Skip to main content

Role of Calcium in Stimulus-Secretion Coupling in Exocrine Glands

  • Chapter
Ion Channels and Ion Pumps

Part of the book series: Endocrinology and Metabolism ((EAM,volume 6))

  • 118 Accesses

Abstract

Calcium plays a key role not only in the control of exocrine secretion but also in an extraordinarily diverse group of cellular activities including endocrine secretion, neural transmission, cellular differentiation and growth, intermediary metabolism, protein synthesis, and muscle contraction.1 The overall mechanisms by which intracellular calcium concentrations are regulated in non-excitable cells include the release of calcium from intracellular storage sites and the influx of calcium into the cell from the extracellular environment. In general, elevation of intracellular calcium is thought to result in initial activation of calcium and phospholipid-dependent protein kinases. Through cell specific phosphorylation mechanisms these kinases, in conjunction with opposing phosphatases, may modulate the activities of membrane-bound ion channels, agonist receptors and receptor-associated regulatory enzymes, and many other enzymes present in different cellular compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Campbell AK. Intracellular Calcium—Its Universal Role as Regulator. New York: Wiley; 1983:1–556.

    Google Scholar 

  2. Chew CS. Intracellular activation events for parietal cell HCl secretion. In: Forte JG, ed. Handbook of Physiology, Section 6: The Gastrointestinal System. New York: Oxford University Press; 1989:255–266.

    Google Scholar 

  3. Putney JW, Jr. Calcium signaling system in salivary glands. In: Forte JG, ed. Handbook of Physiology, Section 6: The Gastrointestinal System. New York: Oxford University Press; 1989:51–61.

    Google Scholar 

  4. Schulz I. Signaling transduction in hormone- and neuro transmitter-induced enzyme secretion from the exocrine pancreas. In: Forte JG, ed. Handbook of Physiology, Section 6: The Gastrointestinal System. New York: Oxford University Press; 1989:443–463.

    Google Scholar 

  5. Williams JA, Burnham DB, Hootman SR. Cellular regulation of pancreatic secretion. In: Forte JG, ed. Handbook of Physiology, Section 6: The Gastrointestinal System. New York: Oxford University Press; 1989:419–441.

    Google Scholar 

  6. Douglas WW. Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br J Pharmacol 1968; 34:451–474.

    PubMed  CAS  Google Scholar 

  7. Joseph SK, Coll KE, Thomas AP, Rubin R, Williamson JR. The role of extracellular Ca2+ in the response of the hepatocyte to Ca2+-dependent hormones. J Biol Chem 1985; 260:12508–12515.

    PubMed  CAS  Google Scholar 

  8. Shuttleworth TJ, Thompson JL. Intracellular [Ca2+] and inositol phosphates in avian nasal gland cells. Am J Physiol 1989; C1020–C1029.

    Google Scholar 

  9. Muallem S. Calcium transport pathways of pancreatic acinar cells. Annu Rev Physiol 1989; 51:83–105.

    Article  PubMed  CAS  Google Scholar 

  10. Hersey SJ. Cellular basis of pepsinogen secretion. In: Forte JG, ed. Handbook of Physiology, section 6: The Gastrointestinal System. New York: Oxford University Press; 1989:267–278.

    Google Scholar 

  11. Sato K, Sato F. Relationship between quin2-determined cytosolic [Ca2+] and sweat secretion. Am J Physiol 1988; 254(Cell Physiol 23):C310–C317.

    Google Scholar 

  12. Tsien RY. Fluorescent indicators of ion concentrations. Meth Cell Biol 1989; 30:127–156.

    Article  CAS  Google Scholar 

  13. Foskett JK, Meivin JE. Activation of salivary secretion: coupling of cell volume and [Ca2+]i in single cells. Science 1989; 244:1582–1585.

    Article  PubMed  CAS  Google Scholar 

  14. Negulescu PA, Reenstra WW, Machen TE. Intracellular Ca requirements for stimulus-secretion coupling in the parietal cell. Am J Physiol 1989; 256.-C241–C251.

    PubMed  CAS  Google Scholar 

  15. Brown MR, Chew CS. Carbachol-induced protein phosphorylation in parietal cells: Regulation by [Ca2+]1. Amer J Physiol 1989; 257(Gastrointest Liver Physiol 20):G99–G110.

    PubMed  CAS  Google Scholar 

  16. Thastrup O, Dawson AP, Scharff O, Foder B, Cullen PJ, Drobak BK, Bjerrum PJ, Christensen SB, Hanley MR. Thapsigargin, a novel molecular probe for studying intracellular calcium release and storage. Agents and Actions 1989; 27:17–23.

    Article  PubMed  CAS  Google Scholar 

  17. Llopis J, Chow SB, Kass GEN, Gahm A, Orrenius S. Comparison between the effects of the microsomal Ca2+-translocase inhibitors thapsigargin and 2,5-di-(t-butyl)-1,4-benzohydroquinone on cellular calcium fluxes. Biochem J 1991; 277:553–556.

    PubMed  CAS  Google Scholar 

  18. Thastrup O, Foder B, Scharff O. The calcium mobilizing and tumor promoting agent, thapsigargin, elevates the platelet cytoplasmic free calcium concentration to a higher steady state level: A possible mechanism of action for the tumor promotion. Biochem Biophys Res Commun 1987; 142:654–660.

    Article  PubMed  CAS  Google Scholar 

  19. Hakil H, Fujiki H, Suganuma M, Nakayasu M. Thapsigargin, a histamine secretagogue is a non-12–0-tetradecanoylphorbol-13-acetate type tumor promoter, in two-stage mouse skin carcinogenesis. J Cancer Res Clin Oncol 1986; 111:177–181.

    Article  Google Scholar 

  20. Chew CS, Petropoulos AC. Thapsigargin potentiates histamine-stimulated HCl secretion, in gastric parietal cells but does not mimic cholinergic agonists. Cell Regul 1991; 2:27–39.

