PubMed  Google Scholar 

  • Goldinger SD (1996) Words and voices: Episodic traces in spoken word identification and recognition memory. J Exp Psychol [Learn Mem Cogn] 22:1166–1183.

    Article  CAS  Google Scholar 

  • Gottlieb Y, Vaadia E, Abeles M (1989) Single unit activity in the auditory cortex of a monkey performing a short term memory task. Exp Brain Res 74:139–148.

    Article  PubMed  CAS  Google Scholar 

  • Green DM, Swets JA (1974) Signal Detection Theory and Psychophysics. Huntington, NY: Krieger.

    Google Scholar 

  • Grimault N, Micheyl C, Carlyon RP, Collet L (2002) Evidence for two pitch encoding mechanisms using a selective auditory training paradigm. Percept Psychophys 64:189–197.

    PubMed  Google Scholar 

  • Guttman N, Julesz B (1963) Lower limits of auditory periodicity analysis. J Acoust Soc Am 35:610.

    Article  Google Scholar 

  • Hafter ER, Bonnel AM, Gallun E (1998) A role for memory in divided attention between two independent stimuli. In: Palmer AR, Rees A, Summerfield AQ, Meddis R (eds) Psychophysical and Physiological Advances in Hearing. London: Whurr, pp. 228–236.

    Google Scholar 

  • Hall JW, Peters RW (1982) Change in the pitch of a complex tone following its association with a second complex tone. J Acoust Soc Am 71:142–146.

    Article  PubMed  CAS  Google Scholar 

  • Harris JD (1952) The decline of pitch discrimination with time. J Exp Psychol 43:96–99.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann WM, Johnson D (1991) Stream segregation and peripheral channeling. Music Percept 9:155–184.

    Google Scholar 

  • Hawkey DJC, Amitay S, Moore DR (2004) Early and rapid perceptual learning. Nat Neurosci 7:1055–1056.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins HL, Presson JC (1977) Masking and preperceptual selectivity in auditory recognition. In: Dornic S (ed) Attention and Performance VI. Hillsdale: Lawrence Erlbaum, pp. 195–211.

    Google Scholar 

  • Hirsh IJ (1959) Auditory perception of temporal order. J Acoust Soc Am 31:759–767.

    Article  Google Scholar 

  • Hofman PM, van Riswick JGA, van Opstal AJ (1998) Relearning sound localization with new ears. Nat Neurosci 1:417–421.

    Article  PubMed  CAS  Google Scholar 

  • Houtgast T (1972) Psychophysical evidence for lateral inhibition in hearing. J Acoust Soc Am 51:1885–1894.

    Article  PubMed  CAS  Google Scholar 

  • Houtgast T, van Veen TM (1980) Suppression in the time domain. In: van den Brink G, Bilsen FA (eds) Psychophysical, Physiological and Behavioural Studies in Hearing. Delft: Delft University Press, pp. 183–188.

    Google Scholar 

  • Jääskeläinen IP, Ahveninen J, Bonmassar G, Dale AM, Ilmoniemi RJ, Levänen S, Lin FH, May P, Melcher J, Stufflebeam S, Tiitinen H, Belliveau JW (2004) Human posterior auditory cortex gates novel sounds to consciousness. Proc Natl Acad Sci USA 101:6809–6814.

    Article  PubMed  Google Scholar 

  • Jacobsen T, Schröger E (2001) Is there pre-attentive memory-based comparison of pitch? Psychophysiology 38:723–727.

    Article  PubMed  CAS  Google Scholar 

  • Kaernbach C (1993) Temporal and spectral basis of the features perceived in repeated noise. J Acoust Soc Am 94:91–97.

    Article  PubMed  CAS  Google Scholar 

  • Kaernbach C (2004) The memory of noise. Exp Psychol 51:240–248.

    PubMed  Google Scholar 

  • Kaernbach C, Schulze H (2002) Auditory sensory memory for random waveforms in the Mongolian gerbil. Neurosci Lett 329:37–40.

    Article  PubMed  CAS  Google Scholar 

  • Kallman HJ, Massaro DW (1979) Similarity effects in backward recognition masking. J Exp Psychol [Hum Percept Perform] 5:110–128.

