Skip to main content
Log in

Calcium release and internal calcium regulation in acinar cells of exocrine glands

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Conclusion

Recent results call for a reinterpretation of the mechanisms underlying the recruitment of intracellular Ca2+ in exocrine glands. One new hypothesis suggested by these developments is that InsP3-sensitive channels liberate Ca2+ ions from secretory vesicles, as illustrated in Fig. 5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berridge, M.J. 1990. Calcium oscillations.J. Biol. Chem. 265:9583–9586

    PubMed  Google Scholar 

  • Berridge, M.J., Irvine, R.F. 1989. Inositol phosphates and cell signalling.Nature 341:197–204

    PubMed  Google Scholar 

  • Bezprozvanny, I., Watras, J., Ehrlich, B.E. 1991. Bell-shaped calcium responses of inositol 1,4,5-trisphosphate-gated and calcium-gated channels from endoplasmic reticulum of cerebellum.Nature 351:751–754

    PubMed  Google Scholar 

  • Changya, L., Gallacher, D.V., Irvine, R.F., Potter, B.V.L., Petersen, O.H. 1989. Inositol 1,3,4,5-tetrakisphosphate is essential for sustained activation of the Ca2+-dependent K+ current in single internally perfused mouse lacrimal acinar cells.J. Membrane Biol. 109:85–93

    Google Scholar 

  • Cook, D.I., Gard, G.B., Champion, M., Young, J.A. 1988. Patchclamp studies of the electrolyte secretory mechanism of rat mandibular gland cells stimulated with acetylcholine or isoproterenol.In: Molecular Mechanisms in Secretion. Alfred Benzon Symposium 25, p. 133–145. N.A. Thorn, M. Treiman, and O.H. Petersen, editors. Munksgaard, Copenhagen

    Google Scholar 

  • Crossley, I., Swann, K., Chamben, E., Whitaker, M. 1988. Activation of sea urchin eggs is independent of external calcium ions.Biochem. J. 252:257–262

    PubMed  Google Scholar 

  • Dehlinger-Kremer, M., Zeuzem, S., Schulz, I. 1991. Interaction of caffeine, IP3- and vanadate-sensitive Ca2+ pools in acinar cells of the exocrine pancreas.J. Membrane Biol. 119:85–100

    Google Scholar 

  • Dissing, S., Nauntofte, B., Sten-Knudsen, O. 1990. Spatial distribution of intracellular, free Ca2+ in isolated rat parotid acini.Pfluegers Arch. 417:1–12

    Google Scholar 

  • Ehrlich, B.E., Watras, J. 1988. Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum.Nature 336:583–586

    PubMed  Google Scholar 

  • Evans, M.G., Marty, A. 1986. Potentiation of muscarinic and alpha-adrenergic responses by an analogue of guanosine triphosphate.Proc. Natl. Acad. Sci. USA 83:4099–4103

    PubMed  Google Scholar 

  • Finch, E.A., Turner, T.J., Goldin, S.M. 1991. Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release.Science 252:443–446

    PubMed  Google Scholar 

  • Foskett, J.K., Gunter-Smith, P.J., Melvin, J.E., Turner, R.J. 1989. Physiological localisation of an agonist-sensitive pool of Ca2+ in parotid acinar cells.Proc. Natl. Acad. Sci. USA 86:167–171

    PubMed  Google Scholar 

  • Gray, P.T.A. 1988. Oscillations of free cytosolic calcium evoked by cholinergic and catecholaminergic agonists in rat parotid acinar cells.J. Physiol. 406:35–53

    PubMed  Google Scholar 

  • Horn, R., Marty, A. 1989. Muscarinic activation of ionic currents measured by a new whole-cell recording method.J. Gen. Physiol. 92:145–159

    Google Scholar 

  • Irvine, R.F. 1990. ‘Quantal’ release and the control of Ca2+ entry by inositol phosphates—a possible mechanism.FEBS Lett. 263:5–9

    PubMed  Google Scholar 

  • Irvine, R.F., Moor, R.M. 1986. Micro-injection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+.Biochem. J. 240:917–920

    PubMed  Google Scholar 

  • Irvine, R.F., Moor, R.M., Pollock, W.K., Smith, P.M., Wreggett, K.A. 1988. Inositol phosphates: Proliferation, metabolism and function.Phil. Trans. R. Soc. London B 320:281–298