    PubMed  CAS  Google Scholar 

  21. Petersen OH, Findlay I. Electrophysiology of the pancreas. Physiol Rev 1987; 67:1054–1116.

    PubMed  CAS  Google Scholar 

  22. Forte JG, Soil AH. Cell biology of hydrochloric acid secretion. In: Forte JG, ed. Handbook of Physiology Section 6: The Gastrointestinal System New York: Oxford University Press; 1989:207–228.

    Google Scholar 

  23. Rasmussen H, Rasmussen JE. Calcium as intracellular messenger: From simplicity to complexity. Curr Topics Cell Regul 1990; 31:1–127.

    CAS  Google Scholar 

  24. Hille B. Ionic channels: Evolutionary origin and modern roles. Quarterly Jour Exper Physiol 1989; 74:785–804.

    CAS  Google Scholar 

  25. Bean BP. Classes of calcium channels in vertebrate cells. Annu Rev Physiol 1989; 51:387–384.

    Article  Google Scholar 

  26. Hosey MM, Lazdunski M. Calcium channels: Molecular pharmacology, structure and regulation. J Membr Biol 1988; 104:81–105.

    Article  PubMed  CAS  Google Scholar 

  27. Tsien RW, Tsien RY. Calcium channels, stores and oscillators. Ann Rev Cell Biol 1990; 6:715–760.

    Article  PubMed  CAS  Google Scholar 

  28. Hofmann F, Flockerzi V, Nastainczyk W, Ruih P, Schneider T. The molecular structure and regulation of muscular calcium channels. Current Topics in Cellular Regul 1990; 31:233–239.

    Google Scholar 

  29. Fleischer S, Inui M. Biochemistry and biophysics of excitation—contraction coupling. Annu Rev Biophys Chem. 1989; 18:333–364.

    Article  CAS  Google Scholar 

  30. Tanabe T, Beam KG, Powell JA, Numa S. Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature 1988; 336:134–139.

    Article  PubMed  CAS  Google Scholar 

  31. Caterall WA, Genetic analysis of ion channels in vertebrates. Annu Rev Physiol 1988; 50:395–408.

    Article  Google Scholar 

  32. Simon MI, Strathmann MP, Gaulam N. Diversity of G proteins in signal transduction. Science 1991; 252:802–808.

    Article  PubMed  CAS  Google Scholar 

  33. Kass RS, Lederer WJ, Tsien RW, Weingart R. Role of calcium ions in transient inward currents and latter contractions induced by strophanthidin in cardiac Purkinje fibres. J Physiol 1978; 281:187–208.

    PubMed  CAS  Google Scholar 

  34. Shull GE, Greeb J. Molecular cloning of two isoforms of the Ca2+,-transporting ATPase from rat brain: Structural and functional domains exhibit similarity to Na+, K+ and other cation transport ATPases. J Biol Chem 1988; 263:8646–8657.

    PubMed  CAS  Google Scholar 

  35. Verma AK, Filoteo AG, Stanford DR et al. Complete primary structure of a human plasma membrane Ca2+ pump. J Biol Chem, 1988; 263:14152–14159.

    PubMed  CAS  Google Scholar 

  36. Carafoli E. The calcium pumping ATPase of the plasma membrane. Annu Rev Physiol 1991; 53:531–547.

    Article  PubMed  CAS  Google Scholar 

  37. Grover AK, Kahn I. Calcium pump Isoforms: Diversity, selectivity and plasticity. Cell Calcium 1992; 13:9–17.

    Article  PubMed  CAS  Google Scholar 

  38. Ross GS. Hormone/neurotransmitter action during aging: The calcium hypothesis of impaired signal transduction. Rev Biol Res Aging 1990; 4:243–252.

    CAS  Google Scholar 

  39. Reuter H, Seitz N. The dependence of Ca2+ efflux from cardiac muscle on temperature and external ion composition. J Physiol 1968; 195:451–470.

    PubMed  CAS  Google Scholar 

  40. Muallem S, Beeker T, Pandol SJ. Role of Na/Ca exchange and plasma membrane Ca pump in hormone-related Ca efflux from pancreatic acini. J Membr Biol 1988; 102:155–162.

    Google Scholar 

  41. Negulescu PA, Machen TE. Lowering extracellular sodium of pH raises intracellular calcium in gastric cells. J Membr Biol 1990; 116:239–248.

    Article  PubMed  CAS  Google Scholar 

  42. Rahamimoff H. Na+-Ca2+ exchanger: The elusive protein. Curr Topics Cell Regul 1990; 31:241–271.

    CAS  Google Scholar 

  43. McPherson PS, Campbell KP. Solubilization of biochemical characterization of the high affinity [3H]ryanodine receptor from rabbit brain membranes. J Biol Chem 1990; 265:18454–18460.

    PubMed  CAS  Google Scholar 

  44. Lai F, Erickson HP, Rousseau E, Liu Q, Meissner G. Purification and reconstitution of the calcium release channel from skeletal muscle. Nature 1988; 331:315–319.

    Article  PubMed  CAS  Google Scholar 

  45. Block BA, Imagawa T, Campbell KP, Franzi-Armstrong C. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol 1988; 107:2587–2600.

    Article  PubMed  CAS  Google Scholar 

  46. Mészaros LG, Volpe P. Caffeine- and ryanodine-sensitive Ca2+ stores of canine cerebrum and cerebellum neurons. Am J Physiol 1991; 261:C1048–C1054.

    PubMed  Google Scholar 

  47. Schatzmann HJ. The calcium pump of the surface membrane and of the sarcoplasmic reticulum. Annu Rev Physiol 1989; 51:473–495.