    Article  CAS  Google Scholar 

  • Kinchla RA, Smyzer F (1967) A diffusion model of perceptual memory. Percept Psychophys 2:219–229.

    Google Scholar 

  • Knudsen EI, Knudsen PF (1985) Vision guides the adjustment of auditory localization in young barn owls. Science 230:545–548.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan A, Xu Y, Gandour J, Cariani P (2005) Encoding of pitch in the human brainstem is sensitive to language experience. Cogn Brain Res 25:161–168.

    Article  Google Scholar 

  • Kropotov JD, Alho K, Näätänen R, Ponomarev VA, Kropotova OV, Anichkov AD, Nechaev VB (2000) Human auditory-cortex mechanisms of preattentive sound discrimination. Neurosci Lett 280:87–90.

    Article  PubMed  CAS  Google Scholar 

  • Krumhansl CL, Iverson P (1992) Perceptual interactions between musical pitch and timbre. J Exp Psychol [Hum Percept Perform] 18:739–751.

    Article  CAS  Google Scholar 

  • Kubovy M, Howard FP (1976) Persistence of a pitch–segregating echoic memory. J Exp Psychol [Hum Percept Perform] 2:531–537.

    Article  CAS  Google Scholar 

  • Levitin DJ (1994) Absolute memory for musical pitch: Evidence from the production of learned melodies. Percept Psychophys 56:414–423.

    PubMed  CAS  Google Scholar 

  • Linkenhoker BA, Knudsen EI (2002) Incremental training increases the plasticity of the auditory space map in adult barn owls. Nature 419:293–296.

    Article  PubMed  CAS  Google Scholar 

  • Lynch MP, Eilers RE, Oller DK, Urbano RC (1990) Innateness, experience, and music perception. Psychol Sci 1:272–276.

    Article  Google Scholar 

  • Massaro DW (1970a) Preperceptual auditory images. J Exp Psychol 85:411–417.

    Article  CAS  Google Scholar 

  • Massaro DW (1970b) Retroactive interference in short-term recognition memory for pitch. J Exp Psychol 83:32–39.

    Article  CAS  Google Scholar 

  • Massaro DW (1972) Preperceptual images, processing time, and perceptual units in auditory perception. Psychol Rev 79:124–145.

    Article  PubMed  CAS  Google Scholar 

  • Massaro DW, Idson WL (1977) Backward recognition masking in relative pitch judgments. Percept Mot Skills 45:87–97.

    PubMed  CAS  Google Scholar 

  • Massaro DW, Loftus GR (1996) Sensory and perceptual storage. In: Bjork EL, Bjork RA (eds) Memory. San Diego: Academic Press, pp. 67–99.

    Google Scholar 

  • McAdams S (1993) Recognition of sound sources and events. In McAdams S, Bigand E (eds) Thinking in Sound: The Cognitive Psychology of Human Audition. Oxford: Clarendon Press, pp. 146–198.

    Google Scholar 

  • McClelland JL, Elman, JL (1986) The TRACE model of speech perception. Cogn Psychol 18:1–86.

    Article  CAS  PubMed  Google Scholar 

  • McKenna TM, Weinberger NM, Diamond DM (1989) Responses of single auditory cortical neurons to tone sequences. Brain Res 481:142–153.

    Article  PubMed  CAS  Google Scholar 

  • Meddis R, O’Mard LO (2005) A computer model of the auditory-nerve response to forward-masking stimuli. J Acoust Soc Am 117:3787–3798.

    Article  PubMed  Google Scholar 

  • Menning H, Roberts LE, Pantev C (2000) Plastic changes in the auditory cortex induced by intensive frequency discrimination training. NeuroReport 11:817–822.

    Article  PubMed  CAS  Google Scholar 

  • Molholm S, Martinez A, Ritter W, Javitt DC, Foxe JJ (2005) The neural circuitry of pre-attentive auditory change-detection: An fMRI study of pitch and duration mismatch negativity generators. Cereb Cortex 15:545–551.

    Article  PubMed  Google Scholar 

  • Näätänen R, Winkler I (1999) The concept of auditory stimulus representation in cognitive neuroscience. Psychol Rev 125:826–859.

    Google Scholar 

  • Näätänen R, Gaillard AW, Mäntysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychol 42:313–329.

