Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 4))

Abstract

The ongoing acoustic ambience of all terrestrial habitats is a reflection of the sum of the biotic sources of sound in the environment (e.g., vocalizations, insect wing noise, and the staccato hammering of woodpeckers) and the non-biotic sources of sound (e.g., wind- and rain-induced vegetation movement and thunder). Different habitats are apt to sound distinctive, and perhaps the initial constraint on the sounds is rendered by the constituents of the soil (Linskens et al. 1976). Soil differences, variations in the topography of the landscape (its contour, elevation, humidity, and temperature), and the way in which wind and water move across the land render each portion of the environment more or less favorable for habitation by particular plant and animal species. Consequently, the distribution and density of both the flora and fauna varies across the land, and, in turn, these variations establish the characteristics of the “acoustic landscape.” In this way, each place in nature comes to have its own special sound (Gish and Morton 1981; Brenowitz 1982; Waser and Brown 1984, 1986; Brown and Waser 1988). Within the constraints imposed by the properties of each acoustic landscape, hearing and communication systems evolved, and for any sound in nature, two fundamental questions are the most critical for perception: where is the source of the sound (sound localization analysis), and what is the source of the sound (auditory image analysis)?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderson DJ (1973) Quantitative model for the effects of stimulus frequency upon synchronization of auditory nerve discharges. J Acoust Soc Am 54:361–364.

    Article  PubMed  CAS  Google Scholar 

  • Aronson E, Rosenbloom S (1971) Space perception in early infancy: Perception within a common auditory-visual space. Science 172:1161–1163.

    Article  PubMed  CAS  Google Scholar 

  • Ashmead DH, LeRoy D, Odom RD (1990) Perception of the relative distances of nearby sound sources. Percept Psychophys 47:326–331.

    Article  PubMed  CAS  Google Scholar 

  • Ayrapet’yants ES, Konstantinov AI (1974) Echolocation in Nature. An English translation of the National Technical Information Service, JPRS 63326–1–2.

    Google Scholar 

  • Batteau DW, Plante RL, Spencer RH, Lyle WE (1965) Localization of sound: Part 5. Auditory perception. US Navy Ordnance Test Station Report, TP 3109, Part 5.

    Google Scholar 

  • Beecher MD, Harrison JM (1971) Rapid acquisition of an auditory location discrimination by rats. J Exp Anal Behav 16:193–199.

    Article  PubMed  CAS  Google Scholar 

  • Beer CG (1969) Laughing gull chicks: Recognition of their parent’s voices. Science 166:1030–1032.

    Article  PubMed  CAS  Google Scholar 

  • Beer CG (1970) Individual recognition of voice in social behavior of birds. In: Lehrman DS, Hinde RA, Shaw E (eds) Advances in the Study of Behavior, Volume 3. New York: Academic Press, pp. 27–74.

    Google Scholar 

  • Brenowitz EA (1982) The active space of red-winged blackbird song. J Comp Physiol 147:511–522.

    Article  Google Scholar 

  • Brown CH (1982a) Ventroloquial and locatable vocalizations in birds. Z Tierpsychol. 59:338–350.

    Article  Google Scholar 

  • Brown CH (1982b) Auditory localization and primate vocal behavior. In: Snowdon CT, Brown CH, Petersen MR (eds) Primate Communication. Cambridge: Cambridge University Press, pp. 144–164.

    Google Scholar 

  • Brown CH (1984) Directional hearing in aging rats. Exp Aging Res 10:35–38.

    PubMed  Google Scholar 

  • Brown CH (1989) The active space of blue monkey and grey-cheeked mangabey vocalizations. Anim Behav 37:1023–1034.

    Article  Google Scholar 

  • Brown CH, Gomez R (1992) Functional design features in primate vocal signals: The acoustic habitat and sound distortion. In: Nishida T, McGrew WC, Marler P, Pickford M, de Waal FMB (eds) Topics in Primatology, Volume One, Human Origins. Tokyo: University of Tokyo Press, pp. 177–198.

    Google Scholar 

  • Brown CH, May BJ (1990) Sound Localization and binaural processes. In: Berkley MA, Stebbins WC (eds) Comparative Perception, Volume 1. New York: John Wiley and Sons, pp. 247–284.

    Google Scholar 

  • Brown CH, Waser PM (1988) Environmental influences on the structure of primate vocalizations. In: Todt D, Geodeking P, Symmes D (eds) Primate Vocal Communication. Berlin: Springer-Verlag, pp. 51–66.