    Article  PubMed  CAS  Google Scholar 

  48. Burgoyne RD, Cheek TR, Morgan A, O’Sullivan AJ, Moreton RB, Berridge MJ, Mata AM, Colyer J, Lee AG. Distribution of two distinct Ca2+-ATPase-like proteins and their relationships to the agonist-sensitive calcium store in adrenal chromaffin cells. Nature 1989; 342:72–74.

    Article  PubMed  CAS  Google Scholar 

  49. Somlyo AP. Excitation-contraction coupling and the structure of smooth muscle. Circ Res 1985; 57:497–507.

    PubMed  CAS  Google Scholar 

  50. Berridge MJ, Rapp PE. A comparative survey of the function, mechanism and control of cellular oscillators. J Exp Biol 1979; 81:217–280.

    PubMed  CAS  Google Scholar 

  51. Woods NM, Cuthbertson KSR, Cobbold PH. Agonist-induced oscillations in cytoplasmic free calcium concentration in single rat hepatocytes. Cell Calcium 1987; 8:79–100.

    Article  PubMed  CAS  Google Scholar 

  52. Jacob R. Calcium oscillations in electrically non-excitable cells. Biochim Biophys Acta 1990; 1052:427–438.

    Article  PubMed  CAS  Google Scholar 

  53. Berridge MJ. Calcium oscillations. J Biol Chem 1990; 265:9583–9586.

    PubMed  CAS  Google Scholar 

  54. Rooney TA, Sass EJ, Thomas AP. Characterisation of cytosolic calcium oscillations induced by phenylephrine and vasopressin in single fura-2-loaded hepatocytes. J Biol Chem 1989; 264:17131–17141.

    PubMed  CAS  Google Scholar 

  55. Ljungström M, Chew CS. Calcium oscillations and morphological transformations in single cultured gastric parietal cells. Am J Physiol 1991; 260:C67–C78.

    PubMed  Google Scholar 

  56. Gray PTA. Oscillations of free cytosolic calcium evoked by cholinergic and catecholaminergic agonists in rat parotid acinar cells. J Physiol (Lond) 1988; 406:35–53.

    CAS  Google Scholar 

  57. Matozaki T, Göke B, Tsunoda Y, Rodriguez M, Martinez Jr, Williams JA. Two functionally distinct cholecystokinin receptors show different modes of actions on Ca2+ mobilization and phospholipid hydrolysis in isolated rat pancreatic acini. J Biol Chem 1990; 265:6247–6254.

    PubMed  CAS  Google Scholar 

  58. Berridge MJ, Gallione A, Cytosolic calcium oscillators. FASEB J 1988; 2:3074–3082.

    PubMed  CAS  Google Scholar 

  59. Chew CS, Ljungström M. Measurement and manipulation of oscillations in cytoplasmic calcium. In Herman B, Lemasters J, New Methods of Microscopy, San Diego: Academic Press; 1993:133–175.

    Google Scholar 

  60. Snider RM, Roland RM, Lowy RJ, Agranoff BW, Ernst SA. Muscarinic receptor-stimulated Ca2+ signaling and inositol lipid metabolism in avian salt gland cells. Biochim Biophys Acta 1986; 889:216–224.

    Article  PubMed  CAS  Google Scholar 

  61. Muallem S. Sachs G. Ca2+ metabolism during cholinergic stimulation of acid secretion. Am J Physiol 1985; 248:G216–G228.

    PubMed  CAS  Google Scholar 

  62. Chew CS, Brown MR. Release of intracellular Ca2+ and elevation of inositol trisphosphate by secretagogues in parietal and chief cells isolated from rabbit gastric mucosa. Biochim Biophys Acta 1986; 888:116–125.

    Article  PubMed  CAS  Google Scholar 

  63. Hokin MR, Hokin LE. Enzyme secretion and the incorporation of 32P into phospholipids of pancreas slices. J Biol Chem 1953; 203:967–977.

    PubMed  CAS  Google Scholar 

  64. Michelle RH. Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 1975; 415:81–147.

    Google Scholar 

  65. Berridge MJ. Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyze polyphosphoinositides instead of phosphatidylinositol. Biochem J 1983; 212:849–858.

    PubMed  CAS  Google Scholar 

  66. Streb H, Irvine RF, Berridge MJ, Schulz I. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 1983; 306:67–69.

    Article  PubMed  CAS  Google Scholar 

  67. Sayerdorffer E, Streb H, Eckhardt L, Haase W, Schulz I. Characterization of calcium uptake into rough endoplasmic reticulum of rat pancreas. J Membr Biol 1984; 81:69–82.

    Article  Google Scholar 

  68. Berridge MJ, Irvine RF. Inositol phosphates and cell signalling. Nature 1989; 341:197–205.

    Article  PubMed  CAS  Google Scholar 

  69. Catt KJ, Hunyady L, Balla T. Second messengers derived from inositol lipids. J Bioenergetics and Biomembranes 1991; 23:7–27.

    CAS  Google Scholar 

  70. Rios EJ. The mechanical hypothesis of excitation-contraction (EC) coupling in skeletal muscle. Muscle Res Cell Motil 1991; 12:127–135.

    Article  CAS  Google Scholar 

  71. Rhee SG, Suh PG, Hyu SH, Lee SY, Studies of inositol phospholiplid-specific phospholipase C. Science 1989:546–550.

    Google Scholar 

  72. Suh PG, Ryu SH, Choi WC, Lee KY, Rhee SG, Monoclonal antibodies to three phopholipase C isozymes from bovine brain. J Biol Chem. 1988; 263:14497–14504.

    PubMed  CAS  Google Scholar 

  73. Martin TFJ, Lewis JF, Kowalchk JA. Phospholipase C-ßl is regulated by a pertussis toxin-insensitive G protein. Biochem J 1991; 280:753–760.

    PubMed  CAS  Google Scholar 

  74. Gilman AG. G proteins: Transducers of receptor-generated signals. Annu Rev Biochem 1987; 56:615–649.

    Article  PubMed  CAS  Google Scholar 

  75. Exion JH. Mechanisms of action of calcium-mobilizing agonists: Some variations on a young theme. FASEB J. 1988; 2:2670–2676.

    Google Scholar 

  76. Schnefel S, Bantic H, Eckhardt L, Schultz G, Schulz I. Acetylcholine and cholecystokinin receptors functionally coupled by different G-proteins to phospholipase C in pancreatic acinar cells. FEBS Lett 1988; 230:125–130.

    Article  PubMed  CAS  Google Scholar 

  77. Berridge MJ. Inositol trisphosphate and diacyl glycerol: Two interacting second messengers. Annu Rev Biochem 1987; 56:159–193.

    Article  PubMed  CAS  Google Scholar 

  78. Rana RS, Hokin LE. Role of phosphoinositides in transmembrane signaling. Physiol Rev 1990; 70:115–163.

    PubMed  CAS  Google Scholar 

  79. Duddy SK, Kass GEN, Orrenius S. Ca2+-mobilizing hormones stimulate Ca2+ efflux from hepatocytes. J Biol Chem 1989; 264:20863–20866.

    PubMed  CAS  Google Scholar 

  80. Barritt GJ, Hughes BP. The nature and mechanism of activation of the hepatocyte receptor-activated Ca2+ inflow system. Cellular Signalling 1991; 3:283–292.

    Article  PubMed  CAS  Google Scholar 

  81. Shuttleworth TJ. Fluoroaluminate activation of different components of the calcium signal in an exocrine cell. Biochem J 1990; 269:417–422.

    PubMed  CAS  Google Scholar 

  82. Blackmore PF, Bocekino SR, Waynick CE, Exton JH. Role of a guanine-nucleotide-binding regulatory protein in the hydrolysis of hepatocyte phosphatidylinositol 4,5-bisphosphate by calcium-mobilizing hormones and the control of cell calcium studies utilizing aluminum fluoride. J Biol Chem 1985; 260:14477–14483.

    PubMed  CAS  Google Scholar 

  83. Taylor CW, Merritt JE, Putney JW Jr, Rubin RP. A guanine nucleotide-dependent regulatory protein couples substance P receptors to phospholipase C in rat parotid glands. Biochem Biophys Res Commun 1986; 136:362–368.

    Article  PubMed  CAS  Google Scholar 

  84. Merritt JE, Rink TJ. Regulation of cytosolic free calcium in Fura-2 loaded rat parotid acinar cells. J Biol Chem 1987; 262:17362–17369.

    PubMed  CAS  Google Scholar 

  85. Matozaki T, Sakamoto C, Nagao M, Nishizaki H, Baba S. G protein in stimulation of PI hydrolysis by CCK in isolated rat pancreatic acinar cells. Am J Physiol 1988; 255:E652–E659.

    PubMed  CAS  Google Scholar 

  86. Claro E, Wallace MA, Fain JN. Dual effect of fluoride on phosphoinositide metabolism in rat brain cortex. Biochem J 1990; 268:733–737.

    PubMed  CAS  Google Scholar 

  87. Lange AJ, Arion WJ, Burcell A, Burcell B. Aluminum ions are required for stabilization and inhibition of hepatic microsomal glucose-6-phosphatase by sodium fluoride. J Biol Chem 1986; 261:101–107.

    PubMed  CAS  Google Scholar 

  88. Smrcka AV, Hepler JR, Brown KO, Sternweis PC. Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq. Science 1991; 251:804–807.

    Article  PubMed  CAS  Google Scholar 

  89. Taylor SJ, Choe HZ, Rhee SG, Exton JH. Activation of the B1 isozyme of phospholipase C by a subunits of the Gq class of G proteins. Nature 1991; 350:516–518.

    Article  PubMed  CAS  Google Scholar 

  90. Wange RL, Smrcka AV, Sternweis PC, Exton JH. Photoaffinity labeling of two rat liver plasma membrane proteins with [32P]y-azidoaniliado GTP in response to vasopressin. J Biol Chem 1991; 266:11409–11412.

    PubMed  CAS  Google Scholar 

  91. Bourne HR, Saunders DA, McCormick F. The GTPase superfamily: A conserved switch for diverse cell functions. Nature 1990; 348:125–132.

    Article  PubMed  CAS  Google Scholar 

  92. Hall A. The cellular Functions of small GTP-binding proteins. Science (Wash DC) 1990; 249:635–640.

    Article  CAS  Google Scholar 

  93. Kahn RA. Fluoride is not an activator of the smaller (20–25 kDa) GTP-binding proteins. J Biol Chem 1991; 266:15595–15597.

    PubMed  CAS  Google Scholar 

  94. Göke B, Williams JA, Wishart MJ, De Lisle RC. Low molecular mass GTP-binding proteins in subcellular fractions of the pancreas: Regulated phosphoryl G proteins. Am J Physiol 1992; 262:C493–C500.

    PubMed  Google Scholar 

  95. Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L. GTPase inhibiting mutations activate the a chain of Gs and stimulate adenylyl cyclase. Nature 1989; 340:692–696.

    Article  PubMed  CAS  Google Scholar 

  96. Gutkind JS, Novotny EA, Brann MR, Robbins KC. Muscarinic acetylcholine receptor subtypes as agonist-dependent oncogenes. Proc Natl Acad Sei USA 1991; 88:4703–4707.

    Article  CAS  Google Scholar 

  97. Suppatapone S, Worley PF, Baraban JM, Snyder SH. Solubilization, purification, and characterization of an inositol trisphosphate receptor. J Biol Chem 1988; 263:1530–1534.

    Google Scholar 

  98. Ferris CD, Huganir RL, Supattapone S, Snyder SH. Purified inositol 1,4,5-trisphosphate receptor mdiate calcium flux in reconstituted lipid vesicles. Nature 1989; 342:87–89.

    Article  PubMed  CAS  Google Scholar 

  99. Nunn DL, Taylor CW. Liver inositol 1,4,5-trisphosphate binding sites are the Ca2+-mobilizing receptors. Biochem J 1990; 270:227–232.

    PubMed  CAS  Google Scholar 

  100. Nunn DL, Potter BVL, Taylor CW. Molecular target sites of inositol 1,4,5-trisphosphate receptors in liver and cerebellum. Biochem J 1990; 265:393–398.

    PubMed  CAS  Google Scholar 

  101. Furuichi T, Shiota C, Mikoshiba K. Distribution of inositol 1,4,5-trisphosphate receptor mRNA in mouse tissues. FEBS Lett 1990; 267:85–88.

    Article  PubMed  CAS  Google Scholar 

  102. Maeda N, Niinobe M, Nakahira K, Mikoshiba KJ. Purification and characterization P400 protein, a glycoprotein characteristic of the Purkinje cell from mouse cerebellum. Neurochemistry 1988; 51:1724–1730.

    Article  CAS  Google Scholar 

  103. Guillemette G, Balla T, Baukal AJ, Spat A, Catt KJ. Inositol 1,4,5-trisphosphate binds to a specific receptor and releases microsomal calcium in the anterior pituitary gland. J Biol Chem 1987; 262:1010–1015.

    PubMed  CAS  Google Scholar 

  104. Chadwick CC, Saito A, Fleischer S. Isolation and characterization of the inositol trisphosphate receptor from smooth muscle. Proc Natl Acad Sei USA 1990; 87:2132–2136.

    Article  CAS  Google Scholar 

  105. Mourey RJ, Verma A, Supattapone S, Snyder SH. Purification and characterization of the inositol 1,4,5-trisphosphate receptor protein from rat vas deferens. Biochem J 1990; 272:383–389.

    PubMed  CAS  Google Scholar 

  106. Mignery GA, Sudhof TC, Takei K, De Camilli P. Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature 1989; 342:192–195.

    Article  PubMed  CAS  Google Scholar 

  107. Mikoshiba K, Huchet M, Changeux JP. Biochemical and immunological studies on the P450 protein, a protein characteristic of the Purkinje cell from mouse and rat cerebellum. Dev Neurosci 1979; 2:254–275.

    Article  PubMed  CAS  Google Scholar 

  108. Maeda N, Niinobe M, Mikoshiba K. A cerebellar Purkinje marker P400 protein is an inositol 1,4,5-trisphosphate (Ins P3) receptor protein. Purification and characterization of Ins P3 receptor complex. EMBO J 1990; 9:61–67.

    PubMed  CAS  Google Scholar 

  109. Furuichi T, Yoshikawa S, Miyawaki A, Wada K, Maeda N, Mikoshiba K. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 1989; 342:32–38.

    Article  PubMed  CAS  Google Scholar 

  110. Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N, Matsuo H, Ueda M, Hanaoka M, Hirose T, Numa S. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 1989; 339:439–445.

    Article  PubMed  CAS  Google Scholar 

  111. Mignery GA, Newton CL, Archer BT, Sudhof TC. Structure and expression of the rat inositol 1,4,5-trisphosphate receptor. J Biol Chem 1990; 265:12679–12685.

    PubMed  CAS  Google Scholar 

  112. Mignery GA, Sudhof TC. The ligand binding site and transduction mechanism in the inositol-l,4,5-triphosphate receptor. EMBO J 1990; 9:3893–3898.

    PubMed  CAS  Google Scholar 

  113. Nakagawa T, Okano H, Furuichi T, Aruga J, Mikoshiba K. The subtypes of the mouse inositol 1,4,5-trisphosphate receptor are expressed in a tissue-specific and developmentally specific manner. Proc Natl Acad Sei USA 1991; 88:6244–6248.

    Article  CAS  Google Scholar 

  114. Iino M, Kobayashi T, Endo M. Use of ryanodine for functional removal of the calcium store in smooth muscle cells of the guinea pig. Biochem Biophys Res Commun 1988; 152:417–422.

    Article  PubMed  CAS  Google Scholar 

  115. Burk SE, Lytton J, MacLennan DH, Shull GE. cDNA cloning, functional expression, and mRNA tissue distribution of a third organellar Ca2+ pump. J Biol Chem 1989; 264:18,561–568.

    Google Scholar 

  116. Rossier MF, Capponi AM, Vallotton MB. The inositol 1,4,5-trisphosphate-binding site in adrenal cortical cells is distinct from the endoplasmic reticulum. J Biol Chem 1989; 264:14078–14084.

    PubMed  CAS  Google Scholar 

  117. Malviya AN, Rogue P, Vincendon G. Stereospecific inositol 1,4,5-[32P] trisphosphate binding to isolated rat liver nuclei: Evidence for inositol trisphosphate receptor-mediated calcium release from the nucleus. Proc Natl Acad Sei USA 1990; 87:9270–9274.

    Article  CAS  Google Scholar 

  118. Nicotera P, Orrenius S, Nilsson T, Berggren P-O. An inositol 1,4,5-trisphosphate-sensitive Ca2+ pool in liver nuclei. Proc Natl Acad Sei USA 1990; 87:6858–6862.

    Article  CAS  Google Scholar 

  119. Hashimoto S, Bruno G, Lew DP, Pozzan T, Volpe P, Meldolesi J. Immunocytochemistry of calcisomes in liver and pancreas. J Cel Biol 1988; 107:2523–2531.

    Article  CAS  Google Scholar 

  120. Volpe P, Krause K-H, Hashimoto S, Zorzato F, Pozzan T, Meldolesi J, Lew DP. “Calciosome,” a cytoplasmic organelle: The inositol 1,4,5-trisphosphate-sensitive Ca2+ store of nonmuscle cells? Proc Natl Acad Sei USA 1988; 85:1091–1095.

    Article  CAS  Google Scholar 

  121. Opas M, Dziak E, Fliegel L, Michalak M. Regulation of expression and intracellular distribution of calreticulin, a major calcium binding protein of nonmuscle cells. J Cell Physio 1991; 49:160–171.

    Article  Google Scholar 

  122. Michalak M, Baksh S, Opas M. Identification and immunolocalization of calreticulin in pancreatic cells: No evidence for “Calciosomes.” Exp Cell Res 1991; 197:91–99.

    Article  PubMed  CAS  Google Scholar 

  123. Van PN, Peter F, Söling HD. Four intracisternal calcium-binding glycoproteins from rat liver microsomes with high affinity for calcium. J Biol Chem 1989; 264:17494–17501.

    PubMed  CAS  Google Scholar 

  124. Milner RE, Baksh S, Shemanko C, Carpenter MR, Smillie L, Vance JE, Opas M, Michalak M. Calreticulin, and not calsequestrin, is the major calcium binding protein in smooth muscle sarcoplasmic reticulum and liver endoplasmic reticulum. J Biol Chem 1991; 266:7155–7165.

    PubMed  CAS  Google Scholar 

  125. Treves S, de Mattei M, Lanfredi M, Villa A, Green NM, MacLennan DH, Meldolesi J, Pozzan T. Calreticulin is a candidate for a calsequestrin-like function Ca2+-storage compartments (calciosomes) of liver and brain. Biochem J 1990; 271:473–480.

    PubMed  CAS  Google Scholar 

  126. Krause KH, Simmerman HKB, Jones LR, Campbell KP. Sequence similarity of calreticulin with a Ca2+-binding protein that co-purifies with an Ins(l,4,5)P3-sensitive Ca2+ store in HL-60 cells. Biochem J 1990; 270:545–548.

    PubMed  CAS  Google Scholar 

  127. Fliegel L, Burns K, MacLennan DH, Reithmeier RAF, Michalak M. Molecular cloning of the high affinity calcium binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J Biol Chem 1989; 264:21522–21528.

    PubMed  CAS  Google Scholar 

  128. Waisman D, Salimath BP, Anderson MI. Isolation and characterization of CAB-63, a novel calcium-binding protein. J Biol Chem 1985; 260:1652–1660.

    PubMed  CAS  Google Scholar 

  129. Macer DRJ, Koch GLE. Identification of a set of calcium-binding proteins in reticuloplasm, the luminal content of the endoplasmic reticulum. J Cell Sei 1988; 91:61–70.

    CAS  Google Scholar 

  130. Smith M, Koch GLE. Multiple zones in the sequence of calreticulin (CRP55, calregulin, HACBP), a major calcium binding protein. EMBO J 1989; 8:3581–3586.

    PubMed  CAS  Google Scholar 

  131. Ross CA, Meldolesi J, Milner TA, Satoh T, Supattapone S, Snyder SH. Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons. Nature 1989; 339:468–470.

    Article  PubMed  CAS  Google Scholar 

  132. Volpe P, Anderson-Lang BH, Madedder L, Damiani E, et al. Calsequestrin, a component of the inositol 1,4,5-trisphate-sensitive Ca2+ store of chicken cerebellum. Neuron 1990; 5:713–721.

    Article  PubMed  CAS  Google Scholar 

  133. Villa A, Podini P, Clegg Do, Pozzan T, Meldolesi J. Intracellular Ca2+ stores in chicken Purkini je neurons: Differential distribution of the low affinity-high capacity Ca2+ binding protein, calsequestrin, of Ca2+ ATPase and the ER lumenal protein, BiPx. J Cell Biol 1991; 113:779–791.

    Article  PubMed  CAS  Google Scholar 

  134. Burgoyne RD, Cheek TR. Locating intracellular calcium stores. Trends Biochem Sei 1991; 16:319–320.

    Article  CAS  Google Scholar 

  135. Dawson AP, Comerford JG. Effects of GTP on Ca2+ movements across endoplasmic reticulum membranes. Cell Calcium 1989; 10:343–350.

    Article  PubMed  CAS  Google Scholar 

  136. Rossier MF, Bird GS, Putney JW Jr. Subcellular distribution of the calcium-storing inositol 1,4,5-trisphosphate-sensitive organelle in rat liver. Biochem J 1991; 274:643–650.

    PubMed  CAS  Google Scholar 

  137. Henne V, Piiper A, Soling H-D. Inositol 1,4,5-trisphosphate and 5’y-GTP induce calcium release from different intracellular pools. FEBS Let 1987; 218:153–158.

    Article  CAS  Google Scholar 

  138. Menniti FS, Bird GS, Takemura H, Thastrup O, Potter BVL, Putney JW Jr. Mobilization of calcium by inositol trisphosphate from permeabilized rat parotid acinar cells. J Biol Chem 1991; 266:13646–13653.

    PubMed  CAS  Google Scholar 

  139. Marty A. Calcium release and internal calcium regulation in acinar cells of exocrine glands. J Membr Biol 1991; 124:189–197.

    Article  PubMed  CAS  Google Scholar 

  140. Kasai H, Augustine GJ. Cytosolic Ca2+ gradients triggering unidirectional fluid secretion from exocrine pancreas. Nature 1990; 348:735–738.

    Article  PubMed  CAS  Google Scholar 

  141. Dissing S, Nauntofte B, Sten-Knudsen O. Spatial distribution of intracellular, free Ca2+ in isolated rat parotid acini. Pfluegers Arch 1990; 417:1–12.

    Article  CAS  Google Scholar 

  142. Foskett JK, Gunter-Smith PJ, Meivin JE, Turner RJ. Physiological localization of an agonist-sensitive pool of Ca2+ in parotid acinar cells. Proc Natl Acad Sei USA 1989; 86:167–171.

    Article  CAS  Google Scholar 

  143. Berridge MJ, Irvine RF. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 1984; 312:315–321.

    Article  PubMed  CAS  Google Scholar 

  144. Cobbold PH. Oscillatory calcium signals in hormone-stimulated cells. News in Physiological Sciences 1989; 4:211–215.

    CAS  Google Scholar 

  145. Fabiato A. Calcium-induced calcium release from canine sarcoplasmic reticulum. Am J Physiol 1983; 245:C1–C14.

    PubMed  CAS  Google Scholar 

  146. Endo M. Calcium release from the sarcoplasmic reticulum. Curr Top Membr Transp 1985; 25:181–230.

    CAS  Google Scholar 

  147. Rooney TA, Renard DC, Sass EJ, Thomas AP. Oscillatory cytosolic calcium waves independent of stimulated inositol 1,4,5-trisphosphate formation in hepatocytes. J Biol Chem 1991; 266:12272–12282.

    PubMed  CAS  Google Scholar 

  148. Wakui M, Osipchuk YV, Petersen OH. Receptor-activated cytoplasmic Ca2+ spiking mediated by inositol trisphosphate is due to Ca2+-induced Ca2+ release. Cell 1990; 63:1025–1032.

    Article  PubMed  CAS  Google Scholar 

  149. Rousseau E, Meissner G. Single cardiac sarcoplasmic reticulum Ca2+-release channel: Activation by caffeine. Am J Physiol 1989; 256:H328–H333.

    PubMed  CAS  Google Scholar 

  150. Osipchuk YV, Wakui M, Yule DI, Gallacher DV, Petersen OH. Cytoplasmic Ca2+ oscillations evoked by receptor stimulation G-protein, internal application of inositol trisphosphate or Ca2+: Simultaneous microfluorimetry and Ca2+ dependent Cl current recording in single pancreatic acinar cells. EMBO J 1990; 9:697–704.

    PubMed  CAS  Google Scholar 

  151. Wakui M, Potter BVL, Petersen OH. Pulsatile intracellular calcium release does not depend on fluctuations in inositol trisphosphate concentration. Nature 1989; 339:317–320.

    Article  PubMed  CAS  Google Scholar 

  152. Marty A, Tan YP. The initiation of calcium release following muscarinic stimulation in rat lacrimal glands. J Physiol 1989; 419:665–687.

    PubMed  CAS  Google Scholar 

  153. Foskett JK, Wong D. Free cytoplasmic Ca2+ concentration oscillations in thapsigargin-treated parotid acinar cells are caffeine- and ryanodine-sensitive. J Biol Chem 1991; 266:14535–14538.

    PubMed  CAS  Google Scholar 

  154. Bezprozvanny I, Watras J, Ehrlich BE. Bell-shaped calcium responses of inositol 1,4,5-trisphosphate-gated and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 1991; 351:751–754.

    Article  PubMed  CAS  Google Scholar 

  155. Ehrlich BE, Watras J. Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum. Nature (London) 1988; 336:583–586.

    Article  CAS  Google Scholar 

  156. Thevenod F, Dehlinger-Kremer M, Kemmer TP, Christian A-L, Potter BVL, Schulz I. Characterization of inositol 1,4,5-trisphosphate-sensitive (IsCaP) and -insensitive (IisCaP) nonmitochondrial Ca2+ pools in rat pancreatic acinar cells. J Membr Biol 1989; 109:173–186.

    Article  PubMed  CAS  Google Scholar 

  157. Champeil P, Combettes L, Berthon B, Doucet E, Orlowski S, Claret M. Fast kinetics of calcium release induced by myo-inositol trisphosphate in permeabilized rat hepatocytes. J Biol Chem 1989; 264:17665–17673.

    PubMed  CAS  Google Scholar 

  158. Dawson AP. GTP enhances inositol trisphosphate-stimulated Ca2+ release from rat liver microsomes. FEBS Lett 1985; 185;147–150.

    Article  PubMed  CAS  Google Scholar 

  159. Mullaney JM, Yu M, Ghosh TK, Gill DL. Calcium entry into the inositol 1,4,5-trisphosphate-releasable calcium pool is mediated by a GTP-regulatory mechanism. Proc Natl Acad Sei USA 1988; 85:2499–2503.

    Article  CAS  Google Scholar 

  160. Lee HC, Wadseth TF, Bratt GT, Hayes RN, Clapper DC. Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+-mobilizing activity. J Biol Chem 1989; 264:1608–1615.

    PubMed  CAS  Google Scholar 

  161. Rusinko N, Lee HC. Widespread occurrence in animal tissues of an enzyme catalyzing the conversion of NAD+ into a cytosolic metabolite with intracellular Ca2+-mobilizing activity. J Biol Chem 1989; 264:11725–11731.

    PubMed  CAS  Google Scholar 

  162. Koshiyama H, Lee HC, Tashjian AH Jr. Novel mechanism of intracellular calcium release in pituitary cells. J Biol Chem 1991; 266:16985–16988.

    PubMed  CAS  Google Scholar 

  163. Dargi PL, Agre MC, Lee HC Comparison of Ca2+-mobilizing activities of cyclic ADP-ribose and inositol trisphosphate. Cell Regul 1990; 1:279–290.

    Google Scholar 

  164. Galione A, Lee HC, Busa WB. Ca2+-induced Ca2+ release in sea urchin egg homogenates: Modulation by cyclic ADP-ribose. Science 1991; 253:1143–1146.

    Article  PubMed  CAS  Google Scholar 

  165. Chew CS. Differential effects of extracellular calcium removal and nonspecific effects of Ca2+ antagonists on acid secretory activity in isolated gastric glands. Biochim Biophys Acta 1985; 846:370–378.

    Article  PubMed  CAS  Google Scholar 

  166. Meivin JE, Koek L, Zhang GH. A capacitative Ca2+ influx is required for sustained fluid secretion in sublingual mucous acini. Amer J Physiol 1991; 261:G1043–G1050.

    Google Scholar 

  167. Shuttleworth TJ. Receptor-activated calcium entry in exocrine cells does not occur via agonist-sensitive intracellular pools. Biochem J 1990; 266: 719–726.

    PubMed  CAS  Google Scholar 

  168. Bird GS, Takemura H, Thastrup O, Putney JW Jr, Menniti F. Mechanisms of activated Ca2+ entry in the rat pancreatoma cell line, AR4–2. Cell Calcium 1992; 13:41–48.

    Article  Google Scholar 

  169. Putney JW. A model for receptor-regulated calcium entry. Cell Calcium 1986; 7:1–12.

    Article  PubMed  CAS  Google Scholar 

  170. Pandol SJ, Schoeffield MS, Fimmel JC, Muallem S. The agonist-sensitive calcium pool in the pancreatic acinar cell: Activation of plasma membrane Ca2+ influx mechanism. J Biol Chem 1987; 262:16963–16968.

    PubMed  CAS  Google Scholar 

  171. Kwan C-Y, Putney JW Jr. Uptake and intracellular sequestration of divalent cations in resting and methacholine-stimulated mouse lacrimal acinar cells. J Biol Chem 1990; 265:678–684.

    PubMed  CAS  Google Scholar 

  172. Negulescu PA, Machen TE. Release and reloading of intracellular Ca stores after cholinergic stimulation of the parietal cell. Am J Physiol 1988; 254:C498–C504.

    PubMed  CAS  Google Scholar 

  173. Putney JW Jr. Capacitative calcium entry revisited. Cell Calcium 1990; 11:611–624.

    Article  PubMed  CAS  Google Scholar 

  174. Morris AP, Gallacher DV, Irvine RF, Petersen OH. Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+-dependent K+ channels. Nature 1987; 330:653–655.

    Article  PubMed  CAS  Google Scholar 

  175. Changya L, Gallacher DV, Irvine RF, Potter BVL, Petersen OH. Inositol 1,3,4,5-tetrakisphosphate is essential for sustained activation of the Ca2+-dependent K+ current in single internally perfused mouse lacrimal acinar cells. J Membr Biol 1989; 109:85–93.

    Article  PubMed  CAS  Google Scholar 

  176. Luckhoff A, Clapham DE. Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca2+-permeable channel. Nature 1992; 355:356–358.

    Article  PubMed  CAS  Google Scholar 

  177. Irvine RF. “Quantal” release and the control of Ca2+ entry by inositol phosphates—a possible mechanism. FEBS Lett 1990; 263:5–9.

    Article  PubMed  CAS  Google Scholar 

  178. Petersen OH, Maruyama Y. What is the mechanism of the calcium influx to pancreatic acinar cells evoked by secretagogues. Pfluegers Arch 1983; 396: 82–84.

    Article  CAS  Google Scholar 

  179. Bear CE, Li C. Calcium-permeable channels in rat hepatoma cells are activated by extracellular nucleotides. Am J Physiol 1991; 261:0018–C1024.

    Google Scholar 

  180. Poronnik P, Cook DI, Allen DG, Young JA. Diphenylamine-2-carboxylate (DPC) reduces calcium influx in a mouse mandibular cell line (ST385). Cell Calcium 1991; 12:441–447.

    Article  PubMed  CAS  Google Scholar 

  181. Sasaki T, Gallacher DV. Extracellular ATP activates receptor-operated cation channels in mouse lacrimal acinar cells to promote calcium influx in the absence of phosphoinositide metabolism. FEBS Lett 1990; 264:130–134.

    Article  PubMed  CAS  Google Scholar 

  182. Hallam TJ, Rink TJ. Receptor-mediated Ca2+ entry: diversity of function and mechanisms. Trends Pharmacol Sei 1989; 10:8–10.

    Article  CAS  Google Scholar 

  183. Muallem S, Khademazad M, Sachs G. The route of Ca2+ entry during reloading of the intracellular Ca2+ pool in pancreatic acini. J Biol Chem 1990; 265:2011–2016.

    PubMed  CAS  Google Scholar 

  184. Mertz LM, Baum BJ, Ambudkar IS. Refill status of the agonist-sensitive Ca2+ pool regulates Mn2+ influx into parotid acini. J Biol Chem 1990; 265:15010–15014.

    PubMed  CAS  Google Scholar 

  185. Merritt JE, Hallam TJ. Platelets and parotid acinar cells have different mechanisms for agonist-stimulated divalent cation entry. J Biol Chem 1988; 263:6161–6164.

    PubMed  CAS  Google Scholar 

  186. Harootunian AT, Kao JPY, Tsien RY. Agonist-induced calcium oscillations in depolarized fibroblasts and their manipulation by photoreleased Ins(l,4,5)P3, and Ca2+ buffer. Cold Spring Harbor Symp Quant Biol 1988; 53:935–943.

    PubMed  CAS  Google Scholar 

  187. Goldbeter A, Dupont G, Berridge MJ. Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proc Natl Acad Sei USA 1990; 87:1461–1465.

    Article  CAS  Google Scholar 

  188. Crumpton MJ, Dedman JR. Protein terminology tangle. Nature 1990; 345:212.

    Article  PubMed  CAS  Google Scholar 

  189. Smith VL, Kaetzel MA, Dedman JR. Stimulus-response coupling: The search for intracellular calcium mediator proteins. Cell Regul 1990; 1:165–172.

    PubMed  CAS  Google Scholar 

  190. Heizmann CW, Hunziker W. Intracellular calcium-binding proteins: More sites than insights. Trends Biochem Sei 1991; 16:98–103.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Chew, C.S. (1994). Role of Calcium in Stimulus-Secretion Coupling in Exocrine Glands. In: Foà, P.P., Walsh, M.F. (eds) Ion Channels and Ion Pumps. Endocrinology and Metabolism, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2596-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2596-6_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7599-2

  • Online ISBN: 978-1-4612-2596-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics