Skip to main content

Primate Habitat Acoustics

  • Chapter
  • First Online:
Primate Hearing and Communication

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 63))

Abstract

Natural habitats are not recording studios. Calls emitted in nature encounter an irregular assortment of hard surfaces that reflect and scatter the wave front, producing complicated patterns of constructive and destructive interference. The propagated wave front is subsequently disturbed by wind, thermal gradients, and atmospheric absorption. Collectively, these phenomena result in an unpredictable and untidy acoustic environment. Furthermore, thunder, rain, crashing waves, or the relentless chatter of biotic sources can result in high ambient-noise levels that may mask the signal, overwhelm the recipient, and obliterate significant nuances and embellishments. Thus, vocal communication is hampered by attenuation, reverberation, distortion, and acoustic disturbances. Accordingly, the twin components of vocal communication, sound production and acoustic perception, may have undergone persistent selection to counter the most prominent impediments to both hearing and being heard. Primates have radiated from rain forest to grassland and other habitats, and each habitat differs acoustically. Hence, there is reason to believe that the duration, amplitude, pitch, and composition of primate vocal repertoires, the timing of emissions, and the placement and orientation of vocalizers is not haphazard, but each has become tuned to the acoustic parameters of the natal habitat to heighten the clarity of vocal exchanges. This chapter begins with an overview of the acoustic properties of rain forest, riverine forest, and savanna habitats occupied by East African primates, which is followed by reviews of how primate calls become distorted when propagated in natural habitats and how distortion scores have been used to explore the acoustic adaptation hypothesis. Finally, significant opportunities for additional research are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Barker, N. K. (2008). Bird song structure and transmission in the neotropics: Trends, methods and future directions. Ornitologia Neotropical, 19, 175–199.

    Google Scholar 

  • Bezerra, B. M., Souto, A. S., & Jones, G. (2012). Propagation of the loud “tcho” call of golden-backed uakaris, Cacajao melanocephalus, in the black-swamp forests of the upper Amazon. Primates, 53, 317–325.

    Article  PubMed  Google Scholar 

  • Bormpoudakis, D. J., Sueur, J., & Pantis, J. D. (2013). Spatial heterogeneity of ambient sound at the habitat type level: Ecological implications and applications. Landscape Ecology, 28, 495–506.

    Article  Google Scholar 

  • Brown, C. H. (1989). The acoustic ecology of East African primates and the perception of vocal signals by grey-cheeked mangabeys and blue monkeys. In R. J. Dooling & S. H. Hulse (Eds.), Comparative psychology of audition: Perceiving complex sounds (pp. 201–239). Hillsdale, NJ: Lawrence Earlbaum Associates.

    Google Scholar 

  • Brown, C. H., Alipour, F., Berry, D. A., & Montequin, D. (2003). Laryngeal biomechanics and vocal communication in the squirrel monkey (Saimiri boliviensis). The Journal of the Acoustical Society of America, 113, 2114–2126.

    Article  PubMed  Google Scholar 

  • Brown, C. H., & Cannito, M. P. (1995). Articulated and inflected primate vocalizations: Developing animal models of speech. In D. Robbin & D. Beukleman (Eds.), Disorders of motor speech: Assessment, treatment, and clinical considerations (pp. 43–63). Baltimore, MD: Brooks Publishing Company.

    Google Scholar 

  • Brown, C. H., Gomez, R., & Waser, P. M. (1995). Old world monkey vocalizations: Adaptations to the local habitat? Animal Behaviour, 50, 945–961.

    Article  Google Scholar 

  • Brown, C. H., & Waser, P. M. (1984). Hearing and communication in blue monkeys. Animal Behaviour, 32, 66–75.

    Article  Google Scholar 

  • Brown, C. H., & Waser, P. M. (1988). Environmental influences on the structure of primate vocalizations. In D. Todt, P. Goedeking, & D. Symmes (Eds.), Primate vocal communication (pp. 51–68). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Campbell, M. W., & Snowdon, C. T. (2007). Vocal response of captive-reared Saguinus oedipus during mobbing. International Journal of Primatology, 28, 257–270.

    Article  Google Scholar 

  • Charlton, B. D., Ellis, W. A., McKinnon, A. J., Cowin, G. J., et al. (2011). Cues to body size in the formant spacing of male koala (Phascolarctos cinereus) bellows: Honesty in an exaggerated trait. Journal of Experimental Biology, 214, 3414–3422.

    Article  PubMed  Google Scholar 

  • Charlton, B. D., Ellis, W. A., Brumm, J., Nilsson, K., & Fitch, W. T. (2012a). Female koalas prefer bellows in which lower formants indicate larger males. Animal Behaviour, 84, 1565–1571.

    Article  Google Scholar 

  • Charlton, B. D., Reby, D., Ellis, W. A., Brumm, J., & Fitch, W. T. (2012b). Estimating the active space of male koala bellows: Propagation of cues to size and identity in a Eucalyptus forest. PLoS One, 7(9), e45420. doi:10.1371/journal.pone.0045420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charlton, B. D., Whisson, D. A., & Reby, D. (2013). Free-ranging male koalas use size-related variation in formant frequencies to assess rival males. PLoS One, 8(7), e70279. doi:10.1371/journal.pone.0070279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couldridge, V. C. K., & van Staaden, M. J. (2004). Habitat-dependent transmission of male advertisement calls in bladder grasshoppers (Orthoptera: Pneumoridae). Journal of Experimental Biology, 207, 2777–2786.

    Article  PubMed  Google Scholar 

  • de la Torre, S., & Snowdon, T. (2002). Environmental correlates of vocal communication of wild pygmy marmosets, Cebuella pygmaea. Animal Behaviour, 63, 847–856.

    Article  Google Scholar 

  • Dooling, R. J., West, E. W., & Leek, M. R. (2009). Conceptual and computational models of the effects of anthropogenic noise on birds. Proceedings of the Institute of Physics, 31, 99–106.

    Google Scholar 

  • Embleton, T. F. W. (1996). Tutorial on sound propagation outdoors. The Journal of the Acoustical Society of America, 100, 31–48.

    Article  Google Scholar 

  • Ey, E., & Fischer, J. (2009). The “Acoustic Adaptation Hypothesis”—A review of the evidence from birds, anurans, and mammals. Bioacoustics, 19, 21–48.

    Article  Google Scholar 

  • Ey, E., Rahn, C., Hammerschmidt, K., & Fischer, J. (2009). Wild female olive baboons adapt their grunt vocalizations to environmental conditions. Ethology, 115, 493–503.

    Article  Google Scholar 

  • Fischer, J., Kitchen, D. M., Seyfarth, R. M., & Cheney, D. L. (2004). Baboon loud calls advertise male quality: Acoustic features and their relation to rank, age and exhaustion. Behavioral Ecology and Sociobiology, 56, 140–148.

    Article  Google Scholar 

  • Fischer, J., Noser, R., & Hammerschmidt, K. (2013). Bioacoustic field research: A primer for acoustic analyses and playback experiments with primates. American Journal of Primatology, 75, 643–663.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fought, J. G., Munroe, R. L., Fought, C. R., & Good, E. M. (2004). Sonority and climate in a world sample of languages: Findings and prospects. Cross Cultural. Research, 38, 27–51.

    Google Scholar 

  • Gautier, J.-P. (1988). Interspecific affinities among guenons as deduced from vocalizations. In A. Gautier-Hion, F. Bourliere, J.-P. Gautier, & J. Kingdon (Eds.), A primate radiation (pp. 194–226). Cambridge: Cambridge University Press.

    Google Scholar 

  • Gish, S. L., & Morton, E. S. (1981). Structural adaptations to local habitat acoustics in Carolina wren songs. Zeitschrift für Tierpsychologie, 56, 74–84.

    Article  Google Scholar 

  • Groves, C. (2001). Primate taxonomy. Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., et al. (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1(2), e1500052. doi:10.1126/sciadv.1500052.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hedwig, D. R., Mundry, R., Robbins, M. M., & Boesch, C. (2015). Audience effects, but not environmental influences, explain variation in gorilla close distance vocalizations—A test of the acoustic adaptation hypothesis. American Journal of Primatology, 77, 1239–1252.

    Article  PubMed  Google Scholar 

  • Hemilä, S., Nummela, S., & Reuter, T. (1995). What middle ear parameters tell about impedance matching and high frequency hearing. Hearing Research, 85, 31–44.

    Article  PubMed  Google Scholar 

  • Johnson, M. T., & Clemins, P. J. (2017). Hidden Markov model signal classification. In C. H. Brown & T. Riede (Eds.), Comparative bioacoustics: An overview (pp. 371–428). Oak Park, IL: Bentham Science.

    Google Scholar 

  • Kime, N. M., Turner, W. R., & Ryan, M. J. (2000). The transmission of advertisement calls in Central American frogs. Behavioral Ecology, 11, 71–83.

    Article  Google Scholar 

  • Koda, H., & Sugiura, H. (2010). The ecological design of the affiliative vocal communication style in wild Japanese macaques: Behavioral adjustments to social contexts and environments. In N. Nakagawa (Ed.), The Japanese macaques (pp. 167–188). New York: Springer-Verlag.

    Google Scholar 

  • Lameira, A. R., & Wich, S. A. (2008). Orangutan long call degradation and individuality over distance: A playback approach. International Journal of Primatology, 29, 615–625.

    Article  Google Scholar 

  • Larsen, O. N., & Wahlberg, M. (2017). Sound and sound sources. In C. H. Brown & T. Riede (Eds.), Comparative bioacoustics: An overview (pp. 3–60). Oak Park, IL: Bentham Scientific.

    Chapter  Google Scholar 

  • Lind, E. M., & Morrison, M. E. S. (1974). East African vegetation. London: Longman.

    Google Scholar 

  • Lombard, É. (1911). Le signe de l’élévation de la voix. Annales des Maladies de l’Oreille, du Larynx, du Nez et du Pharynx, 37(2), 101–109.

    Google Scholar 

  • Malone, J. H., Ribado, J., & Lemmon, E. M. (2014). Sensory drive does not explain reproductive character displacement of male acoustic signals in the upland chorus frog (Pseudacris feriarum). Evolution, 68, 1306–1319.

    Article  PubMed  Google Scholar 

  • Michelsen, A. (1978). Sound reception in different environments. In M. Ali (Ed.), Sensory ecology (pp. 345–373). New York: Plenum Press.

    Chapter  Google Scholar 

  • Miller, J. D. (1974). Effects of noise on people. The Journal of the Acoustical Society of America, 56, 729–763.

    Article  CAS  PubMed  Google Scholar 

  • Mitani, J. C., & Stuht, J. (1998). The evolution of primate loud calls: Acoustic adaptation for long-distance propagation. Primates, 39, 171–182.

    Article  Google Scholar 

  • Morrill, R. J., Thomas, A. W., Schiel, N., Souto, A., & Miller, C. T. (2013). The effect of habitat acoustics on common marmoset vocal signal transmission. American Journal of Primatology, 75, 904–916.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morton, E. S. (1975). Ecological sources of selection on avian sounds. American Naturalist, 108, 17–34.

    Article  Google Scholar 

  • Naguib, M., & Wiley, R. H. (2001). Estimating the distance to a source of sound: Mechanisms and adaptations for long-range communication. Animal Behaviour, 62, 825–837.

    Article  Google Scholar 

  • Nicholls, J. A., & Goldizen, A. W. (2006). Habitat type and density influence vocal signal design in satin bowerbirds. Journal of Animal Ecology, 75, 549–558.

    Article  PubMed  Google Scholar 

  • Pijanowski, B. C., Villanueva-Rivera, L. F., Dumyahn, A., Krause, B. L., et al. (2011). Soundscape ecology: The science of sound on the landscape. BioScience, 61, 203–216.

    Article  Google Scholar 

  • Riede, T., & Brown, C. H. (2013). Body size, vocal fold length, and fundamental frequency—implications for mammalian vocal communication. Nova Acta Leopoldina N.F., 111(380), 295–314.

    Google Scholar 

  • Roy, S., Miller, C. T., Gottsch, D., & Wang, X. (2011). Vocal control by the common marmoset in the presence of interfering noise. Journal of Experimental Biology, 214, 3619–3629.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryan, M. J., & Rand, A. S. (1999). Phylogenetic influence on mating call preferences in female tungara frogs, Physalaemus pustulosus. Animal Behaviour, 57, 945–956.

    Article  CAS  PubMed  Google Scholar 

  • Rylands, A. B., & Mittermeier, R. A. (2014). Primate taxonomy: Species and conservation. Evolutionary Anthropology, 23, 8–10.

    Article  PubMed  Google Scholar 

  • Sabatini, V., & Ruiz-Miranda, C. R. (2010). Does the golden lion tamarin, Leontopithecus rosalia (Primates: Callitrichidae) select a location within the forest strata for long distance communication? Zoologica, 27, 179–183.

    Article  Google Scholar 

  • Sabatini, V., Ruiz-Miranda, C. R., & Dabelsteen, T. (2011). Degradation characteristics of golden lion tamarin Leontopithecus rosalia two-phrase long calls: Implications for call detection and ranging in the evergreen forest. Bioacoustics, 20, 137–158.

    Article  Google Scholar 

  • Sandoval, L., Dabelsteen, T., & Mennill, D. J. (2015). Transmission characteristics of solo songs and duets in a neotropical thicket habitat specialist bird. Bioacoustics, 24, 289–306.

    Article  Google Scholar 

  • Schaller, G. (1963). The mountain gorilla. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Scheifele, P., Andrew, S., Cooper, R. A., Darre, M., et al. (2005). Indication of a Lombard vocal response in the St. Lawrence River beluga. The Journal of the Acoustical Society of America, 117, 1468–1492. http://asa.scitation.org/doi/pdf/10.1121/1.1835508.

    Article  Google Scholar 

  • Schneider, C., Hodges, K., Fischer, J., & Hammerschmidt, K. (2008). Acoustic niches of Siberut primates. International Journal of Primatology, 29, 601–613.

    Article  Google Scholar 

  • Shaw, E. (1974). Transformation of sound pressure level from the free field to the eardrum in the horizontal plane. The Journal of the Acoustical Society of America, 56, 1848–1861.

    Article  CAS  PubMed  Google Scholar 

  • Shen, J.-X., & Xu, Z.-M. (2016). The Lombard effect in male ultrasonic frogs: Regulating antiphonal signal frequency and amplitude in noise. Scientific Reports, 6, 27103. doi:10.1038/srep27103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinnott, J. M., & Brown, C. H. (1997). Perception of the English liquid /ra-la/ contrast by humans and monkeys. The Journal of the Acoustical Society of America, 102, 588–602.

    Article  CAS  PubMed  Google Scholar 

  • Sinnott, J. M., Brown, C. H., Malik, W., & Kressley, R. A. (1997). A multidimensional scaling analysis of vowel discrimination in humans and monkeys. Perception and Psychophysics, 59, 1214–1224.

    Article  CAS  PubMed  Google Scholar 

  • Sinnott, J. M., Stebbins, W. C., & Moody, D. B. (1975). Regulation of voice amplitude by the monkey. The Journal of the Acoustical Society of America, 58, 412–414.

    Article  CAS  PubMed  Google Scholar 

  • Slabbekoorn, H. (2004). Habitat-dependent ambient noise: Consistent spectral profiles in two African forest types. The Journal of the Acoustical Society of America, 116, 3727–3733.

    Article  PubMed  Google Scholar 

  • Stammbach, E. (1987). Desert, forest, and montane baboons: Multi-level societies. In B. Smuts, D. Cheney, R. Seyfarth, R. Wrangham, & T. T. Struhsaker (Eds.), Primate societies (pp. 112–120). Chicago, IL: The University of Chicago Press.

    Google Scholar 

  • Stebbins, W. C., & Moody, D. B. (1994). How monkeys hear the world: Auditory perception in nonhuman primates. In R. R. Fay & A. N. Popper (Eds.), Comparative hearing: Mammals (pp. 97–133). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Sugiura, H., Tanaka, T., & Masataka, N. (2006). Sound transmission in the habitats of Japanese macaques and its possible effect on population differences in coo calls. Behaviour, 143, 993–1012.

    Article  Google Scholar 

  • Tavaré, S., Marshall, C. R., Will, O., Soligo, C., & Martin, R. D. (2002). Using the fossil record to estimate the age of the last common ancestor of extant primates. Nature, 416, 726–729.

    Article  PubMed  Google Scholar 

  • Wahlberg, M., & Larsen, O. N. (2017). Propagation of sound. In C. H. Brown & T. Riede (Eds.), Comparative bioacoustics: An overview (pp. 61–120). Oak Park, IL: Bentham Science.

    Google Scholar 

  • Waser, P. M. (1982). The evolution of male loud calls among mangabeys and baboons. In C. T. Snowdon, C. H. Brown, & M. R. Petersen (Eds.), Primate communication (pp. 117–143). Cambridge: Cambridge University Press.

    Google Scholar 

  • Waser, P. M., & Brown, C. H. (1984). Is there a “sound window” for primate communication? Behavioral Ecology and Sociobiology, 15, 73–76.

    Article  Google Scholar 

  • Waser, P. M., & Brown, C. H. (1986). Habitat acoustics and primate communication. American Journal of Primatology, 10, 135–154.

    Article  Google Scholar 

  • Waser, P. M., & Waser, M. S. (1977). Experimental studies of primate vocalizations: Specializations for long-distance propagation. Zeitschrift für Tierpsychologie, 43, 239–263.

    Article  Google Scholar 

  • Webster, M. S., & Budney, G. F. (2017). Sound archives and media specimens in the 21st century. In C. H. Brown & T. Riede (Eds.), Comparative bioacoustics: An overview (pp. 479–503). Oak Park, IL: Bentham Science Publishers.

    Google Scholar 

  • Webster, D. B., & Webster, M. (1980). Morphological adaptations of the ear in the rodent family Heteromyidae. American Zoologist, 20, 247–254.

    Article  Google Scholar 

  • Whitehead, J. M. (1987). Vocally mediated reciprocity between neighbouring groups of mantled howling monkeys, Alouatta palliata palliata. Animal Behaviour, 35, 1615–1627.

    Article  Google Scholar 

  • Wich, S. A., & Nunn, C. L. (2002). Do male “long-distance calls” function in mate defense? A comparative study of long-distance calls in primates. Behavioral Ecology and Sociobiology, 52, 474–484.

    Article  Google Scholar 

  • Wiley, R. H. (2015). Noise matters: The evolution of communication. Cambridge, MA: Harvard University Press.

    Book  Google Scholar 

  • Williams, B. A., Kay, R. F., & Kirk, C. (2010). New perspectives on anthropoid origins. Proceedings of the National Academy of Sciences of the United States of America, 107, 4797–4804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young, D. (1990). Do cicadas radiate sound through their ear drums? Journal of Experimental Biology, 151, 41–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles H. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Brown, C.H., Waser, P.M. (2017). Primate Habitat Acoustics. In: Quam, R., Ramsier, M., Fay, R., Popper, A. (eds) Primate Hearing and Communication. Springer Handbook of Auditory Research, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-59478-1_4

Download citation

Publish with us

Policies and ethics