    Article  Google Scholar 

  • Näätänen R, Schröger E, Karakas S, Tervaniemi M, Paavilainen P (1993) Development of a memory trace for a complex sound in the human brain. NeuroReport 4:503–506.

    Article  PubMed  Google Scholar 

  • Opitz B, Schröger E, von Cramon DY (2005) Sensory and cognitive mechanisms for preattentive change detection in auditory cortex. Eur J Neurosci 21:531–535.

    Article  PubMed  CAS  Google Scholar 

  • Paavilainen P, Simola J, Jaramillo M, Näätänen R, Winkler I (2001) Preattentive extraction of abstract feature conjunctions from auditory stimulation as reflected by the mismatch negativity (MMN). Psychophysiology 38:359–365.

    Article  PubMed  CAS  Google Scholar 

  • Peters RW, Moore BCJ, Glasberg BR (1983) Pitch of components of complex tones. J Acoust Soc Am 73:924–929.

    Article  PubMed  CAS  Google Scholar 

  • Philibert B, Collet L, Vesson JF, Veuillet E (2005) The auditory acclimatization effect in sensorineural hearing-impaired listeners: Evidence for functional plasticity. Hear Res 205:131–142.

    Article  PubMed  CAS  Google Scholar 

  • Phillips WA (1974) On the distinction between sensory storage and short-term visual memory. Percept Psychophys 16:283–290.

    Google Scholar 

  • Purushotaman G, Bradley DC (2005) Neural population code for fine perceptual decisions in area MT. Nat Neurosci 8:99–106.

    Article  CAS  Google Scholar 

  • Recanzone GH, Schreiner CE, Merzenich MM (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci 13:87–103.

    PubMed  CAS  Google Scholar 

  • Relkin EM, Turner CW (1988) A reexamination of forward masking in the auditory nerve. J Acoust Soc Am 84:584–591.

    Article  PubMed  CAS  Google Scholar 

  • Rensink RA, O’Regan JK, Clark JJ (1997) To see or not to see: The need for attention to perceive changes in scenes. Psychol Sci 8:368–373.

    Article  Google Scholar 

  • Robinson K, Summerfield AQ (1996) Adult auditory learning and training. Ear Hear 17: 51S–65S.

    Article  PubMed  CAS  Google Scholar 

  • Ronken DA (1972) Changes in frequency discrimination caused by leading and trailing tones. J Acoust Soc Am 51:1947–1950.

    Article  PubMed  CAS  Google Scholar 

  • Russo NM, Nicol TG, Zecker SG, Hayes EA, Kraus N (2005) Auditory training improves neural timing in the human brainstem. Behav Brain Res 156:95–103.

    Article  PubMed  Google Scholar 

  • Sams M, Hari R, Rif J, Knuutila J (1993) The human auditory sensory memory trace persists about 10 sec: Neuromagnetic evidence. J Cogn Neurosci 5:363–370.

    Article  Google Scholar 

  • Schacter DL, Church B (1992) Auditory priming: Implicit and explicit memory for words and voices. J Exp Psychol [Learn Mem Cogn] 18:915–930.

    Article  CAS  Google Scholar 

  • Scharf B (1978) Loudness. In: Carterette EC, Friedman MP (eds) Handbook of Perception, IV: Hearing. New York: Academic Press, pp. 187–242.

    Google Scholar 

  • Schellenberg EG, Trehub SE (1996) Natural musical intervals: Evidence from infant listeners. Psychol Sci 7:272–277.

    Article  Google Scholar 

  • Schröger E (1995) Processing of auditory deviants with changes in one vs. two stimulus dimensions. Psychophysiology 32:55–65.

    Article  PubMed  Google Scholar 

  • Schröger E (1997) On the detection of auditory deviations: A pre-attentive activation model. Psychophysiology 34:245–257.

    Article  PubMed  Google Scholar 

  • Schröger E (2005) The mismatch negativity as a tool to study auditory processing. Acta Acust 91:490–501.

    Google Scholar 

  • Schwartz DA, Howe CQ, Purves D (2003) The statistical structure of human speech sounds predicts musical universals. J Neurosci 23:7160–7168.

    PubMed  CAS  Google Scholar 

  • Semal C, Demany L (1991) Dissociation of pitch from timbre in auditory short-term memory. J Acoust Soc Am 89:2404–2410.

    Article  PubMed  CAS  Google Scholar 

  • Semal C, Demany L (1993) Further evidence for an autonomous processing of pitch in auditory short-term memory. J Acoust Soc Am 94:1315–1322.

    Article  PubMed  CAS  Google Scholar 

  • Semal C, Demany L, Ueda K, Hallé PA (1996) Speech versus nonspeech in pitch memory. J Acoust Soc Am 100:1132–1140.

    Article  PubMed  CAS  Google Scholar 

  • Shamma S, Klein D (2000) The case of the missing pitch templates: How harmonic templates emerge in the early auditory system. J Acoust Soc Am 107:2631–2644.

    Article  PubMed  CAS  Google Scholar 

  • Shannon RV (1990) Forward masking in patients with cochlear implants. J Acoust Soc Am 88:741–744.

    Article  PubMed  CAS  Google Scholar 

  • Shepard RN, Jordan DS (1984) Auditory illusions demonstrating that tones are assimilated to an internalized musical scale. Science 226:1333–1334.

    Article  PubMed  CAS  Google Scholar 

  • Shinn-Cunningham BG (2000) Adapting to remapped auditory localization cues: A decision-theory model. Percept Psychophys 62:33–47.

    PubMed  CAS  Google Scholar 

  • Simons DJ, Levin DT (1997) Change blindness. Trends Cogn Sci 1:261–267.

    Article  Google Scholar 

  • Sparks DW (1976) Temporal recognition masking—or interference? J Acoust Soc Am 60:1347–1353.

    Article  PubMed  CAS  Google Scholar 

  • Starr GE, Pitt MA (1997) Interference effects in short-term memory for timbre. J Acoust Soc Am 102:486–494.

    Article  PubMed  CAS  Google Scholar 

  • Summerfield Q, Sidwell A, Nelson T (1987) Auditory enhancement of changes in spectral amplitude. J Acoust Soc Am 81:700–708.

    Article  PubMed  CAS  Google Scholar 

  • Tanner WP (1961) Physiological implications of psychophysical data. Ann NY Acad Sci 89:752–765.

    Article  PubMed  Google Scholar 

  • Terhardt E (1971) Pitch shifts of harmonics, an explanation of the octave enlargement phenomenon. In: Proceedings of the 7th International Congress on Acoustics (Budapest) 3:621–624.

    Google Scholar 

  • Terhardt E (1974) Pitch, consonance, and harmony. J Acoust Soc Am 55:1061–1069.

    Article  PubMed  CAS  Google Scholar 

  • Tervaniemi M, Maury S, Näätänen R (1994) Neural representations of abstract stimulus features in the human brain as reflected by the mismatch negativity. NeuroReport 5:844–846.

    Article  PubMed  CAS  Google Scholar 

  • Tiitinen H, May P, Reinikainen K, Näätänen R (1994) Attentive novelty detection in humans is governed by pre-attentive sensory memory. Nature 372:90–92.

    Article  PubMed  CAS  Google Scholar 

  • Tillmann B, Bharucha JJ, Bigand E (2000) Implicit learning of tonality: A self-organizing approach. Psychol Rev 107:885–913.

    Article  PubMed  CAS  Google Scholar 

  • Tremblay K, Kraus N, Carrell TD, McGee T (1997) Central auditory system plasticity: Generalization to novel stimuli following listening training. J Acoust Soc Am 102:3762–3773.

    Article  PubMed  CAS  Google Scholar 

  • Turner CW, Zeng FG, Relkin EM, Horwitz AR (1992) Frequency discrimination in forward and backward masking. J Acoust Soc Am 92:3102–3108.

    Article  PubMed  CAS  Google Scholar 

  • Turner CW, Relkin EM, Doucet J (1994) Psychophysical and physiological forward masking studies: Probe duration and rise-time effects. J Acoust Soc Am 96:795–800.

    Article  PubMed  CAS  Google Scholar 

  • Ulanovsky N, Las L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6:391–398.

    Article  PubMed  CAS  Google Scholar 

  • Ulanovsky N, Las L, Farkas D, Nelken I (2004) Multiple time scales of adaptation in auditory cortex neurons. J Neurosci 24:10440–10453.

    Article  PubMed  CAS  Google Scholar 

  • van Noorden LPAS (1975) Temporal coherence in the perception of tone sequences. PhD Thesis, Technische Hogeschool Eindhoven, the Netherlands.

    Google Scholar 

  • Viemeister NF (1980) Adaptation of masking. In: van den Brink G, Bilsen FA (eds) Psychophysical, Physiological and Behavioural Studies in Hearing. Delft: Delft University Press, pp. 190–198.

    Google Scholar 

  • Viemeister NF, Bacon SP (1982) Forward masking by enhanced components in harmonic complexes. J Acoust Soc Am 71:1502–1507.

    Article  PubMed  CAS  Google Scholar 

  • Vurpillot E (1975) La perception de l’espace. In: Fraisse P, Piaget J (eds) Traité de Psychologie Expérimentale, vol. VI: La Perception. Paris: Presses Universitaires de France, pp. 113–198.

    Google Scholar 

  • Ward WD (1954) Subjective musical pitch. J Acoust Soc Am 26:369–380.

    Article  Google Scholar 

  • Ward WD (1999) Absolute pitch. In: Deutsch D (ed) The Psychology of Music. San Diego: Academic Press, pp. 265–298.

    Google Scholar 

  • Warren RM (1982) Auditory Perception: A New Synthesis. New York: Pergamon.

    Google Scholar 

  • Watson CS, Kelly WJ, Wroton HW (1976) Factors in the discrimination of tonal patterns. II. Selective attention and learning under various levels of stimulus uncertainty. J Acoust Soc Am 60:1176–1186.

    Article  PubMed  CAS  Google Scholar 

  • Weinberger NM (1995) Dynamic regulation of receptive fields and maps in the adult sensory cortex. Annu Rev Neurosci 18:129–158.

    Article  PubMed  CAS  Google Scholar 

  • Weinberger NM (2004) Specific long-term memory traces in primary auditory cortex. Nat Rev Neurosci 5:279–290.

    Article  PubMed  CAS  Google Scholar 

  • Wilson JP (1970) An auditory after-image. In: Plomp R, Smoorenburg GF (eds) Frequency Analysis and Periodicity Detection in Hearing. Leiden, the Netherlands: Sijthoff, pp. 303–318.

    Google Scholar 

  • Wojtczak M, Viemeister NF (2005) Mechanisms of forward masking. J Acoust Soc Am 115: 2599.

    Google Scholar 

  • Wright BA, Fitzgerald MB (2001) Different patterns of human discrimination learning for two interaural cues to sound-source location. Proc Natl Acad Sci USA 98:2307–12312.

    Google Scholar 

  • Wright BA, McFadden D, Champlin CA (1993) Adaptation of suppression as an explanation of enhancement effects. J Acoust Soc Am 94:72–82.

    Article  PubMed  CAS  Google Scholar 

  • Wright BA, Buonomano DV, Mahncke HW, Merzenich MM (1997) Learning and generalization of auditory temporal-interval discrimination in humans. J Neurosci 17:3956–3963.

    PubMed  CAS  Google Scholar 

  • Yost WA, Berg K, Thomas GB (1976) Frequency recognition in temporal interference tasks: A comparison among four psychophysical procedures. Percept Psychophys 20:353–359.

    Google Scholar 

  • Young PT (1928) Auditory localization with acoustical transposition of the ears. J Exp Psychol 11:399–429.

    Article  Google Scholar 

  • Zatorre RJ, Samson S (1991) Role of the right temporal neocortex in retention of pitch in auditory short-term memory. Brain 114:2403–2417.

    Article  PubMed  Google Scholar 

  • Zheng W, Knudsen EI (1999) Functional selection of adaptive auditory space map by GABAA–mediated inhibition. Science 284:962–965.

    Article  PubMed  CAS  Google Scholar 

  • Zwislocki J, Pirodda E, Rubin H (1959) On some poststimulatory effects at the threshold of audibility. J Acoust Soc Am 31:9–14.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Demany, L., Semal, C. (2008). The Role of Memory in Auditory Perception. In: Yost, W.A., Popper, A.N., Fay, R.R. (eds) Auditory Perception of Sound Sources. Springer Handbook of Auditory Research, vol 29. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71305-2_4

Download citation

Publish with us

Policies and ethics