    Google Scholar 

  • Brown CH, Beecher MD, Moody DB, Stebbins WC (1978a) Localization of pure tones in Old World monkeys. J Acoust Soc Am 63:1484–1494.

    Article  Google Scholar 

  • Brown CH, Beecher MD, Moody DB, Stebbins WC (1978b) Localization of primate calls by Old World monkeys. Science 201:753–754.

    Article  PubMed  CAS  Google Scholar 

  • Brown CH, Beecher MD, Moody DB, Stebbins WC (1979) Locatability of vocal signals in Old World monkeys: Design features for the communication of position. J Comp Physiol Psychol 93:806–819.

    Article  Google Scholar 

  • Brown CH, Beecher MD, Moody DB, Stebbins WC (1980) Localization of noise bands by Old World monkeys. J Acoust Soc Am 68:127–132.

    Article  PubMed  CAS  Google Scholar 

  • Brown CH, Schessler T, Moody DB, Stebbins WC (1982) Vertical and horizontal sound localization in primates. J Acoust Soc Am 72:1804–1811.

    Article  PubMed  CAS  Google Scholar 

  • Butler RA (1969) Monaural and binaural localization of noise bursts vertically in the median sagittal plane. J Aud Res 9:230–235.

    Google Scholar 

  • Cain WS, Marks LE (1971) Stimulus and Sensation. Boston: Little, Brown and Co. Casey MA, Feldman ML (1982) Aging in the rat medial nucleus of the trapezoid body. Neurobiol Aging 3:187–195.

    Google Scholar 

  • Casseday JH, Neff WD (1973) Localization of pure tones. J Acoust Soc Am 54:365–372.

    Article  PubMed  CAS  Google Scholar 

  • Chambers RE (1971) Sound localization in the hedgehog (Paraechi nus hypomelas). Unpublished Master’s Thesis, Florida State University, Tallahassee.

    Google Scholar 

  • Clements M, Kelly JB (1978a) Directional responses by kittens to an auditory stimulus. Dev Psychobiol 11:505–511.

    Article  PubMed  CAS  Google Scholar 

  • Clements M, Kelly JB (1978b) Auditory spatial responses of young guinea pigs (Cavia porcellus) during and after ear blocking. J Comp Physiol Psychol 92:34–44.

    Article  PubMed  CAS  Google Scholar 

  • Coleman PD (1963) An analysis of cues to auditory depth perception in free space. Psychol Bull 60:302–315.

    Article  PubMed  CAS  Google Scholar 

  • Fay RR (1988) Hearing in Vertebrates: A Psychophysics Databook. Winnetka, IL: Hill-Fay Associates.

    Google Scholar 

  • Feng AS, Gerhardt HC, Capranica RR (1976) Sound localization behavior of the green tree frog (Hyla cinerea) and the barking tree frog (H. gratiosa). J Comp Physiol 107:241–252.

    Article  Google Scholar 

  • Firestone FA (1930) The phase differences and amplitude ratio at the ears due to a source of pure tones. J Acoust Soc Am 2:260–270.

    Article  Google Scholar 

  • Gamble EA (1909) Intensity as a criterion in estimating the distance of sounds. Psychol Rev 16:416–426.

    Article  Google Scholar 

  • Gardner MB (1973) Some monaural and binaural facets of median plane localization. J Acoust Soc Am 54:1489–1495.

    Article  PubMed  CAS  Google Scholar 

  • Gish SL, Morton ES (1981) Structural adaptations to local habitat acoustics in Carolina wren songs. Z Tierpsychol 56: 74–84.

    Article  Google Scholar 

  • Gottlieb G (1965) Imprinting in relation to parental and species identification by avian neonates. J Comp Physiol Psychol 59:345–356.

    Article  PubMed  CAS  Google Scholar 

  • Harris JD (1972) A florilegium of experiments on directional hearing. Acta Otolaryngol Suppl 298:1–26.

    PubMed  CAS  Google Scholar 

  • Harrison JM (1990) Simultaneous auditory discriminations. J Exp Anal Behav 54:45–51.

    Article  PubMed  CAS  Google Scholar 

  • Harrison JM (1992) Avoiding conflicts between the natural behavior of the animal and the demands of discrimination experiments. J Acoust Soc Am 92:1331–1345.

    Article  PubMed  CAS  Google Scholar 

  • Harrison JM, Downey P (1970) Intensity changes at the ear as a function of azimuth of a tone: A comparative study. J Acoust Soc Am 56:1509–1518.

    Article  Google Scholar 

  • Harrison JM, Irving R (1966) Visual and nonvisual auditory systems in mammals. Science 154:738–743.

    Article  PubMed  CAS  Google Scholar 

  • Harrison JM, Downey P, Segal M, Howe M (1971) Control of responding by location of auditory stimuli: Rapid acquisition in monkey and rat. J Exp Anal Behav 15: 379–386.

    Article  PubMed  CAS  Google Scholar 

  • Hartley RVL, Fry TC (1921) The binaural localization of pure tones. Phys Rev 18: 431–442.

    Article  Google Scholar 

  • Hebrank J, Wright D (1974) Spectral cues used in the localization of sound sources in the median plane. J Acoust Soc Am 56:1829–1834.

    Article  PubMed  CAS  Google Scholar 

  • Heffner HE, Heffner RS (1984) Sound localization in large mammals: Localization of complex sounds by horses. Behav Neurosci 98:541–555.

    Article  PubMed  CAS  Google Scholar 

  • Heffner HE, Heffner RS (1985) Sound localization in wild Norway rats (Rattus norvegicus). Hear Res 19:151–155.

    Article  PubMed  CAS  Google Scholar 

  • Heffner HE, Masterton RB (1980) Hearing in glires: Domestic rabbit, cotton rat, feral house mouse, and kangaroo rat. J Acoust Soc Am 68:1584–1599.

    Article  Google Scholar 

  • Heffner RS, Heffner HE (1982) Hearing in the elephant (Elephas maximus): Absolute sensitivity, frequency discrimination, and sound localization. J Comp Physiol Psychol 96:926–944.

    Article  PubMed  CAS  Google Scholar 

  • Heffner RS, Heffner HE (1983) Hearing in large mammals: Horses (Equus caballus) and cattle (Bos taurus). Behav Neurosci 97:299–309.

    Article  Google Scholar 

  • Heffner RS, Heffner HE (1985) Auditory localization and visual fields in mammals. Neurosci Abst 11:547.

    Google Scholar 

  • Heffner RS, Heffner HE (1987) Localization of noise, use of binaural cues, and a description of the superior olivary complex in the smallest carnivore, the least weasel (Mustela nivalis). Behav Neurosci 101:701–708.

    Article  PubMed  CAS  Google Scholar 

  • Heffner RS, Heffner HE (1988a) Sound localization in a predatory rodent, the northern grasshopper mouse (Onychomys leucogaster). J Comp Psychol 102:66–71.

    Article  PubMed  CAS  Google Scholar 

  • Heffner RS, Heffner HE (1988b) Sound localization and the use of binaural cues in the gerbil (Meriones unguiculatus). Behav Neurosci 102:422–428.

    Article  PubMed  CAS  Google Scholar 

  • Heffner RS, Heffner HE (1988c) The relation between vision and sound localization acuity in mammals. Neurosci Abst 14:1096.

    Google Scholar 

  • Heffner RS, Heffner HE (1988d) Sound localization acuity in the cat: Effect of azimuth, signal duration, and test procedure. Hear Res 36:221–232.

    Article  PubMed  CAS  Google Scholar 

  • Heffner RS, Heffner HE (1989) Sound localization, use of binaural cues, and the superior olivary complex in pigs. Brain Behav Evol 33:248–258.

    Article  PubMed  CAS  Google Scholar 

  • Heffner RS, Masterton RB (1990) Sound localization in mammals: Brainstem mechanisms. In: Berkley MA, Stebbins WC (eds) Comparative Perception, Volume 1. New York: John Wiley and Sons, pp. 285–314.

    Google Scholar 

  • Heffner RS, Richard MM, Heffner HE (1987) Hearing and the auditory brainstem in a fossorial mammal, the pocket gopher. Neurosci Abst 13:546.

    Google Scholar 

  • Henning GB (1974) Detectability of interaural delay in high-frequency complex waveforms. J Acoust Soc Am 55:84–90.

    Article  PubMed  CAS  Google Scholar 

  • Henson OW Jr (1974) Comparative anatomy of the middle ear. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology: The Auditory System V/1. New York: Springer-Verlag, pp. 39–110.

    Google Scholar 

  • Hornbostel EM (1923) Beobachtungen über ein-und zweiohrigs Hören. Psychol Forsch 4:64–114.

    Article  Google Scholar 

  • Houben D, Gourevitch G (1979) Auditory lateralization in monkeys: An examination of two cues serving directional hearing. J Acoust Soc Am 66:1057–1063.

    Article  PubMed  CAS  Google Scholar 

  • Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory nerve fibers to single tones. J Acoust Soc Am 68:1115–1122.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman L (1979) Perception: The World Transformed. New York: Oxford University Press.

    Google Scholar 

  • Keithley EM, Feldman ML (1979) Spiral ganglion cell counts in an age-graded series of rat cochleas. J Comp Neurol 188:429–442.

    Article  PubMed  CAS  Google Scholar 

  • Kelly JB (1980) Effects of auditory cortical lesions on sound localization in the rat. J Neurophysiol 44:1161–1174.

    PubMed  CAS  Google Scholar 

  • Kiang NY-S, Watanabe T, Thomas EC, Clark LF (1965) Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve. Cambridge, MA: MIT Press.

    Google Scholar 

  • King AJ, Hutchings ME, Moore DR, Blakemore C (1988) Developmental plasticity in the visual and auditory representations in the mammalian superior colliculus. Nature 332:73–76.

    Article  PubMed  CAS  Google Scholar 

  • Klumpp RG, Eady HR (1956) Some measurements of interaural time difference thresholds. J Acoust Soc Am 28:859–860.

    Article  Google Scholar 

  • Knudsen EI (1983) Early auditory experience aligns the auditory map of space in the optic tectum of the barn owl. Science 222:939–942.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Brainard MS (1991) Visual instruction of the neural map of auditory space in the developing optic tectum. Science 253:85–87.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Knudsen PF (1985) Vision guides the adjustment of auditory localization in young barn owls. Science 230:545–548.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Knudsen PF (1990) Sensitive and critical periods for visual calibration of sound localization by barn owls. J Neurosci 10:222–232.

    PubMed  CAS  Google Scholar 

  • Knudsen EI, Knudsen PF, Esterly SD (1984) A critical period for the recovery of sound localization accuracy following monaural occlusion in the barn owl. J Neurosci 4:1012–1020.

    PubMed  CAS  Google Scholar 

  • Knudsen EI, Konishi M (1978) A neural map of auditory space in the owl. Science 200:795–797.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Blasdel GG, Konishi M (1979) Sound localization by the barn owl measured with the search coil technique. J Comp Physiol 133:1–11.

    Article  Google Scholar 

  • Knudsen EI, Esterly SD, du Lac S (1991) Stretched and upside-down maps of auditory space in the optic tectum of blind-reared owls: Acoustic basis and behavioral correlates. J Neurosci 11:1727–1747.

    PubMed  CAS  Google Scholar 

  • Kuhn GF (1977) Model for the interaural time differences in the azimuthal plane. J Acoust Soc Am 62:157–167.

    Article  Google Scholar 

  • Kuhn GF (1979) The effect of the human torso, head, and pinna on the azimuthal directivity and on the median plane vertical directivity. J Acoust Soc Am 65:(S1), S8(A).

    Article  Google Scholar 

  • Kuhn GF (1987) Physical acoustics and measurements pertaining to directional hearing. In: Yost WA, Gourevitch G (eds) Directional Hearing. New York: Academic Press, pp. 3–25.

    Google Scholar 

  • Linskens HF, Martens MJM, Hendriksen HJGM, Roestenberg-Sinnige AM, Brouwers WAJM, Staak van der ALHC, Strik-Jansen AMJ (1976) The acoustic climate of plant communities. Oecologia (Berlin) 23:165–177.

    Article  Google Scholar 

  • Makous JC, Middlebrooks JC (1990) Two-dimensional sound localization by human listeners. J Acoust Soc Am 87:2188–2200.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA (1973) A review of some current concepts of the functional evolution of the ear in terrestrial vertebrates. Evolution 26:608–621.

    Article  Google Scholar 

  • Martin RL, Webster WR (1987) The auditory spatial acuity of the domestic cat in the interaural horizontal and median vertical planes. Hear Res 30:239–252.

    Article  PubMed  CAS  Google Scholar 

  • Masterton RB, Heffner HE, Ravizza RJ (1969) The evolution of human hearing. J Acoust Soc Am 45:966–985.

    Article  PubMed  CAS  Google Scholar 

  • May B, Moody DB, Stebbins WC, Norat MA (1986) Sound localization of frequency-modulated sinusoids by Old World monkeys. J Acoust Soc Am 80:776–782.

    Article  PubMed  CAS  Google Scholar 

  • McFadden D, Pasanen EG (1976) Lateralization at high frequencies based on interaural time differences. J Acoust Soc Am 59:634–639.

    Article  PubMed  CAS  Google Scholar 

  • McGregor PK, Krebs JR (1984) Sound degradation as a distance cue in great tit (Parus major) song. Behav Ecol Sociobiol 16:49–56.

    Article  Google Scholar 

  • McGregor PK, Krebs JR, Ratcliffe LM (1983) The reaction of great tits (Parus major) to playback of degraded and undegraded songs: The effect of familiarity with the stimulus song type. Auk 100:898–906.

    Google Scholar 

  • Mendelson MJ, Haith MM (1976) The relation between audition and vision in the human newborn. Monographs of the Society for Research in Child Development, 41, Serial No. 167.

    Google Scholar 

  • Menzel CR (1980) Head cocking and visual perception in primates. Anim Behav 28:151–159.

    Article  PubMed  Google Scholar 

  • Mershon DH, Bowers JN (1979) Absolute and relative cues for the auditory perception of egocentric distance. Perception 8:311–322.

    Article  PubMed  CAS  Google Scholar 

  • Middlebrooks JC, Green DM (1990) Directional dependence of interaural envelope delays. J Acoust Soc Am 87:2149–2162.

    Article  PubMed  CAS  Google Scholar 

  • Middlebrooks JC, Makous JC, Green DM (1989) Directional sensitivity of sound-pressure levels in the human ear canal. J Acoust Soc Am 86:89–108.

    Article  PubMed  CAS  Google Scholar 

  • Mills AW (1958) On the minimum audible angle. J Acoust Soc Am 30:237–246.

    Article  Google Scholar 

  • Mills AW (1960) Lateralization of high-frequency tones. J Acoust Soc Am 32:132–134.

    Article  Google Scholar 

  • Muir D, Field J (1979) Newborn infants orient to sounds. Child Dev 50:431–436.

    Article  PubMed  CAS  Google Scholar 

  • Musicant AD, Chan JCK, Hind JE (1990) Direction-dependent spectral properties of cat external ear: New data and cross-species comparisons. J Acoust Soc Am 87: 757–781.

    Article  PubMed  CAS  Google Scholar 

  • Norberg RA (1977) Occurrence and independent evolution of bilateral ear asymmetry in owls and implications on owl taxonomy. Philos Trans R Soc London B 282:375–408.

    Article  Google Scholar 

  • Nyborg W, Mintzer D (1955) Review of sound propagation in the lower atmosphere. US Air Force WADA Tech Rept 54–602.

    Google Scholar 

  • Payne RS (1962) How the barn owl locates its prey by hearing. Living Bird 1:151–159.

    Google Scholar 

  • Perrott DR, Ambarsoom H, Tucker J (1987) Changes in head position as a measure of auditory localization performance: Auditory psychomotor coordination under monaural and binaural listening conditions. J Acoust Soc Am 85:2669–2672.

    Article  Google Scholar 

  • Potash M, Kelly J (1980) Development of directional responses to sounds in the infant rat (Rattus norvegicus). J Comp Physiol Psychol 94:864–877.

    Article  PubMed  CAS  Google Scholar 

  • Pumphery RJ (1940) Hearing in insects. Biol Rev 15:107–132.

    Article  Google Scholar 

  • Ravizza RJ, Masterton RB (1972) Contribution of neocortex to sound localization in opossum (Didelphis virginiana). J Neurophysiol 35:344–356.

    PubMed  CAS  Google Scholar 

  • Rayleigh JWS (1876) Our perception of the direction of a sound source. Nature (London) 14:32–33.

    Article  Google Scholar 

  • Rayleigh JWS (1945) The Theory of Sound, Second Edition. New York: Dover Publications.

    Google Scholar 

  • Renaud DL, Popper AN (1975) Sound localization by the bottlenose porpoise Tursiops truncatus. J Exp Biol 63:569–585.

    PubMed  CAS  Google Scholar 

  • Rheinlaender J, Gerhardt HC, Yager DD, Capranica RR (1979) Accuracy of phono-taxis by the green tree frog (Hyla cinerea). J Comp Physiol 133:247–255.

    Article  Google Scholar 

  • Rose JE, Brugge JF, Anderson DJ, Hind JE (1967) Phase-locked responses to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophysiol 30:769–793.

    PubMed  CAS  Google Scholar 

  • Searle CL, Braida LD, Cuddy DR, Davis MF (1975) Binaural pinna disparity: Another auditory localization cue. J Acoust Soc Am 57:448–455.

    Article  PubMed  CAS  Google Scholar 

  • Shaw EAG (1974) The external ear. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, Vol V/1. Berlin: Springer-Verlag, pp. 455–490.

    Google Scholar 

  • Simpson WE, Stanton LD (1973) Head movement does not facilitate perception of the distance of a source of sound. Am J Psychol 86:151–159.

    Article  PubMed  CAS  Google Scholar 

  • Spigelman MN, Bryden MP (1967) Effects of early and late blindness on auditory spatial learning in the rat. Neuropsychologia 5:267–274.

    Article  Google Scholar 

  • Strybel TZ, Perrott DR (1984) Discrimination of relative distance in the auditory modality: The success and failure of the loudness discrimination hypothesis. J Acoust Soc Am 76:318–320.

    Article  PubMed  CAS  Google Scholar 

  • Terhune JM (1974) Directional hearing of the harbor seal in air and water. J Acoust Soc Am 56:1862–1865.

    Article  PubMed  CAS  Google Scholar 

  • von Békésy GV (1938) Über die Entstehung der Entfernungsempfindung beim Hören. Akust Z 3:21–31.

    Google Scholar 

  • (Available in English in Wever EG (ed) Experiments in Hearing. New York: John Wiley and Sons, 1960, pp. 301–313.

    Google Scholar 

  • Waser PM (1977) Sound localization by monkeys: A field experiment. Behav Ecol Sociobiol 2:427–431.

    Article  Google Scholar 

  • Waser PM, Brown CH (1984) Is there a sound window for primate communication? Behav Ecol Sociobiol 15:73–76.

    Article  Google Scholar 

  • Waser PM, Brown CH (1986) Habitat acoustics and primate communication. Am J Primatol 10:135–154.

    Google Scholar 

  • Wertheimer M (1961) Psychomotor coordination of auditory and visual space at birth. Science 134:1692.

    Article  PubMed  CAS  Google Scholar 

  • Wettschurek RG (1973) Die absoluten Unterschiedswellen der Richtungswahrnehmung in der Medianebene beim naturlichen Hören, sowie beim Hören über ein Kunstkopf-Übertragungssystem. Acoustica 28:197–208.

    Google Scholar 

  • Whittington DA, Hepp-Reymond MC, Flood W (1981) Eye and head movements to auditory targets. Exp Brain Res 41:358–363.

    Article  PubMed  CAS  Google Scholar 

  • Whitehead JM (1987) Vocally mediated reciprocity between neighboring groups of mantled howling monkeys, Aloutta palliata palliata. Anim Behav 35:1615–1627.

    Article  Google Scholar 

  • Wightman FL, Kistler DJ (1989a) Headphone simulation of freefield listening. I: Stimulus synthesis. J Acoust Soc Am 85:858–867.

    Article  PubMed  CAS  Google Scholar 

  • Wightman FL, Kistler DJ (1989b) Headphone simulation of freefield listening. II: Psychophysical validation. J Acoust Soc Am 85:868–878.

    Article  PubMed  CAS  Google Scholar 

  • Wightman FL, Kistler DJ (1992) The dominant role of lowfrequency interaural time differences in sound localization. J Acoust Soc Am 91:1648–1661.

    Article  PubMed  CAS  Google Scholar 

  • Wiley RH, Richards DG (1978) Physical constraints on acoustic communication in the atmosphere: Implications for the evolution of animal vocalization. Behav Ecol Sociobiol 3:69–94.

    Article  Google Scholar 

  • Woodworth RS (1938) Experimental Psychology. New York: Holt.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Brown, C.H. (1994). Sound Localization. In: Fay, R.R., Popper, A.N. (eds) Comparative Hearing: Mammals. Springer Handbook of Auditory Research, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2700-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2700-7_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7633-3

  • Online ISBN: 978-1-4612-2700-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics