Skip to main content
Log in

Inositol 1,3,4,5-tetrakisphosphate is essential for sustained activation of the Ca2+-dependent K+ current in single internally perfused mouse lacrimal acinar cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

We have examined the effects of various inositol polyphosphates, alone and in combination, on the Ca2+-activated K+ current in internally perfused, single mouse lacrimal acinar cells. We used the patch-clamp technique for whole-cell current recording with a set-up allowing exchange of the pipette solution during individual experiments so that control and test periods could be directly compared in individual cells. Inositol 1,4,5-trisphosphate (Ins 1,4,5 P3) (10–100 μm) evoked a transient increase in the Ca2+-sensitive K+ current that was independent of the presence of Ca2+ in the external solution. The transient nature of the Ins 1,4,5 P3 effect was not due to rapid metabolic breakdown, as similar responses were obtained in the presence of 5mm 2,3-diphosphoglyceric acid, that blocks the hydrolysis of Ins 1,4,5 P3, as well as with the stable analoguedl-inositol 1,4,5-trisphosphorothioate (Ins 1,4,5 P(S)3) (100 μm). Ins 1,3,4 P3 (50 μm) had no effect, whereas 50 μm Ins 2,4,5 P3 evoked responses similar to those obtained by 10 μm Ins 1,4,5 P3. A sustained increase in Ca2+-dependent K+ current was only observed when inositol 1,3,4,5-tetrakisphosphate (Ins 1,3,4,5 P4) (10 μm) was added to the Ins 1,4,5 P3 (10 μm)-containing solution and this effect could be terminated by removal of external Ca2+. The effect of Ins 1,3,4,5 P4 was specifically dependent on the presence of Ins 1,4,5 P3 as it was not found when 10 μm concentrations of Ins 1,3,4 P3 or Ins 2,4,5 P3 were used. Ins 2,4,5 P3 (but not Ins 1,3,4 P3) at the higher concentration of 50 μm did, however, support the Ins 1,3,4,5 P4-evoked sustained current activation. Ins 1,3,4 P3 could not evoke sustained responses in combination with Ins 1,4,5 P3 excluding the possibility that the action of Ins 1,3,4,5 P4 could be mediated by its breakdown product Ins 1,3,4 P3. Ins 1,3,4,5 P4 also evoked a sustained response when added to an Ins 1,4,5 P(S)3-containing solution. Ins 1,3,4,5,6 P5 (50 μm) did not evoke any effect when administered on top of Ins 1,4,5 P3. In the absence of external Ca2+, addition of Ins 1,3,4,5 P4 to an Ins 1,4,5 P3-containing internal solution evoked a second transient K+ current activation. Readmitting external Ca2+ in the continued presence internally of Ins 1,4,5 P3 and Ins 1,3,4,5 P4 made the response reappear. We conclude that both Ins 1,4,5 P3 and Ins 1,3,4,5 P4 play crucial and specific roles in controlling intracellular Ca2+ homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batty, I.R., Nahorski, S.R., Irvine, R.F. 1985. Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices.Biochem. J. 232:211–215

    Google Scholar 

  • Berridge, M.J. 1988. Inositol lipids and calcium signalling.Proc. R. Soc. London B. 234:359–378

    Google Scholar 

  • Berridge, M.J., Irvine, R.F. 1984. Inositol trisphosphate, a novel second messenger in cellular signal transduction.Nature (London) 312:315–321

    Google Scholar 

  • Biden, T.J., Wollheim, C.B. 1986. Ca2+ regulates the tris/tetrakisphosphate pathway in intact and broken preparations of insulin-secreting RINm5F cells.J. Biol. Chem. 261:11931–11934

    Google Scholar 

  • Bradford, P.G., Irvine, R.F. 1987. Specific binding sites for [3H]-inositol (1,3,4,5) tetrakisphosphate on membranes of HL-60 cells.Biochem. Biophys. Res. Commun. 149:680–685

    Google Scholar 

  • Burgen, A.S.V. 1956. The secretion of potassium in saliva.J. Physiol. (London) 132:20–39

    Google Scholar 

  • Connolly, T.M., Bansal, V.S., Bross, T.E., Irvine, R.F., Majerus, P.W. 1987. The metabolism of tris and tetraphosphates of inositol by 5-phosphomonoesterase and 3-kinase enzymes.J. Biol. Chem. 262:2146–2149

    Google Scholar 

  • Cooke, A.M., Gigg, R., Potter, B.V.L. 1987. Myo-inositol 1,4,5-trisphosphorothioate: A novel analogue of a biological second messenger.J. Chem. Soc. Commun. 262:1525–1526

    Google Scholar 

  • Cooke, A.M., Nahorski, S.R., Potter, B.V.L. 1989. Myo-inositol 1,4,5-trisphosphorothioate is a potent competitive inhibitor of human erythrocyte 5-phosphatase.FEBS Lett. 242:373–377

    Google Scholar 

  • Crossley, I., Swann, K., Chambers, E., Whitaker, M. 1988. Activation of sea urchin eggs is independent of external calcium ions.Biochem. J. 252:257–262

    Google Scholar 

  • Downes, C.P., Mussat, M.C., Michell, R.H. 1982. The inositol trisphosphate phosphomonoesterase of the human erythrocyte membrane.Biochem. J. 203:169–177

    Google Scholar 

  • Enyedi, P., Williams, G.H. 1988. Heterogenous inositol tetrakisphosphate binding sites in the adrenal cortex.J. Biol. Chem. 263:7940–7942

    Google Scholar 

  • Findlay, I. 1984. A patch-clamp study of potassium channels and whole-cell currents in acinar cells of the mouse lacrimal gland.J. Physiol. (London) 350:179–195

    Google Scholar 

  • Gallacher, D.V. 1988. Control of calcium influx in cells without action potentials.News Physiol. Sci. 3:244–249

    Google Scholar 

  • Gallacher, D.V., Morris, A.P. 1986. A patch-clamp study of potassium currents in resting and acetylcholine-stimulated mouse submandibular acinar cells.J. Physiol. (London) 373:379–395

    Google Scholar 

  • Gallacher, D.V., Morris, A.P. 1987. The receptor-regulated calcium influx in mouse submandibular acinar cells is sodium dependent: A patch-clamp study.J. Physiol. (London) 334:119–130

    Google Scholar 

  • Hamblin, M.R., Flora, J.S., Potter, B.V.L. 1987. Phosphorothioates, phosphatase-resistant analogues of myo-inositol phosphates. Synthesis ofdl-myoinositol 1,4 bisphosphate anddl-myo-inositol 1,4 bisphosphorothioate.Biochem. J. 246:771–774

    Google Scholar 

  • Hamill, O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J. 1981. Improved patch-clamp techniques for high resolution current recordings from cells and cell-free membrane patches.Pfluegers Arch. 391:85–100

    Google Scholar 

  • Hawkins, P.T., Stephens, L., Downes, C.P. 1986. Rapid formation of inositol (1,3,4,5) tetrakisphosphate and inositol (1,3,4) trisphosphate in rat parotid glands may both result indirectly from receptor-stimulated release of inositol (1,4,5) trisphosphate from phosphatidylinositol 4,5-bisphosphate.Biochem. J. 238:507–516

    Google Scholar 

  • Hill, T.D., Dean, N.M., Boynton, A.L. 1988. Inositol 1,3,4,5-tetrakisphosphate induces Ca2+ sequestration in rat liver cells.Science 242:1176–1178

    Google Scholar 

  • Irvine, R.F., Letcher, A.J., Heslop, J.P., Berridge, M.J. 1986a. The inositol tris/tetrakisphosphate pathway-demonstration of Ins (1,4,5) P3-3-kinase activity in animal tissues.Nature (London) 320:631–634

    Google Scholar 

  • Irvine, R.F., Letcher, A.J., Lander, D.J., Berridge, M.J. 1986b. Specificity of inositol phosphate-stimulated Ca2+ mobilization from Swiss-mouse 3T3 cells.Biochem. J. 240:301–304

    Google Scholar 

  • Irvine, R.F., Moor, R.M. 1986. Microinjection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+.Biochem. J. 240:917–920

    Google Scholar 

  • Irvine, R.F., Moor, R.M. 1987. Inositol (1,3,4,5) tetrakisphosphate-induced activation of sea urchin eggs requires the presence of inositol trisphosphate.Biochem. Biophys. Res. Commun. 146:284–290

    Google Scholar 

  • Irvine, R.F., Moor, R.M., Pollock, W.K., Smith, P.M., Wreggett, K.A. 1988. Inositol phosphates: Proliferation, metabolism and function.Phil. Trans. R. Soc. London B 320:281–298

    Google Scholar 

  • Jauch, P., Petersen, O.H., Läuger, P. 1986. Electrogenic properties of the sodium-alanine cotransporter in pancreatic acinar cells: I. Tight-seal whole-cell recordings.J. Membrane Biol. 94:99–115

    Google Scholar 

  • Joseph, S.K., Hansen, C.A., Williamson, J.R. 1987. Inositol 1,3,4,5-tetrakisphosphate increases the duration of the inositol 1,4,5-trisphosphate-mediated Ca2+ transient.FEBS Lett. 214:125–129

    Google Scholar 

  • Llano, I., Marty, A., Tanguy, J. 1987. Dependence of intracellular effects of GTP γ S and inositoltrisphosphate on cell membrane potential and on external Ca ions.Pfluegers Arch. 409:499–506

    Google Scholar 

  • Maruyama, Y., Petersen, O.H. 1984. Control of K+ conductance by cholecystokinin and Ca2+ in single pancreatic acinar cells studied by the patch-clamp technique.J. Membrane Biol. 79:293–300

    Google Scholar 

  • Maruyama, Y., Petersen, O.H., Flanagan, P., Pearson, G.T. 1983. Quantification of Ca2+-activated K+ channels under hormonal control in pig pancreas acinar cells.Nature (London) 305:228–232

    Google Scholar 

  • Morris, A.P., Fuller, C.M., Gallacher, D.V. 1987a. Cholinergic receptors regulate a voltage-insensitive but Na+-dependent calcium influx pathway in salivary acinar cells.FEBS Lett. 211:195–199

    Google Scholar 

  • Morris, A.P., Gallacher, D.V., Fuller, C.M., Scott, J. 1987b. Cholinergic receptor-regulation of potassium channels and potassium transport in human submandibular acinar cells.J. Dent. Res. 66:541–546

    Google Scholar 

  • Morris, A.P., Gallacher, D.V., Irvine, R.F., Petersen, O.H. 1987c. Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+-dependent K channels.Nature (London) 330:653–655

    Google Scholar 

  • Mullaney, J.M., Chueh, S.-H., Ghosh, T.K., Gill, D.L. 1987. Intracellular calcium uptake activated by GTP: Evidence for a possible guanine nucleotide-induced transmembrane conveyance of intracellular calcium.J. Biol. Chem. 262:13865–13872

    Google Scholar 

  • Nauntofte, B., Dissing, S. 1987. Stimulation-induced changes in cytosolic calcium in rat parotid acini.Am. J. Physiol. 253:G290-G297

    Google Scholar 

  • Nishizuka, Y. 1986. Studies and perspectives of protein kinase C.Science 233:305–312

    Google Scholar 

  • Ohya, Y., Terada, K., Yamaguchi, K., Inoue, R., Okabe, K., Kitamura, K., Hirata, M., Kuriyama, H. 1988. Effects of inositol phosphates on the membrane activity of smooth muscle cells of the rabbit portal vein.Pfluegers Arch. 412:382–389

    Google Scholar 

  • Parker, I., Miledi, R. 1987. Injection of inositol 1,3,4,5-tetrakisphosphate intoXenopus oocytes generates a chloride current dependent upon intracellular calcium.Proc. R. Soc. London B. 232:59–70

    Google Scholar 

  • Penner, R., Matthews, G., Neher, E. 1988. Regulation of calcium influx by second messengers in rat mast cells.Nature (London) 334:449–504

    Google Scholar 

  • Petersen, O.H. 1986. Calcium-activated potassium channels and fluid secretion by exocrine glands.Am. J. Physiol. 251:G1-G13

    Google Scholar 

  • Petersen, O.H., Findlay, I., Iwatsuki, N., Singh, J., Gallacher, D.V., Fuller, C.M., Pearson, G.T., Dunne, M.J., Morris, A.P. 1985. Human pancreatic acinar cells: Studies of stimulus-secretion coupling.Gastroenterology 89:109–117

    Google Scholar 

  • Petersen, O.H., Gallacher, D.V. 1988. Electrophysiology of pancreatic and salivary acinar cells.Annu. Rev. Physiol. 50:65–80

    Google Scholar 

  • Petersen, O.H., Maruyama, Y. 1984. Calcium-activated potassium channels and their role in secretion.Nature (London) 307:693–696

    Google Scholar 

  • Snyder, P.M., Krause, K.-H., Welsh, M.J. 1988. Inositol trisphosphate isomers, but not inositol 1,3,4,5-tetrakisphosphate induce calcium influx inXenopus laevis oocytes.J. Biol. Chem. 263:11048–11051

    Google Scholar 

  • Streb, H., Bayerdörffer, E., Haase, W., Irvine, R.F., Schulz, I. 1984. Effect of inositol-1,4,5-trisphosphate on isolated subcellular fractions of rat pancreas.J. Membrane Biol. 81:241–253

    Google Scholar 

  • Streb, H., Irvine, R.F., Berridge, M.J., Schulz, I. 1983. Refease of Ca2+ from a non-mitochondrial intracellular store of pancreatic acinar cells by inositol 1,4,5 trisphosphate.Nature (London) 306:67–69

    Google Scholar 

  • Suzuki, K., Petersen, C.C.H., Petersen, O.H. 1985. Hormonal activation of single K+ channels via internal messenger in isolated pancreatic acinar cells.FEBS Lett. 192:307–312

    Google Scholar 

  • Suzuki, K., Petersen, O.H. 1988. Patch-clamp study of single-channel and whole-cell K+ currents in guinea pig pancreatic acinar cells.Am. J. Physiol. 255:G275-G285

    Google Scholar 

  • Taylor, C.W., Berridge, M.J., Brown, K.D., Cooke, A.M., Potter, B.V.L. 1988.dl-myo-inositol 1,4,5-trisphosphorothioate mobilizes intracellular calcium in Swiss 3T3 cells andXenopus oocytes.Biochem. Biophys. Res. Commun. 150:626–632

    Google Scholar 

  • Thévenod, F., Dehlinger-Kremer, M., Kemmer, T.P., Christian, A.-L., Potter, B.V.L., Schulz, I. 1989. Characterization of inositol 1,4,5-trisphosphate-sensitive (IsCaP) and-insensitive (IisCaP) nonmitochondrial Ca2+ pools in rat pancreatic acinar cells.J. Membrane Biol. (in press)

  • Trautmann, A., Marty, A. 1984. Activation of Ca-dependent K channels by carbamylcholine in rat lacrimal glands.Proc. Natl. Acad. Sci. USA 81:611–615

    Google Scholar 

  • Trimble, E.R., Bruzzone, R., Meehan, C.J., Biden, T.J. 1987. Rapid increases in inositol 1,4,5-trisphosphate, inositol 1,3,4,5-tetrakisphosphate and cytosolic free Ca2+ in agonist-stimulated pancreatic acini of the rat.Biochem. J. 242:289–292

    Google Scholar 

  • Volpe, P., Krause, K.-H., Hashimoto, S., Zorgato, F., Pozzan, T., Meldolesi, J., Lew, D.P. 1988. ‘Calciosome’, a cytoplasmic organelle: The inositol 1,4,5-trisphosphate-sensitive Ca2+ store of non-muscle cells.Proc. Natl. Acad. Sci. USA 85:1091–1095

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Changya, L., Gallacher, D.V., Irvine, R.F. et al. Inositol 1,3,4,5-tetrakisphosphate is essential for sustained activation of the Ca2+-dependent K+ current in single internally perfused mouse lacrimal acinar cells. J. Membrain Biol. 109, 85–93 (1989). https://doi.org/10.1007/BF01870793

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870793

Key Words

Navigation