    Google Scholar 

  • Kasai, H., Augustine, G.J., 1990. Cytosolic Ca2+ gradients triggering unidirectional fluid secretion from exocrine pancreas.Nature 348:735–738

    PubMed  Google Scholar 

  • Lewis, R.S., Cahalan, M.D. 1989. Mitogen-induced oscillations of cytosolic Ca2+ and transmembrane Ca2+ current in human leukemic T cell.Cell Regul. 1:99–112

    PubMed  Google Scholar 

  • Llano, I., Marty, A. 1987. Protein kinase C activators inhibit the inositol-trisphosphate-mediated muscarinic current responses in rat lacrimal cells.J. Physiol. 394:239–248

    PubMed  Google Scholar 

  • Llano, I., Marty, A., Tanguy, J. 1987. Dependence of intracellular effects of GTPγS and inositoltrisphosphate on cell membrane potential and on external Ca ions.Pfluegers Arch. 409:499–506

    Google Scholar 

  • Marty, A., Evans, M.G., Tan, Y.P., Trautmann, A. 1986. Muscarinic response in rat lacrimal glands.J. Exp. Biol. 124:15–32

    PubMed  Google Scholar 

  • Marty, A., Horn, R., Tan, Y.P., Zimmerberg, J. 1989. The delay of the Ca mobilization response to muscarinic stimulation.In: Secretion and Its Control. 42nd Annual Symposium of the Society of General Physiologists. C.M. Armstrong, and G.S. Oxford, editors. pp. 97–110. Rockefeller University Press, New York

    Google Scholar 

  • Marty, A., Tan, Y.P. 1989. The initiation of calcium release following muscarinic stimulation in rat lacrimal glands.J. Physiol. 419:665–687

    PubMed  Google Scholar 

  • Maruyama, Y. 1989. Activation and desensitization mechanisms of muscarinic current response in single pancreatic acinar cells of rats.J. Physiol. 417:343–359

    PubMed  Google Scholar 

  • Maruyama, Y. 1990. Inhibitory effects of arachidonic acid on muscarinic current response in single pancreatic acinar cells of rats.J. Physiol. 430:471–482

    PubMed  Google Scholar 

  • Mathews, G., Neher, E., Penner, R. 1989. Second messengeractivated calcium influx in rat peritoneal mast cells.J. Physiol. 418:105–130

    PubMed  Google Scholar 

  • Merritt, J.E., Rink, T.J. 1987. Rapid increases in cytosolic free calcium in response to muscarinic stimulation of rat parotid acinar cells.J. Biol. Chem. 262:4958–4960

    PubMed  Google Scholar 

  • Meyer, T., Holowka, D., Stryer, L. 1988. Highly cooperative opening of calcium channels by inositol 1,4,5 trisphosphate.Science 240:653–656

    PubMed  Google Scholar 

  • Mignery, G.A., Südhof, T.C., Takei, K., De Camilli, P. 1989. Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor.Nature 342:192–195

    PubMed  Google Scholar 

  • Miyazaki, S. 1988. Inositol 1,4,5 trisphosphate-induced calcium release and guanine nucleotide-binding protein-mediated periodic calcium rises in golden hamster eggs.J. Cell Biol. 106:345–353

    PubMed  Google Scholar 

  • Morris, A.P., Gallacher, D.V., Irvine, R.F., Petersen, O.H. 1987. Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+-dependent K+ channels.Nature 330:653–655

    PubMed  Google Scholar 

  • Neher, E. 1988. The influence of intracellular calcium concentration on degranulation of dialysed mast cells from rat peritoneum.J. Physiol. 395:193–214

    PubMed  Google Scholar 

  • Ogden, D.C., Capiod, T., Walker, J.W., Trentham, D.R. 1990. Kinetics of the conductance evoked by noradrenaline, inositol trisphosphate or Ca2+ in guinea-pig isolated hepatocytes.J. Physiol. 422:585–602

    PubMed  Google Scholar 

  • Osipchuk, Y.V., Wakui, M., Yule, D.I., Gallacher, D.V., Petersen, O.H. 1990. Cytoplasmic Ca2+ oscillations evoked by receptor stimulation, G-protein activation, internal application of inositoltrisphosphate or Ca2+: Simultaneous microfluorimetry and Ca2+ dependent Cl current recording in single pancreatic acinar cells.EMBO J. 9:697–704

    PubMed  Google Scholar 

  • Parker, I., Ivorra, I. 1990. Localized all or none calcium liberation by inositol trisphosphate.Science 250:977–979

    PubMed  Google Scholar 

  • Parker, I., Miledi, R. 1989. Nonlinearity and facilitation in phosphoinositide signaling studied by the use of caged inositoltrisphosphate inXenopus oocytes.J. Neurosci. 9:4068–4077

    PubMed  Google Scholar 

  • Peng, Y.-W., Sharp, A.H., Snyder, S.H., Yau, K.-W. 1991. Localization of the inositol 1,4,5-trisphosphate receptor in synaptic terminals in the vertebrate retina.Neuron 6:525–531

    PubMed  Google Scholar 

  • Petersen, O.H., Wakui, M. 1990. Oscillating intracellular Ca2+ signals evoked by activation of receptors linked to inositol lipid hydrolysis: Mechanism of generation.J. Membrane Biol. 118:93–105

    Google Scholar 

  • Putney, J.W., Jr. 1986. A model for receptor-regulated calcium entry.Cell Calcium 7:1–12

    PubMed  Google Scholar 

  • Rana, R.S., Hokin, L.E. 1990. Role of phosphoinositides in transmembrane signaling.Physiol. Rev. 70:115–163

    PubMed  Google Scholar 

  • Satoh, T., Ross, G.A., Villa, A., Supattapone, S., Pozzan, T., Snyder, S.H., Meldolesi, J. 1990. The inositol 1,4,5-trisphosphate receptor in cerebellar Purkinje cells. Quantitative immunogold labeling reveals concentration in an endoplasmic reticulum compartment.J. Cell Biol. 111:615–624

    PubMed  Google Scholar 

  • Schmid, A., Dehlinger-Kremer, M., Shulz, I., Gögelein, H. 1990. Voltage-dependent InsP3-insensitive calcium channels in membranes of pancreatic endoplasmic reticulum vesicles.Nature 346:374–376

    PubMed  Google Scholar 

  • Streb, H., Bayerdörffer, E., Haase, W., Irvine, R.F., Schulz, I. 1984. Effect of inositol-1,4,5-trisphosphate on isolated subcellular fractions of rat pancreas.J. Membrane Biol. 81:241–253

    Google Scholar 

  • Sugiya, H., Obie, J.F., Putney, J.W., Jr. 1988. Two modes of regulation of the phospholipase C-linked substance-P receptor in rat parotid acinar cells.Biochem. J. 253:459–466

    PubMed  Google Scholar 

  • Tan, Y.P., Marty, A. 1991. Protein kinase C-mediated desensitization of the muscarinic response in rat lacrimal gland cells.J. Physiol. 433:357–371

    PubMed  Google Scholar 

  • Thévenod, F., Dehlinger-Kremer, M., Kemmer, T.P., Christian, A.-L., Potter, B.V.L., Schulz, I. 1989. Characterization of inositol 1,4,5-trisphosphate-sensitive (IsCaP) and-insensitive (IisCaP) nonmitochondrial Ca2+ pools in rat pancreatic acinar cells.J. Membrane Biol. 109:173–186

    Google Scholar 

  • Thévenod, F., Schulz, I. 1989. H+-ion dependent calcium uptake into an inositol 1,4,5-trisphosphate sensitive calcium pool from rat parotid gland.Am. J. Physiol. 255:G429-G440

    Google Scholar 

  • Wakui, M., Osipchuk, Y.V., Petersen, O.H. 1990. Receptoractivated cytoplasmic Ca2+ spiking mediated by inositol trisphosphate is due to Ca2+-induced Ca2+ release.Cell 63:1025–1032

    PubMed  Google Scholar 

  • Wakui, M., Potter, B.V.L., Petersen, O.H. 1989. Pulsatile intracellular calcium release does not depend on fluctuations in inositoltrisphosphate concentration.Nature 339:317–320

    PubMed  Google Scholar 

  • Yoo, S.H., Albanesi, J.P. 1990. Inositol 1,4,5-trisphosphate-triggered Ca2+ release from bovine adrenal medullary secretory vesicles.J. Biol. Chem. 265:13446–13448

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marty, A. Calcium release and internal calcium regulation in acinar cells of exocrine glands. J. Membrain Biol. 124, 189–197 (1991). https://doi.org/10.1007/BF01994353

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01994353

Key Words

Navigation